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Abstract
Sustainable Intensification (SI) practices offer adopters exploiting improvement poten-
tials in environmental performance of farming, i.e. enhance ecosystem functionality, while 
maintaining productivity. This paper proposes a directional meta-frontier approach for 
measuring farms’ eco-efficiency and respective improvement potentials in the direction of 
farms’ ecological output for SI evaluation. We account for farms’ selection processes into 
SI using a behavioural model and rely on a matched sample for adopters and non-adopters 
of agronomic SI practices from the northern German Plain. We conclude that the SI adop-
ters determined the sample’s system frontier and showed higher mean eco-efficiency, but 
that most farms in our sample did not fully exploit the improvement potentials in biodiver-
sity as ecological outcome.
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1  Introduction

Humanity faces the crucial challenges: increasing global food production and transi-
tioning quickly to sustainable and climate-smart agricultural production systems (Sarkar 
et al. 2020) at limited and contested natural resources (Li et al. 2019; Popp et al. 2014). 
Intense traditional farming practices contribute to loss of biodiversity, greenhouse gas 
emissions and groundwater contamination (Conijn et al. 2018; Foley et al. 2011). Many 
of the ecological improvements in farming associated with low-input or organic produc-
tion, cannot maintain productivity levels and may even cause land conversions (Smith 
et al. 2019).

Given that farms operate in the complex social-ecological system, i.e. farming 
extracts and markets ecosystem services and provides maintenance by interacting with 
the natural system (cf. McGinnis and Ostrom 2014), a number of crucial farm man-
agement and production decisions may have adverse effects on ecosystem functioning. 
Hence, the concept of Sustainable Intensification (hereafter SI) has been proposed to 
offset the adverse effects of agricultural production (Balaine et  al. 2020; Baulcombe 
et al. 2009), and to sustain rural economies (Godfray and Garnett 2014). SI-based pro-
duction systems have been developed to reduce environmental harm while maintaining 
yield levels (Pretty 2018), or foster yield growth in developing countries while preserv-
ing ecosystems (Pretty 1997; Schut and Giller 2020) and closing yield gaps (Ray et al. 
2012). SI thus governs the socio-economic dimension of sustainability, while enhancing 
functionality of the natural ecosystem, i.e. the ecological dimension of sustainability 
(e.g., Gunton et  al. 2016). Other conceptual definitions include aspects of the social 
dimension of sustainability explicitly, for instance cultural or ethical aspects (Garnett 
and Godfray 2012).

Practical evaluations of the outcomes of adopting SI measures on farm level are 
mainly based on field trial data (e.g., Paul et al. 2015; Townsend et al. 2016) or simula-
tion-based approaches (e.g., Devkota et al. 2016; Mao et al. 2015; Scherer et al. 2018) 
and strongly focus on yield effects. Yet holistic approaches seem underrepresented. 
Few studies exist demonstrating that farms in developing and developed countries can 
improve their ecological and economic performance by adopting SI measures (e.g., 
Kassie et al. 2015). For European cases, Areal et al. (2018) or Gadanakis et al. (2015) 
assess SI with indicators to track economic and ecological farm outcomes but do not 
causally link the outcome indicators to the adoption of specific SI measures. Petersen 
and Snapp (2015) indicate that assessing SI is challenging as adopting and combining 
different agronomic measures may impact the production process in various ways. This 
may explain the continuing debate about which measure could achieve an improved bal-
ance between the economic and ecological sustainability of agricultural production. 
Mahon et al. (2018) even emphasise the need for concrete outcome specifications of SI, 
while acknowledging the processes of ecosystem maintenance and service extraction 
under the respective local natural system and governance settings.

In this paper we analyse agronomic examples of SI measures (e.g., wider crop rota-
tions, reduced tillage, integrated pest management, and plant and/or site-specific tech-
nologies) and their potential offset environmental harm without sacrificing productivity 
(cf. Weltin et al. 2018 for an overview of SI measures). In order to evaluate the benefits 
of these different measures, we propose a meta frontier approach for measuring farms’ 
eco-efficiency and respective improvement potentials. We use rich survey data for a 
sample of SI adopters and non-adopters throughout the northern German Plain, which is 
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characterised by peatlands. We follow the fundamental SI definition which states that SI 
practices can improve the balance between the economic and ecological sustainability 
of agricultural production without reducing either (Dicks et al. 2019).

We base our evaluation on a utility maximization model, where farmers opt consciously 
for a SI technology, and on a two-output (economic and ecological) production model and 
a directional meta-frontier approach to measure eco-efficiency (cf. Beltrán-Esteve and Reig-
Martínez 2014; O’Donnell et al. 2008). The production frontiers of SI technology and tradi-
tional farming technology are enveloped by an eco-efficient system frontier. We assume that 
the system frontier offers the highest possible outputs in either direction. A farm’s eco-ineffi-
ciency in direction of the ecological output reflects the improvement potential in environmen-
tal performance, i.e. maintaining or enhancing the eco-system’s functionality, at a given level 
of economic outcome (cf. Kuosmanen and Kortelainen 2005).

We hypothesize that adopting SI offers an eco-efficient reduction of farms’ improvement 
potentials and farms provide more maintenance in the form of ecological output at no eco-
nomic cost. Our analysis involves three aspects: we examine whether SI adopters determine 
the system frontier in the ecological output direction and refer to this as the technology effect. 
As a second aspect, we explore whether adopting the SI technology reduces farms’ improve-
ment potentials, i.e., the distances to the system frontier in the direction of the ecological out-
put, and as a third aspect, we acknowledge that farms’ performance in the chosen technology 
can impact the improvement potential and refer to this as the performance effect.

Given that farmers make production decisions based on utility maximization, observed dif-
ferences in the environmental performance improvement potentials between the SI adopters 
and non-adopters can also relate to the structural differences of the two groups (e.g., natu-
ral and socio-economic conditions or environmental preferences). In line with Mayen et al. 
(2010), linking technology adoption decisions and eco-efficiency analysis is a pre-condition 
for identifying causal relationships. Therefore, following the theoretical behavioural frame-
work of Chabé-Ferret and Subervie (2013), we assume a representative farmer will choose 
the SI technology, and the inputs and outputs that maximise utility and improve ecological and 
economic potentials. Figure 1 illustrates our research plan and the effects we investigate.

We believe this is the first paper to provide a meta-frontier approach for evaluating SI by 
comparing improvement potentials in the direction of ecological outputs. We contribute to the 
environmental economics literature by using a matching algorithm to generate a control sam-
ple that reduces potential bias and causally interprets the differences in eco-efficiency through 
SI measures. The proposed meta-frontier approach separates the differences in improvement 
potentials between the SI adopters and non-adopters into a technology effect and a perfor-
mance effect.

The remainder of this paper is organized as follows. Section 2 introduces the analytical 
framework, theoretical background and hypotheses. Section 3 describes the empirical model 
specification, data, and study region. Section 4 presents the results. Section 5 discusses the 
results. Section 6 concludes and offers suggestions for future research.

2 � Conceptual Approach

2.1 � Eco‑Efficiency Analysis for SI Evaluation

The eco-efficiency analysis used in this paper offers an instrument for measuring the capa-
bility of farms to produce goods at the least environmental harm (e.g., Chen and Delmas 
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2012; Halkos and Petrou 2019; Huppes and Ishikawa 2005). Typically, the production pos-
sibility frontier in a two-output model consists of an economic and environmental output 
dimension (see Sect. 2.2). Adopting and implementing SI measures successfully governs 
the two dimensions by mitigating or eliminating the undesirable environmental output and 
maintaining the economic production output, or vice versa. The eco-efficiency approach is 
thus preferable to using a single evaluation of indicators, such as a cost–benefit analysis of 
agricultural income before and after SI adoption (see Smith et al. 2017 for an overview).

In this paper farm-specific deviations from the production possibility frontier denote 
eco-inefficiencies. Farm-specific but directional eco-efficiency measures indicate respec-
tive inefficiencies in the ecological and economic output direction separately (Callens and 
Tyteca 1999; Picazo-Tadeo et al. 2012; Tyteca 1999), and the measured eco-inefficiency 
scores reflect farms’ improvement potentials in the economic and ecological direction 
(Asmild et al. 2016).

Key for evaluating SI is the investigation to which extent farms exploit the respective 
improvement potentials. We follow the idea of sequential preferences by Asmild and Hou-
gaard (2006), and presume that farm managers first aim at optimizing technical efficiency, 
that is, focus on optimizing in the economic output direction. Second, after meeting a 
certain economic threshold, and depending on their environmental preferences, they may 
improve the environmental output, along with SI adoption (see Sect. 2.3).

Our non-parametric directional approach based on Data Envelopment Analysis (DEA) 
relies on linear programming approaches to retrieve the production possibility frontier as 
the best practise frontier (Bogetoft and Otto 2011). Free of any distributional assumptions, 
the approach does not suffer from potential bias due to the functional form misspecification 
of the frontier. Farm-specific deviations from the best practise frontier in the ecological 
direction capture the ecological outcome improvement potentials without sacrificing eco-
nomic performance (Zhou et al. 2018).

Fig. 1   Research plan
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DEA approaches have been applied to eco-efficiency analyses of agricultural produc-
tion, particularly for evaluating production systems that govern economic value creation 
at lower externalities, such as dairy farms’ greenhouse gas emissions (e.g., Pérez Urdiales 
et al. 2016), environmental nutrient impacts (Iribarren et al. 2011), soil loss due to erosion 
(Eder et al. 2021), pesticide uses for olive production (Gómez-Limón et al. 2012; Picazo-
Tadeo et al. 2012) and crop production (Bonfiglio et al. 2017). DEA approaches have been 
applied to production types related to policy support, such as participation in agri-envi-
ronmental schemes (Picazo-Tadeo et al. 2011), sustainable coffee production certification 
(Ho et  al. 2018), labour- versus capital-intensive farming systems (Grzelak et  al. 2019), 
regional differences (Coluccia et al. 2020) and farm sizes (Stępień et al. 2021).

We base our analysis on the behavioural model of Chabé-Ferret and Subervie (2013) 
to frame the decision to adopt SI measures for causal identification of farms’ respective 
improvement potentials. The model of was originally developed to identify (windfall) 
effects causally linked to participation in agri-environmental schemes in France; an issue 
that has been discussed for other regions (Arata and Sckokai 2016; Calvet et  al. 2019), 
other policy measures, for instance decoupled payments (Esposti 2017a, b), and for other 
voluntary production choices such as organic farming (e.g., Cisilino et  al. 2019). The 
behavioural model frames the role of environmental preferences while investigating farm 
level decisions to enter such policy schemes and has been mirrored in follow-up applica-
tions (Kuhfuss et al. 2016; Laukkanen and Nauges 2014; Mennig and Sauer 2020; Uda-
gawa et al. 2014).

2.2 � The Production Economic Model

We assume that a representative farm i produces output vector Y , with an economic Yecon 
and ecological dimension Yecol . We use agronomic SI measures to categorize the SI tech-
nology and the traditional farming technology with respective production technology sets 
Ψj with j = {0;1} , where j = 0 indicates production without SI measures and j = 1 indi-
cates the SI-adjusted production system. In both technology sets, farm i chooses a vari-
able input X and on-farm labour H to produce output Y . Fixed inputs I , such as human 
and physical capital, and unobserved factors � , such as land quality, weather conditions or 
managerial ability, enter the production possibility sets:

Following O’Donnell et al. (2008), the respective technologies, Ψj, determine a common 
production system frontier, Ψm , enveloping the SI and non-SI production possibility fron-
tiers. The system production possibility frontier denotes the achievable production output 
for farms in a region, given the natural ecosystem and the governance settings. Figure 2 
illustrates our production economic model.

The solid black line represents the system frontier Ψm and the dashed lines represent 
the respective production possibility frontiers of the two technologies (SI, Ψ1 , versus tra-
ditional farming, Ψ0 ). Farms producing on the system frontier Ψm such as A in Fig. 2 fully 
exploit their improvement potentials in both directions (eco-efficient), whereas farms A’ 
and A’’ deviate and can improve in either direction against the overall system frontier (eco-
nomic or ecological). Directional distances from these points measured against A give the 
degree of eco-inefficiency in the farm’s ecological output direction for given economic out-
come (e.g., Picazo-Tadeo et al. 2012). As we hypothesize that the SI technology determines 
the system frontier in ecological direction, A’’, offers improvements in ecological direction 

(1)Ψj = [(X,H, I, �,Y)|X,H, I, � can produce Y].
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to A at the maximum under SI. If farms do not adopt SI and operate efficiently (A’ in Fig. 2 
on Ψ0 ), they still have unexploited improvement potentials when compared to the system 
frontier (technology effect). In Fig. 2, such improvement potential in ecological direction 
is denoted by the directional distance between A’ and A. While the distance A’’ to A’ sug-
gests efficiency gains and efficient production when measured against the non-SI frontier, 
evaluated against the SI and the system frontier, inefficient.

Assuming that a farm producing efficiently under SI ( Ψ1 ) produces closer to the system 
frontier in an ecological direction than farms using traditional farming technology, leads to 
the following hypothesis:

Hypothesis 1  The SI frontier locates in the direction of the ecological output closer to the 
system frontier. Hence, SI adopters in this direction determine the system frontier.

2.3 � The Behavioural Model

We assume that the observed and measurable respective improvement potential of a farm, 
denoted as Ỹj , results from two sequential decisions. First, the farm household’s decision 
to adopt SI determines the possible improvement in the ecological direction by the respec-
tive group-specific frontier. Second, the farm household’s decision regarding input alloca-
tion and intensity determines how eco-efficiently to operate with the chosen technology. 
Following Chabé-Ferret and Subervie (2013), we assume farms maximize utility as rep-
resented by utility function U , and evaluate optimized production input levels X∗

j
 and on-

farm labour time allocation H∗
j
 for both technologies. Both X∗

j
 and H∗

j
 are functions of the 

exogenous variables, such as prices, consumption shifters, preferences and fixed inputs, as 
denoted by gj and hj , respectively.

Presuming that sequential preferences guide the farm household’s decision to adopt SI 
measures (cf. Asmild and Hougaard 2006), the SI farm aims to reduce the improvement 
potential in the ecological direction compared to their non-SI reference situation. We thus 
model their first stage decision-making such that the results from previous years and their 
experience enter the estimation of the reference improvement potential: Ỹ∗

0
= Ỹ0

(
X∗
0
,H∗

0

)
.

The farm household’s utility maximisation problem is given by:

Fig. 2   System frontier (Ψ
m
) and 

the two group-specific frontiers, 
non-SI (Ψ

0
) and SI 

(
Ψ

1

)
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subject to:

where utility U depends on levels of consumption C , leisure L , variable input X, and on-
farm labour hours H. Variable input X and on-farm labour hours H reflect the dependence 
of utility on the farm’s preference for or rejection of certain input compositions. Consump-
tion shifters S , such as age or education, and unobservable taste shifters � , such as ecologi-
cal preferences or idiosyncratic non-farm profit opportunities also enter U . Equation  (3) 
above gives the transformation function in an explicit form regarding Yecon according to the 
implicit function theorem (e.g., Sauer and Wossink 2013), and Eq. (4) states that the farm 
household sells Yecon for price p with input costs at price px and quantities X . The farm 
generates additional income from Hoff  hours of off-farm work remunerated by wage rate w . 
Equation (5) constrains the total available time T  of hours for on- and off-farm labour and 
leisure time.

Optimal input levels under non-SI are given by:

and

When applying SI, the farm’s input allocation is guided such that the improvement poten-
tial in the ecological direction, Ỹ1 , does not exceed the optimized improvement potential 
of the reference situation, Ỹ∗

0
 . This provides an additional voluntary constraint to the util-

ity maximization problem. The constraint becomes applicable when the farm adopts SI 
( D = 1 ), where the reference improvement potential enters as a constant:

The voluntary constraint of Eq. (8) enters the first-order conditions:

where � denotes the respective Lagrangian multiplier.
Therefore, the optimized input choices under SI depend on the reference situation’s 

improvement potential, Ỹ∗
0
 . This counterfactual improvement potential works as a lower 

bound against which farms compare the respective improvement potential under SI. If the 

(2)max
C,L,H,Hoff ,X

U(C, L,H,X, S, �)

(3)Yecon = fj
(
X,H, I, �, Yecol

)

(4)C = pYecon − pxX + wHoff

(5)T = L + H + Hoff ,

(6)X∗
0
= g0

(
p, px,w, T , I, S,�, �

)

(7)H∗
0
= h0

(
p, px,w,T , I, S,�, �

)
.

(8)D
(
Ỹ1(X,H, I, �,Y) − Ỹ∗

0

)
≤ 0.

(9)𝜕U

𝜕C

(
p
𝜕fj

𝜕X
− px

)
+

𝜕U

𝜕X
− 𝜆

(
𝜕Ỹ1(X,H, I, �,Y)

𝜕X

)
D = 0

(10)𝜕U

𝜕C

(
p
𝜕fj

𝜕H
− w

)
+

𝜕U

𝜕H
− 𝜆

(
𝜕Ỹ1(X,H, I, �,Y)

𝜕H

)
D = 0,
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constraint is binding ( � ≠ 0 ), the farm will adjust X and H but may be compensated by 
increases in utility, whereas if the constraint is not binding ( � = 0 ), the farm has no costs 
in terms of the constrained use of X and H when applying SI. Optimized input and labour 
allocation under SI are given by:

and

We note that if the farm’s expected improvement potential under SI, Ỹ∗
1
 , remains insuf-

ficiently large enough to increase utility compared to Ỹ∗
0
 according to the environmental 

preferences, the farm will not adopt ( D = 0 ) and Eq. (8) becomes irrelevant.
We use the farm’s decision outcome to measure the respective improvement potential 

Ỹj as shown in Fig.  2. The farm decides on SI based on the indirect utilities, V1 and V0. 
Indirect utilities depend on the same variables as Ỹ∗

1
 and Ỹ∗

0
 . The implementation of SI may, 

however, induce search, implementation or information cost denoted by V  . Cost V  poten-
tially varies with education and experience and reduces indirect utility when choosing SI. 
The farm will adopt SI ( D = 1 ) when the expected increase in indirect utility outweighs the 
cost of adoption:

where Z denotes the determinants of the adoption decision. The determinants may coin-
cide with the determinants of input choices, such as environmental preferences, consump-
tion shifters or fixed inputs. Since the adopters and non-adopters may systematically differ 
regarding their environmental preferences, we need to ensure comparability between the 
two groups before we assess the observed improvement potentials.

Thus far, we have assumed eco-efficient production under the respective technology. In 
the short-run, however, inefficiencies within the chosen technology may occur and farms 
may tolerate the adjustment costs of technology adoption in terms of output reductions 
(Ang and Oude Lansink 2017), although ignoring the possible inefficiencies of SI adopters 
would bias the retrieved improvement potentials (performance effect). For instance, a fully 
efficient non-SI farm could have a lower improvement potential compared to a weakly effi-
cient SI-farm. Figure 3 illustrates two examples of non-SI reference situations.

If farm A could achieve A’’, the improvement potential turns to zero, otherwise farm 
A may only be able to reduce the improvement potential up to a point A’, which is also 
achievable in the non-SI technology, due to eco-inefficiencies within the SI technology. 
Farm B is eco-efficient within the non-SI technology but could exhibit eco-inefficiencies in 
the SI technology that prevent moving to a point B’ that reduces the improvement potential. 
Assuming that performance B’’’ under SI corresponding to the ecological output level of 
A’ could even increase farm B’s improvement potential leads to the following hypotheses.

Hypothesis 2a  At the mean, for the same economic outcome, SI adopters produce at a 
lower ecological improvement potential than comparable non-adopters.

Hypothesis 2b  If SI adopters have a low within-technology performance in the chosen 
technology and comparable non-adopters have a high within-technology performance, the 
non-adopters have lower improvement potential than the adopters in some cases.

(11)X∗
1
= g1

(
p, px,w, T , I, S,�, �, Ỹ

∗
0

)

(12)H∗
1
= h1

(
p, px,w, T , I, S,�, �, Ỹ

∗
0

)
.

(13)D = 1
[
E
[
V1 − V0|Z

]
− V ≥ 0

]
],
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3 � Data and Empirical Approach

3.1 � Study Area, SI Measures, SI‑Related Outcomes and Summary Statistics

Our study area is the northern German Plain characterised by abundant peatlands and low-
land farming systems. These areas are classified as high-priority intervention areas in the 
European Common Agriculture Policy framework to protect carbon-rich soils and require 
adapting farming practices to meet Germany’s climate protection and biodiversity goals 
(TEEB 2015) and EU’s climate protection goals (European Commission 2020).

We use data from a survey of farming practices conducted between February and June 
2017 for farms in the federal states of Brandenburg, Mecklenburg Western Pomerania, 
Saxony-Anhalt, Lower Saxony and Schleswig Holstein (for brevity, the full questionnaire is 
provided with the supplementary material). For the survey, farms in Brandenburg, Meck-
lenburg, and Western Pomerania were recruited in areas with at least 20% peatland area 
and 1000 ha of peatlands in total, and with more than 5000 ha of peatlands in total, based 
on postal code. Additional respondents were recruited via farmers’ associations in all five 
federal states. From the 464 observations in the spatial expansion, we used the 410 farms 
for which we observed adoption decisions for SI measures, and excluded 26 farms below 
5 ha, for a total of 384 farms. Figure 4 illustrates the study area.

The set-up and data, including sampling choices, selected SI measures and outcome def-
initions may affect the location of the eco-efficient frontier, and thus sensitivity respective 
improvement potentials (cf. Areal et al. 2018; Gadanakis and Areal 2018). Therefore, our 
approach contains a robustness analysis. We exclude the additional recruitments in in the 
first robustness scenario.

This evaluation study targets at investigating the contribution of agronomic SI meas-
ures in improving farms’ eco-efficiency, and therefore, regionally relevant agronomic SI 
measures have to be identified. Following Dicks et al. (2019) and Firbank et al. (2013), 
we support our choice by stakeholder opinions. Thus, prior to conducting our survey, we 
invited farmers, representatives of environmental protection agencies, and local admin-
istrators, to a workshop in the Rhinluch in Brandenburg, explaining the research and to 
select our SI measures. Given the study region’s urgencies to meet climate-protection 
and biodiversity goals by SI, our ecological outcome measures focus on on-farm and 

Fig. 3   Improvement potentials 
for different reference situations 
of farms A and B. SI adop-
tion may shift farm production 
to A′ and B′ with reductions 
in improvement potential. B′′′ 
represents a situation when eco-
inefficiencies in the SI technol-
ogy increase the improvement 
potential compared to B
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on-land diversity, and we selected six agronomic SI measures with potential contribu-
tions to biodiversity and thus ecosystem functionality of grassland and arable farming: 
(1) reduced tillage, (2) intercropping, (3) growing legumes, (4) integrated pest manage-
ment, (5) grazing, and (6) extensive use of grassland. While in this study we focus on 
the economic and ecological sustainability dimensions, SI measures discussed in the 
workshop also governed social aspects (see Weltin et al. 2021).

To specify the ecological output dimension in the eco-efficiency model, Yecol , we pri-
marily focus on farm, farmland and crop diversity. We rely on several indicators clas-
sified as indirect or related to farmland use and management that correlate with biodi-
versity (cf. Bockstaller et al. 2011). Since landscape simplification is a strong predictor 
for losses in species richness and thus ecosystem functionality (Dainese et  al. 2019), 
we follow a more holistic approach by Gibson et al. (2007) and consider farm-level het-
erogeneity between different landscape elements (on-farm diversity) and the diversity 
within each land use type (on-land diversity). We assign equal weight to both aspects 
of diversity in the final ecological output indicator (cf. Gan et al. 2017). For robustness 
scenarios 2 and 3, we vary the weighting scheme by assigning a higher weight of 80 
percent to one diversity aspect. Table 1 reports the calculations of the indicators.

We use the Simpson diversity index to indicate on-farm diversity on cropped and 
non-cropped area, i.e. share of arable land, extensive grassland, and other grassland (cf. 
Van Eck and Koomen 2008). For non-cropped land, we observe the presence but not the 
amount of fallow land and flower or buffer strips. Acknowledging their high value for 

Fig. 4   Map of the spatial expansion of the sample and response rates in North German Plain (based on 
Weltin and Zasada (2018). Note: 22 farms that did not give postal codes are excluded
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biodiversity (Herbst et al. 2017; Weibull et al. 2003), we assign them 50% of the weight 
in the overall indicator for on-farm diversity.

For on-land diversity, we measure the biodiversity in arable land by the number of 
different crops grown within a year (Matson et  al. 1997). For grassland we use three 
indicators: we include the share of permanent grassland to total grassland. The indicator 
captures the carbon sink function of grassland (Barnes and Poole 2012). We use farms’ 
shares of permanent pasture that exceed regional averages to capture a biodiversity sur-
plus extending the indicator of Areal et al. (2012). We use the third grassland indicator 
for the abundance of peatlands extensively managed or in conditions close to nature, 
with a high impact on carbon capture and biodiversity (TEEB 2015). We weight the 
three grassland indicators equally. We weight the indicators for arable and grassland 
by the respective share of each land-use type on the farm in the composite indicator for 
on-land diversity to reflect the heterogeneity of farm types in the sample. To account for 
potential farm-type effects, in the fourth robustness scenario, we exclude fully special-
ised farms that operate either only on arable land or only on pastures. Figure 5 maps the 
distribution of peat- and wetland areas in the studied region and the main land use types.

We consider economic outputs and ecological outputs without modelling all inputs in 
the production process. We use the agricultural area as input for deriving the improve-
ment potentials for farms of comparable size. To specify the economic output dimen-
sion in the eco-efficiency model, Yecon , we rely on a farm profit indicator provided on an 

Table 1   Environmental output indicators and calculations

All indicators are in the interval [0;1]

Output indicators Calculations

On-farm diversity
Normalised Simpson diversity index ai,norm ai = 1 −

∑
k

p2
ik

 ; pik share of land use type k on farm i; k 

includes arable land, permanent grassland, and other 
grassland

ai,norm. =
ai

1−
1

k

 normalises ai to the interval [0;1]

Presence of fallow bi Indicator is 1if fallow is present on farm i
Presence of flower and buffer strips ci Indicator turns to 1 if flower or buffer strips are present on 

farm i
Aggregated indicator on-farm diversity 1∕2ai,norm. +

1∕4 bi +
1∕4ci

On-land diversity
Crop diversity in arable land di Number of crops grown on farm i per year divided by the 

sample maximum
Permanent grassland ei Share of permanent to total grassland on farm i
Biodiversity surplus of permanent grassland fi fi =

qi−qreg.size

1−qreg.size  ; q
i
 share of permanent pasture to UAA of farm 

i q
reg.size average share of permanent pasture to UAA by 

federal state and farm size class retrieved from Destatis 

(2018); fi is set to 0 if 
qi−qreg.size

1−qreg.size
< 0

Extensively managed peatlands gi Share of near-natural or extensively managed peatland area 
to total peatland area on farm i

Aggregated indicator on-land diversity arable landi

UAAi

di +
total grasslandi

UAAi

1

3

(
ei + fi + gi

)
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ordinal scale with twelve categories and acknowledge its limitations compared to direct 
measures, such as agricultural income and associated risk (Smith et al. 2017).1

Our modelling relies on a binary distinction between SI and non-SI technology so 
we need to define a cut-off value that distinguishes SI adopters from non-adopters. If we 
assume that SI measures best exploit their benefits via combinations (Benton et al. 2003; 
Kassie et al. 2015), we need an SI adopter to apply at least two SI measures. We use the 
median number of adopted measures in our sample, that is three measures, to avoid poten-
tially overestimating the performance of SI adopters. In our robustness analysis, we define 
further scenarios with cut-offs at two and four measures, respectively.

Fig. 5   Map of main land use types and peatland areas in study region. Note: Land use visualistions based 
on CORINE Land Cover—10 ha (see http://​sg.​geoda​tenze​ntrum.​de/​wms_​clc10_​2012); red denotes artificial 
surfaces, yellow denotes agricultural areas, and green denotes forest and seminatural areas (for details see 
https://​land.​coper​nicus.​eu/​pan-​europ​ean/​corine-​land-​cover/​clc-​2012?​tab=​mapvi​ew)

1  The 12 categories are: 1. loss/smaller than 0€; 2. up to 10,000€; 3. up to 20,000€; 4. up to 40,000€; 5. up 
to 60,000€; 6. up to 80,000€; 7. up to 100,000€; 8. up to 120,000€; 9. up to 140,000€; 10 up to 200,000€; 
11. up to 250,000€; and 12. more than 250,000€. For Category 1 we merge profit and loss because most of 
the farmers recruited for pre-testing refused to answer the survey question.

http://sg.geodatenzentrum.de/wms_clc10_2012
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012?tab=mapview
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We characterise farmers by their responses to the survey questions and exclude 43 
observations with missing values for a total of 265 observations.2 Table 2 lists the charac-
teristics of the SI and non-SI farms and the summary statistics.

The table indicates that SI farms are more likely to be full-time operations, operate at 
larger scale, their farmers are more highly educated (e.g., agricultural degree), and use 
agricultural extension services more often compared to non-SI farmers. SI farmers also 
have a stronger affinity for regional entrepreneurship. Differences in the unconditional 
means of variables self-indicated environmental awareness and regional attachment, how-
ever, are small.

3.2 � Efficiency Model Specification and Matching Approach

We use a meta-frontier approach to measure the eco-efficiency scores to the system frontier 
and within-technology performance to the group-specific frontiers. Therefore, we rely on 
directional distance function (DDF) for measuring eco-inefficiency in either direction. We 

Table 2   Summary statistics for SI and non-SI farms before matching

*Wilcoxon rank sum test for differences between groups has a p value < 0.05
a According to farmer’s self-assessment
b Workforce below 1 person set as 1
c 1 = never; 2 = sometimes; 3 = occasionally; 4 = often; 5 = very often
d 1 = lower secondary or intermediate education or no degree; 2 = high school degree; 3 = university degree
e Farmers’ responses to self-assessment questions; degree of agreement scale: 1 = fully disagree to 10 = fully 
agree

Variables SI farms Non-SI farms

N Mean SD N Mean SD

Used agricultural area [ha]* 217 638.90 763.33 166 141.99 277.33
Business type [1 = full-time; 0 = part-time]* 216 0.79 0.41 165 0.43 0.49
Organic farming [1 = yes; 0 = no] 216 0.19 0.40 164 0.21 0.41
Specialisation arable farming [1 = yes; 0 = no]a* 217 0.37 0.48 164 0.25 0.43
Labour intensity [workforce/ha UAA]b* 209 0.03 0.05 149 0.08 0.11
Use of extension services [1; 5]c* 211 3.00 1.16 163 2.52 1.31
Formal agricultural education [1 = yes; 0 = no]* 209 0.79 0.41 160 0.63 0.48
Highest educational degree [1; 3]d* 209 2.41 0.85 163 2.17 0.92
Farming experience [years] 209 27.97 12.44 158 26.65 14.53
Regional attachment [1; 10]e 209 8.88 1.93 161 9.00 1.74
Environmental awareness [1; 10]e 207 7.10 2.59 159 6.97 2.68
Entrepreneurial attitude [1; 10]e* 206 6.62 2.01 153 5.25 2.26
Economic output: profit indicator [1; 12]* 188 5.16 3.97 152 3.17 2.95
Ecological output indicator [0; 1]* 211 0.46 0.13 160 0.34 0.13

2  The questionnaire includes five self-assessments: environmental awareness; regional attachment; and 
attempts to adopt innovations, assume business risks, and contribute to regional economic development. 
The latter three form the variable regional entrepreneurship. Factor analysis supports the separation of the 
five self-assessments into three distinct constructs (for brevity, see supplementary material, Sect. 1).
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specify the DDF with outputs Y =
(
Yecol, Yecon

)
 , agricultural area input Q and define the 

direction vector gy
(
Yecol, 0

)
:

For within-technology performance, Ψj in Eq. (14) replaces Ψm . Symbol �ecol,j represents 
the proportion by which Yecol could be increased to reach the respective frontier. The ratio 
1∕(1 + �ecol,j) determines the fraction of the feasible output, which is the farm’s eco-effi-
ciency in the interval [0;1] . The following relationship holds: eco-efficiency to the system 
frontier equals the meta-technology ratio (MTR) multiplied by group-specific eco-effi-
ciency. The MTR is the farm’s distance to the system frontier if the farm produces on its 
group-specific frontier (Gómez-Limón et al. 2012). An MTR of 1 implies that the group-
specific frontier coincides with the meta-frontier and offers to assess the technology effect 
of SI. Similarly, we calculate the farm’s eco-efficiency in the economic direction by setting 
the direction vector to gy

(
0, Yecon

)
.

We use directional non-parametric DEA and opt for a full disposable hull technology to 
obtain the most cautious estimates of the respective improvement potentials. Since DEA 
results are sensitive to outliers with regard to inputs and outputs (Bogetoft and Kromann 
2018), we use the minimum covariance determinant estimator for outlier control (Rous-
seeuw and Driessen (1999). We estimate robust Mahalanobis distances to assess the dis-
tance between an observation and the centre of the data (cf. supplementary material Sect. 2 
for details). We observe land, profit and biodiversity indicators for 325 observations and 
eliminate 17 outliers. We use the R packages Benchmarking and Robustbase.

The SI adopters may differ in their farm(er) characteristics from the non-adopters as 
well, so that a comparison of the observed improvement potentials will not suffice to iden-
tify the causal differences. As sub-sample homogeneity is a precondition for the causal 
interpretation of outcomes when selectivity issues prevail (Bogetoft and Kromann 2018), 
we combine the eco-efficiency analysis with a matching approach. Using observed farm(er) 
characteristics Z as covariates, the matching approach offers generating a counterfactual 
control group with the characteristics that resembles the group of SI adopters. Comparing 
the eco-efficiency of SI adopters and these estimated counterfactual group of non-adop-
ters offers a causal link of eco-efficiency and SI. We use kernel density matching based 
on Mahalanobis distances, offering more robust results in smaller samples (Zhao 2004), 
and the Epanachnikov kernel function. Kernel matching allows us to assign several control 
observations to each SI adopter, thus reducing the variance of the estimation. We deter-
mine the bandwidth of the estimator by cross-validation to minimize the mean squared 
error regarding the averages of the covariates. We use the command kmatch in Stata14 
and generate a sample of control observations from the weighted averages of the matched 
controls.

For the matching covariates Z , we select farmers’ education and experience, farm char-
acteristics (full-time operation, specialisation in arable and organic farming), labour inten-
sity to reflect the intensity of the farming operation., and use of advisory services offering 
knowledge input for the farm business. As farmers’ environmental preferences and sustain-
ability attitudes have proven relevant (e.g., Hansson et al. 2018; Jongeneel et al. 2008) and 
our survey remains limited, we additionally consider farmers’ self-assessments for regional 
attachment, environmental awareness, and entrepreneurial attitude. Due to missing values, 
we exclude 43 observations (cf. Table A1 in Appendix A for descriptive statistics before 
matching).

(14)D⃗ecol,j

(
Q,Y;gy

)
= Sup

[
𝛽ecol,j ∶

(
Y + 𝛽ecol,jgy

)
∈ Ψm

]
.
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4 � Results

To increase the precision of the estimates, we exclude the eight SI farms and 16 non-SI 
farms out of common support (cf. Lechner and Strittmatter 2017). The final sample with 
achieved covariate balance (all standardized differences are below 0.25 (cf. Stuart 2010) 
for DEA consists of 149 SI farms and their matched control non-SI farms. On average, 
an SI adopter has 11.49 control observations as matches (see Appendix Table B1 for the 
standardized differences and group means before and after matching).

The results in Table 3 lend support to our three hypotheses (also see in the supplemen-
tary material Table 3.1 for the respective results of the robustness scenarios).

4.1 � System Frontier and Technology Effect

The meta-technology ratio that captures the eco-efficiency to the system frontier is 0.99 on 
average and is equal to 1 for 78 SI farms. In other words, if all SI farms were eco-efficient 
to their group-specific frontier, they would also be or nearly be eco-efficient to the system 
frontier. An average MTR of nearly 1 with a small variance (max. 0.05) for adopters is a 
consistent pattern across the robustness scenarios. The average MTR is 0.86 for non-SI 
farms, where only 26 have an MTR of 1. The MTR range for non-adopters in the robustness 
check is between 0.77 and 0.93. We use the distributions of the eco-efficiency scores to 
test the differences in the location of the frontiers. Based on a Kolmogoroff–Smirnov test, 
we reject the null hypotheses that the distributions of eco-efficiency scores to the group-
specific frontier and system frontier are identical for non-SI farms (D = 0.42; p = 0.00), but 
cannot reject them for SI farms (D = 0.07; p = 0.89). The results lend support to hypothesis 
1 (The SI frontier locates in the direction of the ecological output closer to the system fron-
tier. Hence, SI adopters in this direction determine the system frontier.).

4.2 � Performance Effect

Table  3 above also shows that SI farms are on average more eco-efficient to the sys-
tem frontier (0.75) than matched control non-SI farms (0.63), or a difference of 0.12 
score points. The result is consistent with similar differences for all scenarios of the 

Table 3   Eco-efficiency scores in the direction of the ecological output for SI adopters and their matched 
controls

a Wilcoxon rank-sum test for differences between SI and non-SI farms has a p value < 0.01
b Wilcoxon rank-sum test has a p value < 0.1

SI farms Non-SI farms

Mean SD Mean SD

Meta-technology ratio (MTR)1 0.99 0.02 0.86 0.13
Eco-efficiency to system frontier/improvement potentiala 0.75 0.17 0.63 0.10
Eco-efficiency to group-specific frontier/within-technology 

performanceb
0.76 0.17 0.74 0.15

149 149



330	 M. Weltin, S. Hüttel 

1 3

robustness analysis except for raising the weight of on-land diversity in the ecological 
outcome indicator (i.e., adopters are still more eco-efficient but the gap narrows to 0.04 
score points; lowering the SI cut-off to the adoption of at least two SI measures yields 
the maximal difference of 0.14 score points). The results lend support to hypothesis 2a 
(At the mean, for the same economic outcome, SI adopters produce at a lower ecologi-
cal improvement potential than comparable non-adopters.). SI farms also have a higher 
mean eco-efficiency score to the system frontier in the direction of the economic output 
(0.57) than without SI (0.37) (see Appendix Table B2).

Despite the on average higher eco-efficiency scores of SI farms, the empirical cumu-
lative distribution of eco-efficiency scores in Fig. 6 shows a heterogeneous distribution 
of the respective eco-efficiency scores, although SI measures offer a higher potential to 
produce on the system frontier. Only 25 SI adopters and three non-adopters produce on 
the system frontier. Comparing distributions shows similar patterns to those in Fig.  6 
(see supplementary material Supp. Figures 3.1a–g).

For SI farms, Fig.  7a shows that the empirical cumulative distribution of eco-effi-
ciency scores in the ecological direction of SI farms to their group-specific frontier is 
very close to the distribution of scores to the system frontier with an average distance of 
0.76. 66% of SI farms could improve their within-technology performance. For non-SI 
farms, Fig. 7b shows a divergence of empirical cumulative distributions of distances to 
group-specific frontier and system frontier. Non-SI farms’ average eco-efficiency score 
regarding the group-specific frontier is 0.74. The robustness analysis yields within-tech-
nology performance scores between 0.63 and 0.84 for adopters and 0.48 and 0.81 for 
non-adopters, respectively.

Fig. 6   Empirical cumulative distribution of eco-efficiency scores to the system frontier for SI and non-SI 
farms
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Figure  8 shows the effect of heterogeneity in within-technology performance on 
improvement potentials. For SI farms, 70% have a higher eco-efficiency score to the system 
frontier than their respective matched control non-SI farms. The increase in eco-efficiency 
is on average 0.22. Figure 8 also shows that 29% of SI farms have a lower eco-efficiency 
score than their matched control farms. The decrease in eco-efficiency is on average 0.12.

The results lend support to hypothesis 2b (If SI adopters have a low within-technology 
performance in the chosen technology and comparable non-adopters have a high within-
technology performance, the non-adopters have lower improvement potential than the 
adopters in some cases.).

5 � Discussion

Our aim was to evaluate agronomic SI in regional conditions characterised by peatlands at 
the farm level by using an eco-efficiency analysis. We relied on core SI definitions stating 
that the adoption of SI technology improved the balance between the economic and eco-
logical sustainability of agricultural production without reducing either, and assumed that 
farms in our case study opt consciously for the SI technology. To account for farms’ selec-
tion process into SI, we combined a behavioural model with a matching approach.

Based on the Mahalanobis distance matching, the sampled SI and non-SI farms are 
comparable with regard to socio-economic and farm-specific characteristics and the meas-
ures that captured behavioural factors (see Appendix Table B1). These measures, however, 
rest on self-assessments and thus remain limited in interpretation. While differences in 
mean regional attachment were minor before matching, SI farms indicated a slightly higher 
entrepreneurial attitude (6.62 versus 5.25, see Table 1), whereas environmental awareness 
indicated small differences in mean (7.10 versus 6.97). These numbers imply unimportant 
differences in farmers’ self-perception between the unmatched groups, but could also be 
skewed by farmers’ responses to the questionnaire (i.e., only environmentally aware farm-
ers responded or they responded by intention socially desirable), or by farmers’ homog-
enous awareness of the natural ecosystem in the study region. We note that the potential for 
bias could further limit investigating the behavioural factors for SI adoption (Weltin et al. 
2021).

Results of the directional DEA meta-frontier showed that few farms could be eco-effi-
cient to the system frontier without adopting SI. Hence, SI adopters mainly determined the 
system frontier and a technology effect of SI was clearly evident. This is in line with our 
argumentation of hypothesis 1 that SI farms could produce higher environmental output 
without sacrificing economic output when they took full advantage of the SI technology.

This suggests the following: in the short run, possible reductions in improvement poten-
tials by SI farms were offered by the outward shift of the SI frontier (closer to the system 
frontier) compared to the non-SI frontier (see Fig. 2). For the majority of the sampled SI 
farms, adopting SI could in fact reduce the environmental improvement potential com-
pared to their matched control references (i.e., eco-inefficiency in the ecological direction 
measured against the system frontier). This finding was in line with other studies on the 
effects of agronomic SI adoption on ecological output, such as diversity gains (Redlich 
et al. 2020).

SI farms produced 75% at the mean of the potentially possible ecological output, 
keeping land and economic output constant whereas non-SI farms produced 63% at the 
mean. This lends support to hypothesis 2a. Also, a performance effect of SI was evident, 
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i.e., eco-inefficiencies within the SI technology could impede the SI technology’s posi-
tive effects, lending support to hypothesis 2b. For non-SI farms, improvement potentials 
resulted from a mixture of inefficiencies to the group-specific frontier and the fact that non-
SI technology did not allow reaching the system frontier in most cases.

The almost perfect overlap of the system frontier and group-specific frontier of SI adop-
ters in ecological direction was consistent across all scenarios of the robustness analysis. 
To some extent, the cut-off value of adopted SI measures, sampling or farm-type hetero-
geneity influenced eco-efficiency scores but our general observations on technology and 
performance effects did not.

Results also lend support to our assumption of sequential preferences (i.e., farm manag-
ers could prioritize to become more efficient in an economic direction prior to adopting 
SI measures and improving in the ecological direction). It is possible that our assumption 
explained why non-SI farms with traditional farming technology and rather high eco-
efficiency scores in the environmental direction did not adopt SI, or that intentional inef-
ficiencies (Hansson et  al. 2018) explained SI farms’ larger distance to the frontier in an 
economic direction than in an ecological direction. After meeting a certain threshold in 
economic direction, SI farmers could have prioritised ecological outcome above economic 
efficiency gains when including non-financial values according to their environmental pref-
erences in their utility function. Perhaps eco-inefficiency in the economic direction repre-
sented an adjustment or learning cost as farmers reduced ecological improvement potential 
with new technologies (Ang and Oude Lansink 2017).

In summary, our results empirically supported the core concept of SI that ecological 
improvement is possible without compromising economic outcomes. The heterogeneous 
distribution of the eco-efficiency scores is consistent with previous research on multidi-
mensional performance assessments (e.g., Sidhoum et al. 2019). We suggest that the het-
erogeneity and increasing improvement potential for some SI adopters may be attributed to 
insufficient understanding of complex SI production systems (Kassam et al. 2011), and that 
biodiversity effects may only be obtained over time (Gabriel et al. 2013). High complexity 
and delayed visibility of ecological and/or economic benefits may also prohibit adopting 
SI technologies that improve ecological and economic outcomes in the short run (Dessart 
et al. 2019; Yeboah et al. 2015).

We note the following limitations of our research. The use of matching acknowledges 
the SI selection processes and ensures comparability between adopters and non-adopters, 
but the observational data and availability of measures for the behavioural factors were 
limited. We hope to address these shortcomings in future research with a more comprehen-
sive investigation of the dispositional, cognitive, and social factors (Dessart et al. 2019), 
farmers’ opinions of SI and traditional technology, their understanding of the potential 
advantages and risks of adoption, and their knowledge of the region’s natural ecosystem, 
and governance system (e.g., Stupak et al. 2019). Encouraging large-scale adoption of SI 
and sustainable farming requires understanding of origins of eco-inefficiencies and overall 
performance effects in economic and ecological direction. Addressing climate protection 
goals further requires monitoring and coordinating activities at landscape scale given the 
correlation of eco-functionality with diversity in land use and management (Prestele and 

Fig. 7   a Empirical cumulative distribution of eco-efficiency scores to the system and group-specific frontier 
for SI farms. b Empirical cumulative distribution of eco-efficiency scores to the system and group-specific 
frontier for non-SI farms

▸
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Verburg 2020). Larger field size and large-scale management will necessarily require more 
research staff and analysts.

Selecting the sustainability dimensions and SI measures could have introduced bias. 
While some studies take a system-perspective when analysing SI (cf. Mahon et al. 2018), 
we rely on agronomic SI measures governing the economic and ecological sustainability 
dimension only and ignored social, cultural or ethical aspects of SI as proposed by the 
broad SI concept (cf. Garnett and Godfray 2012). It is also possible that these aspects were 
not raised in our workshop to design the survey questionnaire. Our perspective allows us to 
identify the channels contributing to the heterogeneity in improvement potentials but may 
underestimate cross-effects from SI measures originally proposed to improve the social 
dimension of sustainability, for instance. Despite the robustness of our results to different 
specifications of SI adoption and outcome indicators, another limitation is the biodiversity 
measure by proxy indicators based on survey data at the farm level. We can only measure 
exact outputs on the farm, and comprehensive ecological indicator sets and appropriate 
weights are difficult to develop. Reliable region and country scale data and consistent defi-
nitions and applications of sustainability indicators could facilitate analysis at EU scale, 
where enhancing the Farm Accountancy Data Network could offer a starting point (Kelly 
et al. 2018). Too fine a regional perspective, particularly for heterogeneous regions, how-
ever, may limit generalization and transferability of the results to different agroecological, 
cultural and policy systems.

Our study’s narrow regional focus on EU’s high-priority intervention areas to protect 
carbon-rich soils however bears the advantage to analyse effects of contextual SI adop-
tion from a microstructural perspective for a region largely shaped by peatland areas as 
potential carbon sinks (Busse et al. 2019; Häfner and Piorr 2020). Our approach and the 

Fig. 8   Difference in eco-efficiency to the system frontier for SI farms compared to their matched control 
non-SI farms
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results are thus argued to be transferable to comparable peatland regions under the same 
policy framework (Buschmann et al. 2020). We further suggest that our research will bene-
fit investigations of regionally contextual farming measures that aim to overcome trade-offs 
in the objective function (e.g., building on the work of Kassie et al. (2015)).

Some authors also criticize the SI concept by not precluding specific measures to qual-
ify for the concept “[…] to improve efficiency within existing market, production and land 
use constraints.” (Franks 2014, p. 73). Even though SI can act as an enabler for reaching 
eco-efficiency it may also contribute to a status-quo bias in not seeking a system change 
(Petersen and Snapp 2015). Thus “smart” combinations various productions systems, 
including organic production, eco-intensified systems such as agroforestry (Mosquera-
Losada et al. 2018) or ecological modernized systems relying on circular systems (Rocchi 
et al. 2020), have been proposed (Meemken and Qaim 2018). SI production systems could 
be a baseline to build such combinations on. This is left for future research.

Our results have policy implications. Policies to support farmers in increasing their pro-
duction efficiency should accompany support of technology adoption, for instance by train-
ings and organized field days to offer exchange platforms (Hüttel et al. 2020), e.g. these 
might reduce operational complexity and thus support learning about efficient use of SI 
practises. Besides fostering process improvements, we suggest a policy mix targeting the 
ecological outcome dimension directly. Remuneration of potentially foregone returns from 
altering the production process, e.g. by input reduction as in agri-environmental programs 
of the EU, has been shown to be less effective (e.g., Brown et  al. 2021; Uehleke et  al. 
2022). Also, in our study participation in such programs seems not generally associated 
with SI adoption: 35% of sampled SI adopters do not participate in such programs, where 
only 15% receive remuneration from such programs for adoption of at least three SI meas-
ures, i.e. the cut-off used in this study. Thus, result-based agri-environmental support that 
rewards farmers for achieving ecological improvements could complement the policy mix 
(e.g., Burton and Schwarz 2013; Russi et al. 2016). Large-scale adoption of these schemes 
could further foster pro-environmental behaviour, reinforce SI and scheme adoption deci-
sions, and increase overall environmental performance of farming (Pe’er et al. 2020).

6 � Conclusion

In this paper, we proposed directional meta-frontier approach combined with matching to 
assess selected agronomic SI measures for improving ecological outcomes in agricultural 
land use. Connecting the theoretical behavioural framework of Chabé-Ferret and Subervie 
(2013) with a production economic framework, we accounted for farmers’ selection pro-
cesses to either rely on traditional farming practises or adopt SI technology. Eco-efficiency 
scores to the system frontier estimated by directional DEA, captured farms’ ecological 
improvement potential. Matching ensured comparability of SI adopters and non-adopters, 
and to link the differences in eco-efficiencies to SI adoption. Survey data on farms in the 
northern German Plain was combined with information from stakeholder workshops used 
to determine context-specific SI measures and a composite indicator for biodiversity as 
an ecological outcome. SI farms had higher eco-efficiency scores to the system frontier 
compared to farms staying with traditional farming at mean. The relatively low within-
technology performance of many however hampered full environmental improvement. In 
fact, there was only a small probability of reaching the system frontier without adopting SI. 
Future research should examine farmers’ characteristics and preferences in order to better 
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compare the differences in eco-efficiency scores. We believe that our research, although 
confined to a small area, is also applicable to climate and sustainable policy-making at 
region, country, and EU levels. To facilitate exploiting full ecological improvement poten-
tials, we suggest smart mixes of policy measures including result-based support to offer 
incentives for large scale SI adoption and for improving within-technology efficiency.

Appendix

A Details on sampling and additional descriptive statistics

Table A1   Descriptive statistics of matching variables for the observations used in Data Envelopment Analy-
sis

a  According to farmer’s self-assessment.
b  Workforce less than 1 is set as 1.
c  1 = never; 2 = sometimes; 3 = occasionally; 4 = often; 5 = very often
d  1 = lower secondary or intermediate education or no degree; 2 = high school degree; 3 = university 
degree
e  Self-assessment responses indicating degree of agreement: 1 = fully disagree to 0 = fully agree

Variables SI farms Non-SI farms

Mean Std. Dev Mean Std. Dev

Used agricultural area [ha] 603.40 686.50 169.60 285.98
Profit character [1 = full-time; 0 = part-time] 0.81 0.81 0.49 0.50
Organic farming [1 = yes; 0 = no] 0.20 0.40 0.24 0.43
Specialisation arable farming [1 = yes; 0 = no]a 0.39 0.49 0.28 0.45
Labour intensity [workforce/ha UAA]b 0.03 0.05 0.07 0.08
Use of extension services [1;5]c 3.04 1.16 2.69 1.36
Formal agricultural education [1 = yes; 0 = no] 0.80 0.39 0.70 0.46
Highest educational degree [1; 3]d 2.45 0.84 2.21 0.93
Farming experience [years] 27.12 12.51 26.86 13.50
Regional attachment [1; 10]e 8.77 1.97 8.95 1.76
Environmental awareness [1; 10]e 7.13 2.56 7.07 2.56
Entrepreneurial attitude [1; 10]e 6.68 1.94 5.37 2.25
Economic output: profit indicator [1; 12] 5.69 3.92 3.17 2.73
Ecological output indicator [0; 1] 0.44 0.12 0.36 0.11
N 157 108
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