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Summary

� Damage can be signalled by extracellular ATP (eATP) using plasmamembrane (PM) receptors

to effect cytosolic free calcium ion ([Ca2+]cyt) increase as a secondmessenger. The downstream

PM Ca2+ channels remain enigmatic. Here, the Arabidopsis thaliana Ca2+ channel subunit

CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) was identified as a critical component

linking eATP receptors to downstream [Ca2+]cyt signalling in roots.
� Extracellular ATP-induced changes in single epidermal cell PM voltage and conductancewere

measured electrophysiologically, changes in root [Ca2+]cyt were measured with aequorin, and

root transcriptional changeswere determinedby quantitative real-time PCR. Two cngc2 loss-of-

function mutants were used: cngc2-3 and defence not death1 (which expresses cytosolic

aequorin).
� Extracellular ATP-induced transient depolarization of Arabidopsis root elongation zone

epidermal PM voltage was Ca2+ dependent, requiring CNGC2 but not CNGC4 (its channel co-

subunit in immunity signalling). Activation of PMCa2+ influx currents also required CNGC2. The

eATP-induced [Ca2+]cyt increase and transcriptional response in cngc2 roots were significantly

impaired.
� CYCLIC NUCLEOTIDE-GATED CHANNEL2 is required for eATP-induced epidermal Ca2+

influx, causing depolarization leading to [Ca2+]cyt increase and damage-related transcriptional

response.

Introduction

Extracellular ATP (eATP) has been shown to contribute to plant
growth and development, stress responses, immunity, and damage
(Matthus et al., 2019a). Two plasma membrane (PM) coreceptors
for eATP, DOES NOT RESPOND TO NUCLEOTIDES1
(P2K1/DORN1) and P2K2, have been identified recently in
Arabidopsis thaliana, with P2K1/DORN1 transphosphorylating

P2K2 (Choi et al., 2014; Pham et al., 2020). P2K1/DORN1
commands an eATP-dependent transient increase of cytosolic free
calcium ions ([Ca2+]cyt) as a second messenger (Choi et al., 2014).
The root [Ca2+]cyt response to eATP (the ‘signature’) has a greater
reliance on Ca2+ influx across the PM than the release of Ca2+ from
intracellular stores (Demidchik et al., 2009; Rinc�on-Zachary et al.,
2010). Lowering external Ca2+ from 10 to 0.1 mM causes an 85%
decrease in the [Ca2+]cyt response (Demidchik et al., 2003). Ca2+
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influx across the PMhelps explain the depolarizing effect that eATP
has on root PM voltage (Lew & Dearnaley, 2000; Dindas et al.,
2018), especially given that eATP causes instantaneous [Ca2+]cyt
increase and a cytosolic acidification consistent with PM H+-
ATPase inhibition in Arabidopsis roots (Waadt et al., 2020).
Indeed, patch clamp electrophysiology has revealed eATP and
P2K1/DORN1-dependent Ca2+-permeable channel conduc-
tances in Arabidopsis root epidermal PM (Demidchik et al., 2009;
Wang et al., 2018, 2019) that could contribute to PM depolariza-
tion and [Ca2+]cyt increase. However, the identity of the channels
remains unknown. Here, data support the involvement of a
CYCLIC NUCLEOTIDE-GATED CHANNEL (CNGC).

Arabidopsis has a family of 20 CNGC subunits, with members
contributing to [Ca2+]cyt signatures evoked by abiotic stress,
pathogen attack, and hormones (Jarratt-Barnham et al., 2021).
Because eATP accumulates during pathogen infection and acts as a
damage-associated molecular pattern (DAMP) that drives a
transcriptional response through P2K1/DORN1 (Choi et al.,
2014; Jewell et al., 2019; Kumar et al., 2020), CNGCs involved in
pathogen sensing could also be acting in the eATP pathway.
CYCLIC NUCLEOTIDE-GATED CHANNEL2 is a key candi-
date for testing, as it operates in root signalling (Chakraborty et al.,
2021), it is involved in both DAMP and pathogen-associated
molecular pattern (PAMP) signalling, and it generates a PM
hyperpolarization-activated Ca2+-permeable channel conductance
(Qi et al., 2010; Tian et al., 2019). Cyclic Nucleotide-Gated
Channel2’s closest paralogue,CNGC4, can interact withCNGC2,
and these two subunits are hypothesized to form a heteromeric
channel in PAMP signalling (Chin et al., 2013; Tian et al., 2019).
CyclicNucleotide-GatedChannel2 andCNGC4could potentially
work together in the eATP pathway.

Here, two Arabidopsis cngc2 loss of functionmutants were used:
cngc2-3 and defence not death1 (dnd1; which expresses cytosolic
aequorin). Extracellular ATP-induced depolarization of PM
voltage has been used as a diagnostic of PM Ca2+ channel activity
in single epidermal and cortical root cells. Results show an absolute
requirement for CNGC2 but not CNGC4 in the epidermis. Patch
clamp electrophysiological analysis of eATP-induced PM Ca2+

influx conductance of epidermal cells confirmed an absolute
requirement for CNGC2. Both root eATP-induced [Ca2+]cyt
signature and transcriptional response were impaired by loss of
CNGC2 function.

Materials and Methods

Plant material

Arabidopsis lines were in the Columbia (Col-0) ecotype. dorn1-1,
dorn1-3, p2k2, and p2k1p2k2mutants were as described previously
(Choi et al., 2014; Pham et al., 2020). cngc2-3 (transfer DNA (T-
DNA) insertion line Salk-066908) was described previously by
Chin et al., 2013. Complemented cngc2-3 was generated with the
CNGC2 coding sequence under the control of its endogenous
promoter (Supporting InformationMethods S1). dnd1 cngc2 loss-
of-function mutant constitutively expressing cytosolic (apo)ae-
quorin was described by Qi et al., 2010. cngc4-5 (SALK_081369;

Tian et al., 2019) was obtained from the Nottingham Arabidopsis
Stock Centre. Genotyping of insertional and complemented
mutants is described inMethods S1. Primers are listed in Table S1.
Growth conditions are described in Methods S2. Plants at 7–14 d
old were used unless stated otherwise.

Membrane potential measurements

Plasma membrane potential Em of root elongation zone cells was
measured using a glass microelectrode. A plant was fixed in a
plexiglass chamber and immersed in assay solution (10 ml)
containing 2 mM calcium chloride (CaCl2; with or without
5 mM ethylene glycol-bis(b-aminoethyl ether)-N,N,N 0,N 0-
tetraacetic acid) (EGTA) or with or without 0.5 mM lanthanum
chloride (LaCl3)), 0.1 mM potassium chloride (KCl), 1 mM
MES–Tris (pH 6.0) for at least 30 min before impalement.
Microelectrode construction, recording circuitry, and impalement
are described in Methods S3. After observing a stable Em
(> 6 min), eATP (ATP magnesium salt (MgATP) or ATP
disodium salt (Na2ATP); Sigma) was added to the chamber
(final concentration 300 µM in the assay medium, pH 6.0). In
controls, magnesium sulphate (MgSO4) or sodium sulphate
(Na2SO4) was added.

Patch clamp recordings

Protoplasts were isolated from root elongation zone epidermis,
with origin confirmed using the N9093 epidermal-specific green
fluorescent protein reporter line as described by Wang et al.
(2019). Details of isolation, patch clamp solutions, and protocols
are in Methods S4.

Cytosolic free calcium ion measurement

Excised primary roots of Col-0 and dnd1 expressing cytosolic (apo)
aequorin were used for luminescence-based quantification of
[Ca2+]cyt. Roots were placed individually into a 96-well plate (one
root per well) and incubated overnight at room temperature in
darkness with 10 µM coelenterazine in 100 µl of buffer: 2 mM
CaCl2, 0.1 mM KCl, 1 mM MES–Tris (pH 5.6). CaCl2 was
included to maintain a similar level to that of the growth medium.
Samples were washed with coelenterazine-free buffer and left to
recover for at least 20 min in darkness. A FLUOstar Optima plate
reader (BMG Labtech, Ortenberg, Germany) was used to record
luminescence as described in Matthus et al. (2019b). [Ca2+]cyt was
calculated as described by Knight et al., 1997.

Analysis of gene expression

Total RNA was extracted from roots (frozen in liquid nitrogen)
using the RNAeasy Plant Mini Kit (Qiagen) and subjected to
DNase I treatment (RNAse-free DNAse kit; Qiagen). Comple-
mentary DNA (cDNA) was synthesized using the QuantiTect
ReverseTranscriptionKit (Qiagen).Quantitative real-time (qRT)-
PCR was performed in a Rotor-Gene 3000 thermocycler with the
Rotor-GeneTM SYBR® Green PCR Kit (Qiagen). UBQ10 and
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TUB4 acted as internal controls. Primers are listed in Table S1.
Further details are in Methods S5.

Statistical analysis

Data normality was first analysed with the Shapiro–Wilk test in R.
Student’s t-test or Tukey’s honestly significant difference was used
for parametric data comparison, whereas the Mann–Whitney U
test was used to compare the nonparametric data.

Results

AtCNGC2 mediates the extracellular-ATP-induced
depolarization of root epidermal plasma membrane voltage
and does not require AtCNGC4

The stable resting membrane voltage Em of a single Col-0 root
elongation zone epidermal cell (Fig. 1a) was significantly but
transiently depolarized by 300 µM eATP (Fig. 1b). This concen-
tration of eATP was found previously to activate a PMCa2+ influx
conductance in this cell type (Wang et al., 2019). Mean maximal
depolarization from�118.9� 4.8 to�69.2� 7.6 mV (Fig. 1c,d;
Table S2) occurred 1.8� 0.3 min after eATP application (MgATP
or Na2ATP), and Em recovered fully after 14.7� 2.2 min
(Fig. 1e,f) in the continued presence of eATP. In controls, neither
300 µM MgSO4 nor 300 µM Na2SO4 (Figs 1g,h, S1a,b) affected
Em, confirming that the responsewas due to eATP. Incubationwith
5 mMEGTA (to chelate extracellular Ca2+) abolished the response
to 300 µM eATP (Figs 1g,h, S1c), showing that depolarization
required Ca2+ influx. However, as EGTA treatment resulted in a
less negative Em that could have compromised depolarization, a
further test of Ca2+ influx was conducted. Addition of 0.1 mM
LaCl3 as a blocker of PM Ca2+-permeable channels prevented
significant depolarization by eATP (Figs 1g,h, S1d). The loss-of-
function cngc2-3 mutant (T-DNA insert in second exon) and the
complemented cngc2-3,CNGC2::CNGC2 mutant (Fig. S2a–c)
were then analysed. Expression levels of P2K1/DORN1 and the
coreceptor P2K2 were normal in cngc2-3 roots, indicating that
eATP perception itself would be unimpaired (Fig. S2d). There
were no significant differences in resting Em between genotypes
(Table S2). In contrast to Col-0, 300 µMeATP failed to depolarize
cngc2-3 Em (Fig. 1b–d; Table S2). Complementation fully restored
the mutant’s Em response to eATP (depolarization and recovery
time) (Fig. 1b–e), but maximum Em depolarization occurred
sooner than in Col-0 (Fig. 1f). This may reflect the approximately
doubled abundance of CNGC2 transcript in the complemented
mutant, although this was not statistically significant (Fig. S2e). To
verify the cngc2-3 results, the CNGC2 dnd1 mutant (Fig. S3a–c)
was also tested. This has a single point mutation causing a stop
codon in the third exon and expresses cytosolic aequorin (Qi et al.,
2010). Resting dnd1 Em was not significantly different to those of
other genotypes and was unaffected by eATP treatment (Fig. S3d–
f; Table S2). These results show that the eATP-induced and Ca2+-
dependent PM Em response is reliant on CNGC2.

Elongation zone epidermal cells of the dorn1-3 loss-of-function
mutant, the dorn1-1 kinase mutant, and the p2k2 mutant all

retained a small but significant depolarization of Em when
challenged with 300 µM eATP (Fig. S4a–d; Table S2). CNGC2
transcript levels were normal in both dorn1-3 and p2k2 mutant
roots, so their lowered response is most likely due to loss of receptor
function rather than channel function (Fig. S4e). The dorn1-3p2k2
double mutant (p2k1p2k2) also sustained a small but significant
depolarization ofEmwhen challengedwith 300 µMeATP, but this
was not significantly different to that caused by theNa2SO4 control
(Fig. S5a–c; Table S2; P = 0.74). Under control conditions, the
p2k1p2k2mutant had a significantly more negative Em (�143.9�
4.3 mV; n = 10) than its paired Col-0 wild-type (�129.9� 4.6
(n = 5); P = 0.005), and this may help explain why sodium ions
(Na+) caused a depolarization in this mutant but not in Col-0.
Overall, the results suggest that the two receptors working together
are sufficient to initiate the eATP-induced depolarization ofEmand
that CNGC2 is an absolute requirement in this cell type.

Cyclic Nucleotide-Gated Channel2 has been shown to interact
with CNGC4 in immune signalling (Chin et al., 2013; Tian et al.,
2019).Here, the root elongation zone epidermis of the cngc4-5 loss-
of-function mutant (Fig. S6a–d) was impaled and tested with
300 µMeATP. The eATP caused a significant depolarization ofEm
to �69.4� 10.9 mV, similar to Col-0 wild-type (P > 0.05;
Fig. S6e–g; Table S2). These results show that CNGC2 controls
the PM Em response to eATP without the need for CNGC4.

Plasma membrane calcium-ion currents induced by
extracellular ATP in Col-0 root epidermal protoplasts require
CNGC2

Whole-cell currents across the PM of root elongation zone
epidermal protoplasts Wang et al. (2019) of Col-0 and cngc2-3
were recorded. No significant differences in control currents or
reversal potential were found between genotypes (mean� SE
reversal potential: Col-0 �59� 16.3 mV, n = 4; cngc2-3
�35� 8.9, n = 4). For Col-0, 300 µM eATP activated whole-
cell inward current upon membrane hyperpolarization, but not
outward current upon membrane depolarization (Fig. 2a). No
effect of Na+ as the salt control was found in previous trials (Wang
et al., 2018, 2019). Analysis of the reversal potential of eATP-
activated currents (average control (no ATP) currents were
subtracted from average eATP-activated currents (Wang et al.,
2013)) revealed an approximate value of +22 mV (n = 4), far from
the equilibrium potentials of potassium ions (K+; �79 mV) and
chloride ions (�28 mV) and indicating Ca2+ permeability. Extra-
cellular ATP-activated inward current was significantly inhibited
by 100 µM gadolinium ions (Gd3+), a plant Ca2+ channel blocker
that is effective against CNGC2 (Demidchik et al., 2009; Wang
et al., 2018, 2019; Tian et al., 2019; Fig. 2a). These results suggest
that Ca2+ influx across the PM contributed to the eATP-activated
current in Col-0. As Gd3+ is an effective blocker of a variety of PM
Ca2+-permeable channels (Demidchik et al., 2002, 2009; Wang
et al., 2018, 2019) it is likely that it also blocked Ca2+-permeable
channels that were not activated by eATP, causing the significant
reduction in inward current in the presence of both eATP andGd3+

to below the control value. The eATP-activated Ca2+ inward
current was absent from dorn1-3 PM (Fig. S7). At resting Em of
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Col-0 epidermal cells (c. �120 mV) the eATP-activated current
would deliver Ca2+ to the cytosol, which would both elevate
[Ca2+]cyt and initiate depolarization. It can be inferred that some
eATP-activated Ca2+ influx should have occurred in membrane

voltage trials at the less negative Em caused by EGTA (�85.2�
�5.4 mV; Figs 1(g,h), S1c) but this was not observed, further
supporting the role of Ca2+ influx in eATP-induced depolarization
of Em. In contrast to Col-0, PM whole-cell currents of cngc2-3
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(either inward or outward) failed to respond to 300 µM eATP
(Fig. 2b). Gd3+ (100 µM) blocked inward and outward currents in
the presence of eATP, but these currents were not investigated
further (Fig. 2b). Thus, the results strongly suggest that the eATP-
activated inward current in Col-0 would be due to the
hyperpolarization-activated Ca2+ influx through CNGC2, helping
to explain how eATP failed to depolarize the Em of the cngc2
mutants.

Extracellular-ATP-induced cytosolic free calcium ion increase
in roots is impaired in dnd1

The requirement for CNGC2 in eATP-activated epidermal PM
depolarization and Ca2+ influx conductance should manifest in
impaired eATP-induced [Ca2+]cyt elevation in the dnd1 mutant,
which expresses cytosolic (apo)aequorin as a bioluminescent
[Ca2+]cyt reporter. The typical monophasic [Ca2+]cyt increase
(‘touch response’) after sodium chloride (NaCl) addition (control
for mechanostimulation and cation effect of Na2ATP) was

observed in individual roots of Col-0 and dnd1. The amplitude
of the touch peak and total [Ca2+]cyt mobilized did not differ
significantly between genotypes (Fig. 3a). By contrast, 300 µM
eATP caused a biphasic [Ca2+]cyt increase (after the touch
response) in both Col-0 and dnd1 roots (Fig. 3b), confirming
that this part of the [Ca2+]cyt signature was caused by eATP. This
biphasic signature (‘peak 1’ and ‘peak 2’) was observed in previous
studies on Arabidopsis roots and seedlings using aequorin
(Demidchik et al., 2003; Tanaka et al., 2010; Matthus et al.,
2019a,b; Mohammad-Sidik et al., 2021) and also root tips using
YC3.6 (Tanaka et al., 2010). dnd1 roots were significantly
impaired in the amplitude of both of the eATP-induced [Ca2+]cyt
peaks and also total [Ca2+]cyt mobilized (Fig. 3d). Significant
impairment was also observed at 100 µM and 1 mM eATP
(Fig. S8). Since P2K1/DORN1 governs the eATP-induced
[Ca2+]cyt signature in Arabidopsis roots (Matthus et al., 2019a),
impairment of the [Ca2+]cyt response in dnd1 helps place CNGC2
downstream of that eATP receptor, consistent with the electro-
physiological data presented here.
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eATP even with an extended observation period (10min). Data are means� SE (n = 4; *, P < 0.05; ns, not significant).
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Root cortical plasma membrane depolarization does not
require CNGC2 but may require CNGC4

The residual eATP-induced [Ca2+]cyt increase seen in dnd1 roots
suggests CNGC2-independent Ca2+ influx pathways in other cells,
such as the cortex. Cortical cells also increase [Ca2+]cyt in response
to eATP (Krogman et al., 2020). Cyclic Nucleotide-Gated Chan-
nel2 redundancy was investigated by measuring elongation zone
cortical cell Em. Resting Col-0 cortical cell Em was
�131.6� 9.1 mV (Fig. S9a; Table S2), which was not signifi-
cantly different to the epidermis. Application of eATP (300 µM) to
the root transiently and significantly depolarized the cortical PM
(Fig. S9a; Table S2). There was no significant difference between
cortex and epidermis in terms of the maximum depolarization

amplitude, the time to reach the maximum depolarization, or
recovery time. The Em of elongation zone cortical cells in the two
CNGC2 mutants was then investigated. Unlike the null response
of epidermal cells of cngc2-3 and dnd1, addition of eATP to the root
triggered cortical Em depolarization in both mutants (Fig. S9b,c;
Table S2). No significant difference in the PM Em before (no ATP
added) or after ATP (ATP added) was observed betweenCol-0 and
these two mutants (Fig. S9e), indicating that CNGC2 is not
involved in this cell type. The cngc4-5 mutant still supported a
significant depolarization of cortical Em when eATP was added to
the root (Fig. S9d,e; Table S2), but this was significantly smaller
than that found previously in its epidermal cells (cortex,
21.6� 6.8 mV; epidermis, 62.2� 8.8 mV; P = 0.012). This
indicates aCNGC4-dependent pathway in the cortex. The residual
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Fig. 3 CYCLICNUCLEOTIDE-GATEDCHANNEL2 (CNGC2) contributes to the extracellular ATP (eATP)-induced cytosolic free calcium ion ([Ca2+]cyt) increase
in Arabidopsis roots. (a) Mean� SE [Ca2+]cyt time-course in control experiments (n = 18–19 roots in three independent trials). Sodium chloride was applied at
35 s to individual excised rootsofCol-0ordefencenotdeath1 (dnd1) (black inverted triangle;0.6 mMfinal concentration).Assay solutioncontained2mMCa2+

to match plasma membrane potential Em recordings. (b) Left panel: amplitude of touch-induced peak [Ca2+]cyt increase after baseline subtraction. The dnd1
response was not normally distributed, and the Mann–Whitney test was used in significance testing. Right panel: area under the curve (AUC) after baseline
subtractionwas analysed as an estimate of total [Ca2+]cyt mobilized (Matthus et al., 2019b). (c)Mean� SE [Ca2+]cyt time-coursewith 300 µMeATP applied at
35 s (n = 38 for both Col-0 and dnd1 in three independent trials). Dotted lines indicate time of peak response of Col-0. (d) dnd1 had a significantly smaller
[Ca2+]cyt responsewhen comparedwith Col-0, but not in the touch peak. The dnd1 response for the touch peak was not normally distributed, and theMann–
Whitney test was used in significance testing. Peaks were comparedwith Col-0 at the equivalent time point. Each dot in the box plots represents an individual
recording. Themiddle line and the triangle in the boxplot are themedian andmean, respectively. The boxoutline (hinges) denotesmedian of the upper and the
lower half of the data. The bars denote entirety of data excluding outliers; outliers are depicted by individual points outside the boxplot bars. *, P < 0.05;
***, P < 0.001; ns, not significant.
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depolarization in the cngc4-5 implies involvement of otherCNGCs
(but not CNGC2) or other transport systems (Fig. S9f). Together,
the results help explain the residual eATP-induced [Ca2+]cyt
increase in dnd1 roots; CNGC2 does not operate in all other cells.

CNGC2 is implicated in extracellular-ATP-responsive gene
expression

The eATP-responsive transcriptome is highly enriched in defence-
related and wound-response genes, including MITOGEN-
ACTIVATED PROTEIN KINASE 3 (MPK3), WRKY DNA-
BINDING PROTEIN 40 (WRKY40), CALCIUM-DEPENDENT

PROTEIN KINASE 28 (CPK28), and the cysteine protease
METACASPASE 7 (MC7) (Choi et al., 2014; Jewell et al., 2019).
Transcriptional upregulation of those genes by eATP is P2K1/
DORN1 dependent (Choi et al., 2014; Jewell et al., 2019), and
their response to eATP was examined here in Col-0, cngc2-3, and
cngc2-3,CNGC2::CNGC2 roots by qRT-PCR. Extracellular ATP
(300 µM for 30 min) significantly upregulated expression of all
four genes in Col-0, with no significant difference between Col-0
and cngc2-3,CNGC2::CNGC2 (Fig. 4). However, transcript
levels ofMPK3,WRKY40,CPK28, andMC7were all significantly
lower in cngc2-3 compared with Col-0 or (with the exceptions of
CPK28 and MC7) compared with cngc2-3,CNGC2::CNGC2

0

0.2

0.4

0.6

Mock ATP-5 ATP-30

noisserpxe evitaleR

CPK28

*

**

**

**

P 
= 

0.
01

2

P 
= 

0.
10

52

0

0.02

0.04

0.06

Mock ATP-5 ATP-30

noisserpxe evitaleR

MPK3
Col-0
cngc2-3
cngc2-3::CNGC2

*

**

**

**

P 
= 

0.
00

12

P 
= 

0.
01

37
6

0

0.01

0.02

0.03

0.04

Mock ATP-5 ATP-30

Re
la

�v
e 

ex
pr

es
si

on
 

MC7

**

P 
= 

0.
00

30

P 
= 

0.
12

90

0

1

2

3

Mock ATP-5 ATP-30

Re
la

�v
e 

ex
pr

es
si

on

WRKY40

**

***

P 
= 

0.
00

03

P 
= 

0.
00

25

***

(a) (b)

(c) (d)

cngc2-3, CNGC2::CNGC2

(e)

Fig. 4 CYCLICNUCLEOTIDE-GATEDCHANNEL2 (CNGC2) is implicated in theextracellularATP (eATP)-induced transcriptional response inArabidopsis roots.
Col-0, cngc2-3, and cngc2-3,CNGC2::CNGC2whole roots were treated with control (sodium chloride) buffer (Mock) or 300 µM eATP for 5min (ATP-5) or
30min (ATP-30). Two housekeeping genes,AtUBQ10 andAtTUB4, were used for data normalization. Data aremean� SE from three independent trials with
n > 4 biological replicates. (a) Results forMITOGEN-ACTIVATEDPROTEINKINASE 3 (MPK3). (b) Results forWRKYDNA-BINDING PROTEIN40 (WRKY40).
(c) Results for CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28). (d) Results forMETACASPASE 7 (MC7). Significant differences between cngc2-3 and
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possible signalling events at epidermis and cortex. DOES NOT RESPOND TO NUCLEOTIDES1 (DORN1/P2K1) and P2K2 (P2) together promote CNGC2
channel opening to mediate calcium ion (Ca2+) influx, plasma membrane potential Em depolarization, and cytosolic free Ca2+ ([Ca2+]cyt) increase. The
mechanism is unknown, but it could include phosphorylation or direct production of cyclic nucleotide monophosphates by cryptic catalytic centres (Al-Younis
et al., 2021). Extracellular ATP could follow the apoplastic pathway to initiate events in cortical cells, potentially through the P2 receptor complex and with
CNGC4 as a component of Ca2+ influx, Em depolarization and [Ca2+]cyt increase. Other stimuli could be transmitted from the epidermis to the cortex in a
CNGC2-independent pathway.
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(Fig. 4). Thus, CNGC2 can be required for the eATP transcrip-
tional response.

Discussion

Effects of eATP on plants were reported almost half a century ago
(Jaffe, 1973), yet relatively few components of eATP signalling
pathways have been identified. A forward genetic screen based on
eATP’s ability to increase [Ca2+]cyt led to the identification of the
first angiosperm eATP receptor, P2K1/DORN1 (Choi et al.,
2014). Here, eATP’s ability to depolarize root PM Em (Lew &
Dearnaley, 2000) was used in a targeted gene approach. Depolar-
ization can arise from Ca2+ influx across the PM (Dindas et al.,
2018), and eATP causes a rapid [Ca2+]cyt increase in roots that
could initiate depolarization (Waadt et al., 2020) as a multicon-
ductance process (Wang et al., 2019). Here, eATP-induced
depolarization required extracellular Ca2+ (Figs 1g,h, S1c,d),
showing its reliance on Ca2+ influx. Thus, the unresponsiveness
of cngc2 mutant root elongation zone epidermal PM to eATP
(Fig. 1) is consistent with its lack of eATP-induced PMCa2+ influx
currents (Fig. 2) and reveals CNGC2 as a necessary component for
initiating depolarization downstream of P2K1/DORN1/P2K2 in
young epidermal root cells (Fig. 4e).

Cyclic Nucleotide-Gated Channel2 works together with
CNGC4 in PAMP signalling, acting as a heterotrimeric Ca2+

channel in the flagellin 22 pathway (Chin et al., 2013; Tian et al.,
2019). During the course of this study, Wu et al. (2021) reported
that Arabidopsis pollen grain PMhas an eATP-activatedCa2+ influx
conductance, measured using whole-cell patch clamp electrophys-
iology. This conductance was impaired in both a single mutant of
CNGC2 and a single mutant of CNGC4, suggesting that these two
channel subunits might work together to facilitate germination.
Whether CNGC2 and CNGC4 underpin eATP-induced [Ca2+]cyt
elevation and transcription in pollen remains untested. Here, with
eATP as a potential DAMP, CNGC2 could be acting either as a
homotetramer or a heterotetramer (that includes CNGC4) in the
root epidermis, but in either event it is the obligate component of the
depolarization response given CNGC4’s redundancy (Fig. S5e–g;
Table S2). If a heterotetramer includedCNGC4 (which is expressed
at almost half the level of CNGC2 in the epidermis; Dinneny et al.,
2008), that CNGC4 subunit could be replaced. This is in contrast to
CNGC4’s pivotal role in the PAMP signalling CNGC2/4 heterote-
tramer, where CNGC4 is the phosphorylation target of the BIK1
kinase (Tian et al., 2019).

A residual [Ca2+]cyt signature and a transcriptional responsewere
still observed in CNGC2mutants, showing that other channels are
involved in the root’s overall response to eATP that now need to be
identified. The results here from the cortex implicate a role for
CNGC4 (Figs 4e, S9f). Annexin1 is implicated at whole root level,
but its mode of action is not yet determined (Mohammad-Sidik
et al., 2021). Extracellular ATP’s upregulation of defence-related
and wound-response genesMPK3,WRKY40, CPK28, andMC7 is
P2K1/DORN1 dependent (Choi et al., 2014; Jewell et al., 2019)
and was significantly impaired here in cngc2-3 (Fig. 4). Metacas-
pase 7 expression can be upregulated by the necrotrophic fungus
Alternaria brassicicola (Kwon & Hwang, 2013). Its CNGC2-

dependent upregulation by eATP may relate specifically to
DAMP signalling following ATP release by damaged cells.
Wounded root cells not only release ATP (Dark et al., 2011) that
could act as a DAMP for their neighbours but also release another
DAMP, the peptide PLANT ELICITOR PEPTIDE 1 (PEP1;
Hander et al., 2019). This is perceived in neighbouring cells by
the cognate PM receptors PEP1 RECEPTOR 1 (PEPR1) and
PEPR2 that relay to CNGC2 to cause [Ca2+]cyt elevation (Qi
et al., 2010). PEPR2 is coexpressed with P2K1/DORN1 (Tripathi
et al., 2017). Extracellular ATP also upregulates PEPR1 and
PEPR2 transcription (Jewell et al., 2019), so CNGC2 could be a
common component in these DAMP pathways to facilitate the
adaptive response.
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Fig. S6 cngc4-5 supported a significant extracellular ATP (eATP)-
induced depolarization of elongation zone epidermal Em.
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increase in roots.

Fig. S9 Cyclic Nucleotide-Gated Channel2 (CNGC2) is not
required for extracellular ATP (eATP)-induced depolarization of
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