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ABSTRACT
Intermediate crops are grown between main crops to protect soils and nutrients when fields 
would otherwise be bare. Despite being an essential constituent of cropping systems, spatial 
information on intermediate crops is scarce. Here, we propose a classification algorithm that 
combines field data, satellite imagery from multiple optical sensors and synthetic-aperture 
radar (SAR) data to map intermediate crops across Brandenburg, Germany. We trained random 
forest models using different sets of input features, including spectral-temporal metrics from 
optical data, metrics derived from SAR data and information on the scheduled main crop. The 
best classification was based on a combination of all input features and achieved an overall 
accuracy of 92.9%. Intermediate crops were overestimated, which can be partly attributed to 
misclassification of volunteers and weeds as intermediate crops. The overestimation was 
mitigated by aggregating results to the field level. Our results highlight the need for good 
optical data coverage during autumn and winter to accurately map intermediate crops while 
demonstrating the ability of SAR data to enhance classification accuracy. Overall, our study 
shows the potential of remote sensing methods to capture the characteristics of intermediate 
crops and derive spatially explicit data for monitoring sustainable agricultural practices.
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Introduction

Current agricultural landscapes are dominated by sim-
plified cropping systems that evolved from agricultural 
intensification. These systems are characterised by fewer 
species in rotations, enabling farmers to focus on the 
economically most important crops and enhancing agri-
cultural productivity (Hufnagel et al., 2020). However, 
they rely on intensive management practices and exter-
nal inputs that may cause nutrient leaching (Bowles et al.,  
2018), soil erosion (Montgomery, 2007), climate-relevant 
greenhouse gas emissions (Bowles et al., 2018; Smith 
et al., 2008) and a decline in biodiversity (Tscharntke 
et al., 2012). On the contrary, more diverse cropping 
systems are likely to maintain productivity and resilience 
while reducing adverse impacts on the environment 
(Renard & Tilman, 2019; Rosa-Schleich et al., 2019). 
Crop diversification therefore holds significant potential 
for addressing environmental challenges and has become 
an increasingly discussed topic in science and policy to 
enhance agricultural sustainability.

The integration of Intermediate Crops (ICs) into 
rotations is one important diversification strategy that 
especially targets soil health. ICs are annual plants that 
are grown during fallow periods in summer or during 

winter, but not for the purpose of producing any 
marketable products (Eurostat, 2023). Being com-
monly known as cover, catch or break crops, the 
term ’intermediate crops’ addresses them as an 
umbrella term. It reflects their function in the system 
and the terms used in most languages in Europe, other 
than English. Generally, ICs may be used as fodder or 
for biogas production, but their primary function 
depends on the condition of the respective field. 
While the numerous environmental benefits of ICs 
are recognised through targeted agricultural policies, 
spatial information on IC cultivation is scarce. In this 
study, we evaluate the potential of integrating various 
remote sensing data for mapping ICs in north-eastern 
Germany. We aim to address challenges such as data 
gaps during winter by combining data from different 
sensors and to map ICs as comprehensively as possible 
by using field data. The field data were collected in 
a campaign tailored to the classification problem, par-
ticularly addressing crop types that could be confused 
with ICs due to similar growing patterns, and that are 
not included in official campaigns. This allows us to 
cover a broad range of ICs (regarding different grow-
ing periods, species compositions and functions) 
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reflecting real-world agricultural practices across the 
study area. As a consequence, the study does not focus 
on mapping specific IC types but rather aims to repre-
sent the diversity of crops cultivated as ICs.

A great variety of species can be cultivated as ICs, 
either in mixtures or as sole crops. ICs can also be 
grown simultaneously with agronomic crops, i.e. as an 
undersown crop that remains on the field after the main 
crop was harvested. Ensuring a more continuous plant 
cover on agricultural soils, ICs help to control soil 
erosion (“cover crops”; Langdale et al. (1991)) and pre-
vent nutrient leaching (Thapa et al., 2018). Certain ICs 
are specifically grown to enhance soil fertility (“fertility- 
building crops”), either through fixing atmospheric 
nitrogen in root-colonising bacteria and providing it 
to the succeeding crop (Dabney et al., 2011) or through 
leaving above- and belowground residues that increase 
soil organic matter in the long term (Poeplau & Don,  
2015). Some ICs even improve the physical conditions 
in the soil through strong, deep-growing roots that may 
alleviate soil compaction (“conditioning crops”; Chen 
and Weil (2010)). Deep rooting ICs tap nitrogen reser-
voirs that have accumulated below the root zone of the 
main crops and bring this nitrogen back to the soil 
surface for later re-use by the main crops in the rotation 
(“catch crops”; Thorup-Kristensen et al. (2020)). ICs 
may have phytosanitary effects and break the cycle of 
soil-borne pests or diseases (“break crops”; Kirkegaard 
et al. (2008)) or suppress weeds through vigorous 
growth (“smother crops”; Liebman and Davis (2000)). 
Furthermore, ICs provide late flowering and contribute 
to more diverse habitats supporting soil organisms, 
birds and insects (Blanco-Canqui et al., 2015).

In the European Union (EU), the cultivation of ICs 
has been financially supported since the 2013 reform 
of the Common Agricultural Policy (CAP). Until the 
beginning of 2023, ICs were partly eligible for subsi-
dies related to two of the three greening measures – 
crop diversification and ecological focus areas 
(Regulation 1307/2013). With the 2021 CAP reform, 
ICs have become an integral component of the ruleset 
contributing to good agricultural and environmental 
conditions (GAECs), and therefore to conditionality 
(Regulation 2021/2115). ICs cultivated with the inten-
tion of receiving direct payments would thus be 
reported by farmers and included in the Integrated 
Administration and Control System (IACS) of the 
EU (Regulation 2021/2116). The IACS provides infor-
mation for almost every field in Europe, detailing the 
main crop grown during the reporting period (May) of 
each year and whether an IC eligible for subsidies is 
cultivated. This self-reporting by farmers is, however, 
also the weakness of the data, as it is neither complete, 
nor completely reliable. It requires independent on- 
site controls to validate the farmers’ reports. Notably, 
the system does not fully capture the complexity of 
cultivated ICs, as some farmers do not apply for 

subsidy payments and not all ICs qualified for subsi-
dies under greening measures in certain member 
states, e.g. Germany (DirektZahlDurchfV, 2014, § 31).

Spatial information on the cultivation of ICs thus 
remains scarce and incomplete, although it is of critical 
importance for assessing the efficacy of policy measures 
and environmental implications. For such assessments, 
mechanistic (i.e. process-based) agro-ecosystem models 
are often used, as they provide a relatively simple, quick 
and low-cost method to investigate the impact of cli-
mate or management changes on productivity and 
environment (Nendel et al., 2014). Such models simu-
late yields, nitrate leaching, carbon storage and green-
house gas emissions in response to weather, site 
conditions and management. Applying them at larger 
scales requires spatial data to inform the models, and 
simulations that specifically require information on ICs 
could benefit from a more detailed monitoring of crop 
rotation patterns (Faye et al., 2023; Kollas et al., 2015; 
Nendel et al., 2023).

Providing information from satellite remote sensing is 
the main method to approach this objective, as it can 
efficiently capture the dynamics of agricultural land 
cover over time and space (Bégué et al., 2018). A large 
amount of freely available satellite data from the Landsat 
and Copernicus programmes allows to disentangle phe-
nological characteristics of individual crops. In addres-
sing these complexities, machine learning models have 
emerged as pivotal tools in remote sensing applications 
for agricultural monitoring. These models are particu-
larly effective for tasks such as the classification of crop 
types and land cover (Blickensdörfer et al., 2022). 
Ensemble learning techniques, such as Random Forests 
(RF), have gained prominence due to their ability to 
handle high-dimensional datasets, including spectral- 
temporal metrics derived from optical and radar ima-
gery. RF models are robust against overfitting and can 
effectively manage heterogeneous input feature splits 
(Belgiu & Drăguţ, 2016), making them well suited for 
complex datasets like those used in this study. By lever-
aging these capabilities, machine learning enables the 
integration of multi-sensor data to capture the subtle 
phenological differences and compositional variability 
of ICs, ultimately enhancing classification accuracy and 
adaptability to real-world conditions. While this has 
enabled the production of high-quality crop type maps 
(Blickensdörfer et al., 2022; d’Andrimont et al., 2021; 
Griffiths et al., 2019; Johnson, 2019), the current methods 
focus on the detection of one crop during the growing 
season, which is usually the main crop. The need for 
separation of crop types in greater detail is often empha-
sised but has been addressed by comparatively few 
remote sensing studies (Bégué et al., 2018). Mapping 
approaches of ICs are particularly aggravated by data 
gaps in optical data due to cloudy winter months during 
the growing season and a lack of reliable reference data 
(Fendrich et al., 2023; Najem et al., 2024; Schulz et al.,  
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2021). Missing information and an uneven distribution 
of data during the growing season highlight the need to 
integrate data from different satellite sensors and test 
compositing techniques (Gao et al., 2020, Najem et al.,  
2024). Furthermore, the similarity of ICs to some main 
crops, their highly variable seeding times and differing 
species compositions challenge a distinction of ICs from 
other cultivated crop types.

Here, we aim to address these gaps by mapping ICs 
using Spectral-Temporal Metrics (STMs) derived from 
combined optical and Synthetic-Aperture Radar (SAR) 
satellite imagery, and incorporating ground-truth data 
from the field. STMs have been widely used in land-cover 
mapping and are often preferred to e.g. best-pixel com-
posites or single observations from optical sensors as they 
provide reliable information for periods of low data 
coverage (Frantz et al., 2023; Müller et al., 2015; 
Pflugmacher et al., 2019). By summarising the spectral 
distribution and temporal variability of a pixel over 
a specified period, STMs capture important phenological 
information. Furthermore, integration of SAR data, 
which unlike optical images are not affected by atmo-
spheric conditions can be beneficial, considering data 
gaps during the main growth period of ICs (Jennewein 
et al., 2022; Meroni et al., 2021). This motivates the 
following research questions:

● How do STMs of combined optical satellite ima-
gery of high spatial resolution (10–30 m) and 
SAR-based metrics account for the spectral- 
temporal characteristics of ICs?

● How does the integration of different input fea-
tures, including optical metrics, SAR metrics, and 
main crop information, impact the classification 
accuracy of intermediate crops?

● To what extent do the obtained results align with 
official agricultural statistics and may contribute 
to long-term monitoring of agricultural systems?

The paper is structured as follows: Section 2 introduces 
the study area, Section 3 describes the data and prepro-
cessing steps, Section 4 outlines the methods used for 
classification, Section 5 presents the results, and Section 6 
discusses the findings and concludes the study.

Study area

The study area is located in north-eastern Germany 
and comprises the federal states of Berlin and 
Brandenburg (Figure 1). Its area of approximately 
30000 km2 is predominantly covered with agricultural 
land (~44%), of which 84% is arable land (MLUK,  
2021b). Brandenburg is characterised by a warm tem-
perate climate with annual precipitation totals aver-
aging 558 mm and a mean annual air temperature of 
9.2 °C (DWD, 2019). With increasing continental 
influence, the southern and south-eastern regions of 

Brandenburg experience a slightly warmer and drier 
climate. Soils within the study area evolved from qua-
ternary loose sediments (MLUK, 2020) and are com-
prised of sandy to sandy-loamy substrates that vary in 
their suitability for agricultural use (Hanff & Lau,  
2021; Wolff et al., 2021). Sandy soils in the outwash 
plains and meltwater valleys provide low water reten-
tion capacity and soil fertility. They are mostly used as 
grassland or non-agricultural land. Instead, sandy- 
loamy soils found on plateaus of young and old mor-
aines (e.g. Uckermark, Fläming Heath) are more fer-
tile and better suited for crop cultivation. Other 
intensively used cropland sites are situated on drained 
floodplain soils along rivers (e.g. Oderbruch).

Phenological stages of commonly grown main crops 
in the study area were obtained from regular field obser-
vations reported by the German Meteorological Service 
(Deutscher Wetterdienst, DWD; Figure 2). Different 
spring and winter crops are grown, with silage maize, 
winter rye and winter wheat occupying most of the area 
(Amt für Statistik Berlin-Brandenburg, 2021). Certain 
crop types, e.g. sugar beet, are grown less frequently as 
they require very good soil qualities. For some crops, 
phenological data were unavailable, e.g. for potatoes, 
which show highly variable sowing (March – May) and 
harvesting (June – October) dates.

To ensure good growing opportunities, ICs should 
be sown right after harvesting the main crop and no 
later than by the end of September (Schmidt & Gläser,  
2014). Accordingly, two main cultivation windows for 
ICs can be identified. If grown after an early-harvested 
main crop (e.g. winter barley, early potatoes), ICs may 
be sown from the beginning of July. Fast-growing ICs 
may then be ploughed before a succeeding winter 
crop, whereas slow-growing ICs remain on the field 
until next year’s spring crop is sown. The latter are 
referred to as winter ICs and are most common. They 
can either serve as forage if winter-hardy or leave 
frostbitten crop residues in spring. We will consider 
June 2021 to March 2022 to map different ICs.

Data

Optical satellite data

The growing seasons of ICs require the use of potentially 
cloudy and noisy winter imagery. We therefore com-
bined different optical satellite data acquired between 
1 June 2021 and 31 March 2022. Our analysis was 
based on Landsat 7 (Enhanced Thematic Mapper Plus, 
ETM+), Landsat 8 (Operational Land Imager/Thermal 
Infrared Sensor, OLI/TIRS), Landsat 9 (Operational 
Land Imager-2/Thermal Infrared Sensor-2, OLI-2/ 
TIRS-2) and Sentinel-2A/B (Multispectral Instrument, 
MSI) scenes with a maximum cloud cover of 70%. The 
different sensor swaths overlap laterally, resulting in 
shorter revisit intervals and higher observation numbers 
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Figure 1. Cropland in Brandenburg and Berlin, Germany (cadastral data ©MLUK, dl-de/by-2–0). BAR: Barnim; BE: Berlin; BRB: 
Brandenburg an der Havel; CB: Cottbus; EE: Elbe-Elster; FF: Frankfurt (Oder); HVL: Havelland; LDS: Dahme-Spreewald; LOS: Oder- 
Spree; MOL: Märkisch-Oderland; OHV: Oberhavel; OPR: Ostprignitz-Ruppin; OSL: Oberspreewald-Lausitz; P: Potsdam; PM: Potsdam- 
Mittelmark; PR: Prignitz; SPN: Spree-Neiße; TF: Teltow-Fläming; UM: Uckermark (©GeoBasis-DE/BKG (2022), dl-de/by-2–0).

Figure 2. Average vegetation periods of common main crops in Brandenburg based on phenological data from 2019–2021 (DWD 
Climate Data Center CDC, 2021, 2022). The error bars display standard deviations for the observed sowing and harvesting dates. 
(a): Phenology stages of commonly grown spring crops. (b): Phenology stages of commonly grown winter crops.
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(Li & Roy, 2017). This allows to generate denser time 
series which are beneficial for remote sensing applica-
tions that require reconstructing the phenological beha-
viour of plants, specifically agricultural land cover 
mapping. As of 1 January 2022, Landsat 7 imagery was 
excluded from the analysis due to its official replacement 
by Landsat 9 which offers improved radiometric and 
geometric quality. Satellite imagery was obtained and 
processed using the Framework for Operational 
Radiometric Correction for Environmental monitoring 
(FORCE). FORCE provides cloud masking, radiometric 
correction and higher-level processing modules in a data 
cube structure (Frantz, 2019). All accessed satellite data 
were quality masked to exclude clouds, cloud shadows, 
snow, no data and saturated or sub-zero reflectance. The 
native Landsat (30 m) and Sentinel-2 (20 m) bands were 
resampled to obtain a spatial resolution of 10 m, while 
the 10 m native Sentinel-2 bands remained unchanged. 
Instead of using the raw bands, we selected five vegeta-
tion indices for our analysis – namely Soil-adjusted vege-
tation index (SAVI), Normalised difference tillage index 
(NDTI) and Tasseled Cap Brightness, Wetness and 
Greenness (Table 1).

Sentinel-1 Ground Range Detected (Interferometric 
Wide swath mode (IW), Processing level 1 high- 
resolution products) data were integrated in the study. 
To ensure optimal quality and consistency, the SAR data 
underwent several pre-processing and filtering processes. 
Initially, Sentinel-1 observations were filtered based on 
their acquisition mode – either descending or ascending – 
and their relative orbit. Additionally, data with extreme 
incidence angles, which often result in significant noise, 
were masked. We further pre-processed the data using 
a Gamma Map Filter (Lopes et al., 1990) with 5 × 5 kernel 
size to reduce speckle noise. The cross-polarisation ratio 
(VH/VV) was computed from the pre-processed data to 
augment our optical data time series.

Field data

A field campaign focusing on the detection of ICs was 
conducted throughout different agricultural landscapes 
in Brandenburg. Field data were collected from late 
August 2021 until April 2022, with the majority of 
records reported at the end of September and in 
November 2021. A total of 759 fields were reported, of 
which 509 were covered with ICs. The documented vari-
ables include the observed crop species according to 
Table 2, corresponding coordinates, date and additional 
comments, e.g. on vegetation density and suitability for 
subsequent analysis. The crop species were explicitly 
noted to keep track of which IC types and non-IC crop 
types were sufficiently covered by the field campaign. The 
samples were then assigned to their corresponding target 
class for classification (cf. Table 2). The target class “other 
crop types” refers to non-ICs observed in the study area 
during the campaign. This includes fallow land, fodder or Ta
bl

e 
1.

 L
is

t 
of

 in
di

ce
s 

us
ed

 in
 t

he
 s

tu
dy

.
In

de
x

N
am

e
Fo

rm
ul

a
Re

fe
re

nc
e

SA
VI

So
il-

ad
ju

st
ed

 v
eg

et
at

io
n 

in
de

x
SA

VI
¼

N
IR
�

RE
D

ð
Þ=

N
IR
þ

RE
D
þ

L
ð

Þ
ð

Þ
�

1
þ

L
ð

Þ
H

ue
te

 (1
98

8)
N

D
TI

N
or

m
al

is
ed

 d
iff

er
en

ce
 t

ill
ag

e 
in

de
x

N
D

TI
¼

SW
IR

1
�

SW
IR

2
ð

Þ=
SW

IR
1
þ

SW
IR

2
ð

Þ
va

n 
D

ev
en

te
r 

et
 a

l. 
(1

99
7)

TC
B

Ta
ss

el
ed

 c
ap

 b
rig

ht
ne

ss
TC

B
¼

0:
20

43
�

BL
U

E
þ

0:
41

58
�

G
RE

EN
þ

0:
55

24
�

RE
D
þ

0:
57

41
�

N
IR
þ

0:
31

24
�

SW
IR

1
þ

0:
23

03
�

SW
IR

2
Cr

is
t 

(1
98

5)
TC

G
Ta

ss
el

ed
 c

ap
 g

re
en

ne
ss

TC
G
¼
�

0:
16

03
�

BL
U

E
�

0:
28

19
�

G
RE

EN
�

0:
49

34
�

RE
D
þ

0:
79

40
�

N
IR
�

0:
00

02
�

SW
IR

1
�

0:
14

46
�

SW
IR

2
Cr

is
t 

(1
98

5)
TC

W
Ta

ss
el

ed
 c

ap
 w

et
ne

ss
TC

W
¼

0:
03

15
�

BL
U

E
þ

0:
20

21
�

G
RE

EN
þ

0:
31

02
�

RE
D
þ

0:
15

94
�

N
IR
�

0:
68

06
�

SW
IR

1
�

0:
61

09
�

SW
IR

2
Cr

is
t 

(1
98

5)

EUROPEAN JOURNAL OF REMOTE SENSING 5



sugar beet, oil-seed rape, vegetables, volunteer crops, 
weeds, and winter cereals. These categories encompass 
a mix of unmanaged vegetation, residual crops from 
previous harvest, or main crops that were still or already 
present in the fields. The target class “intermediate crops” 
refers to crops that were identified as ICs based on their 
time of observation and development stage. It is com-
prised of various sole crops, seed mixtures and potential 
perennial species. At most sites, pictures were taken to 
allow retrospective data interpretation. During the map-
ping process, particular attention was drawn to (i) main-
taining a certain distance between fields of the same crop 
type to avoid spatial autocorrelation, (ii) capturing rarely 
observed crop species, and (iii) ensuring a good repre-
sentation of within-class variability.

Training and validation sample

After a data cleaning procedure that minimised sam-
pling near headlands, which tend to be unrepresenta-
tive due to compaction and external inputs (Sunoj et 
al., 2021). (Appendix A), and avoided mixed pixels 
along field boundaries, a final selection of 734 fields 
was retained for analysis. As the information on ICs 
captured by IACS data was considered too incomplete 
for validation purposes, we split the field points into 
training and validation samples. Classes with limited 
representation in the field data were included in the 
training dataset as they reflect the real-world complex-
ity and diversity of ICs present in the study area. Not 
considering these crop types for training would have 
oversimplified the classification task and reduced the 
ecological validity of the models. However, the small 

amount of field samples of certain crop types (e.g. 
ryegrass) did not allow to include them for both train-
ing and validation. Consequently, IC types that were 
represented poorly in the field data were not used for 
validation since their underrepresentation limited 
their reliability for assessing model performance on 
false positives or false negatives. Otherwise, validation 
samples were manually selected in proportion to their 
total count in Table 2 without choosing points that 
had been relocated during the data cleaning, e.g. due 
to buffer strips or heterogeneous parcels. All remain-
ing points formed the training set which was initially 
affected by class imbalance. We therefore adjusted the 
training data by duplicating samples from the class 
“other crop type” whenever a minimum distance of 
300 m to the neighbouring training point of the same 
field could be maintained (cf. Figure B1). This dupli-
cation ensured better balance in the training dataset by 
addressing class imbalance while maintaining spatial 
distinctness to avoid introducing spatial autocorrela-
tion. Figure 3 illustrates the spatial distribution of the 
selected samples indicating the respective target class 
and their use for training or validation.

Methods

Spectral-temporal metrics and data availability

We defined four different aggregation periods for the 
computation of seasonal STMs, covering the complete 
growing season of ICs. The periods were selected with 
regard to the data availability of optical satellite data 
(Figure 4) and the expected phenology of crop types in 
the study area (Table 3).

Table 2. Observed crop types and their corresponding training and validation sample sizes obtained after initial cleaning of the 
field data and balancing of the training dataset.

Target class Crop type Training sample size Validation sample size

Other crop type Fallow land 5 1
Fodder or sugar beet (Beta vulgaris ssp. vulgaris) 6 1
Oil-seed rape (Brassica napus) 104 40
Vegetables 4 0
Volunteer oil-seed rape (Brassica napus) 6 1
Volunteer cereals 59 12
Weeds 18 5
Winter cereals 70 20

Intermediate 
crop

Lucerne (Medicago sativa) 15 8
Black oat (Avena strigosa) 7 2
Buckwheat (Fagopyrum esculentum) 3 1
Clover (Trifolium incarnatum, Trifolium pratense, Trifolium resupinatum, Trifolium repens) 4 1
Lupine (Lupinus spp.) 5 1
Oil radish (Raphanus sativus var. oleiformis) 6 1
Pea (Pisum sativum) 5 1
Phacelia (Phacelia tanacetifolia) 18 8
Ramtil (Guizotia abyssinica) 2 0
Rye (Secale cereale) 5 1
Ryegrass (Lolium perenne) 2 0
Seed mixture with legumes 133 75
Seed mixture without legumes 76 41
Serradella (Ornithopus sativus) 1 0
Sunflower (Helianthus annuus) 4 1
Turnip rape (Brassica rapa) 8 2
White mustard (Sinapis alba) 36 15
Other sole crops (Cannabis spec., Helianthus tuberosus, Sisymbrium spec., Sorghum spec.) 5 0
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The number of valid observations per pixel, 
referred to as clear-sky observations (CSOs), varied 
strongly across the defined periods and across the 
study area, depending on orbit overlaps and 

cloudiness. During summer, it was possible to select 
shorter aggregation periods with average numbers of 
observations yielding 9.7 for T1 and 6.2 for T2. T3 and 
T4 include winter months and therefore cover longer 

Figure 3. Spatial distribution of ground-truth data gathered in the field (cadastral data ©MLUK, dl-de/by-2–0). (a): Target classes. 
(b): Training and validation samples.

Figure 4. Clear-sky observation counts for each aggregated period (1 June − 15 August 2021: T1; 16 August − 30 September 2021: 
T2; 1 October − 31 December 2021: T3; 1 January − 31 March 2022: T4).

Table 3. Anticipated crop development within the selected aggregation periods.
No. Aggregation period DOY Expected phenology

T1 1 June 2021–15 August 2021 152–227 Harvest of main crops
Sowing and emergence of early ICs

T2 16 August 2021–30 September 2021 228–273 High biomass of early grown ICs
Growth of weeds and volunteers
Sowing and emergence of winter ICs
Sowing of winter main crops

T3 1 October 2021–31 December 2021 274–365 Harvest of remaining main crops (maize, sugar beet)
Fast development of ICs
Slow development of other crop types

T4 1 January 2022–31 March 2022 001–090 Winter dormancy of main crops and winter-hardy ICs with continuing growth in spring
Frost damages of most ICs

EUROPEAN JOURNAL OF REMOTE SENSING 7



time spans to ensure continuous data coverage. 
Nevertheless, a large part of the study area depicted 
less than five CSOs per pixel between 1 October 2021 
and 31 December 2021, due to missing orbit overlap, 
the sensor failure of Landsat 7 and a higher incidence 
of clouds during autumn and winter. The obtained 
data densities for this period (T3, average CSOs =  
6.5) provide a more typical representation of the win-
ter condition, compared to the second winter period 
(T4, 1 January 2022–31 March 2022) which depicts an 
unusually high number of 14.3 CSOs on average due 
to exceptional cloud scarcity. Given the limited num-
ber of cloud-free observations, particularly during the 
winter months, compositing was employed to ensure 
sufficient spatial and temporal coverage under subop-
timal conditions. By focusing on STMs that summar-
ise phenological trends over these defined periods, we 
mitigated the potential impact of using observations 
from different dates and reduced the influence of 
short-term variability.

STMs were computed from each index or band 
(NDTI, SAVI, TCB, TCG, TCW, VV, VH, VH/VV). 
For optical data, minimum (MIN), maximum (MAX), 
range (RNG), median (Q50), standard deviation 
(STD) and interquartile range (IQR) values were 
derived for each period – adding up to 120 features. 
A reduced number of features was produced for the 
Sentinel-1 bands including MAX, MEAN, Q50 and 
STD metrics.

Classification models

In this study, the RF ensemble learning method 
(Breiman, 2001) was chosen for classification due to 
its robustness against overfitting and capability to 
handle high-dimensional data typical of remote sen-
sing. It has been widely used in classification tasks 
using remotely sensed data (Blickensdörfer et al.,  
2022; Pelletier et al., 2016; Sherrie; Wang et al., 2019).

Several scenarios were tested based on time steps, 
optical and SAR data input (Table 4) to evaluate the 
relative importance of different input features. The 
models furthermore considered information on the 
scheduled main crop in 2021 as declared in the IACS 
(MLUK, 2021a) as input (cf. Figure B1). Each model 

was based on 500 decision trees, and the square root of 
the total number of features was randomly sampled at 
each split (Belgiu & Drăguţ, 2016). The models were 
applied to produce a binary crop type map across 
actively managed cropland sites in the study area 
(MLUK, 2021b). Post-classification, the minimum 
mapping unit (MMU) of the obtained maps was chan-
ged from a single pixel to the IACS polygon level. To 
achieve this, a frequency analysis of all pixel classes 
within a given parcel was performed. The most fre-
quent class was then assigned to the corresponding 
field, and the aggregated maps were masked to match 
the cropland areas that were used for prediction. 
Following the classification, feature importance was 
extracted based on the mean decrease in Gini impur-
ity. This metric evaluates the contribution of each 
feature to reducing classification uncertainty by asses-
sing its role in splitting decision nodes across the trees 
in the RF model. Feature importance was calculated 
for all input variables, including STMs derived from 
optical and SAR data, to determine the most signifi-
cant drivers for distinguishing ICs from other crop 
types. 

Accuracy assessment

We performed a statistical accuracy assessment by 
comparing the validation data to the different map 
classifications at pixel and field level. The resulting 
confusion matrices were used to calculate common 
coefficients, including Overall Accuracy (OA), 
Producer’s Accuracy (PA) and User’s Accuracy (UA).

We used the map with highest OA to estimate the 
area of each target class and compared it to agronomic 
statistics. Official information on agricultural areas 
including ICs was obtained from agricultural structure 
surveys conducted in 2010, 2016 and 2020 (Destatis,  
2011, 2017, 2021). In contrast to our study, perennial 
crops – which by definition are no ICs – were speci-
fically excluded from the surveys. We therefore subse-
quently excluded lucerne and clover fields that were 
reported as main crops in the 2021 IACS data from the 
area assessment. Thereby we improved the compar-
ability to the survey results while not changing the 
map design.

Table 4. Classification models. Each model was based on a different set of input features 
including spectral-temporal metrics from optical data, spectral-temporal metrics from SAR 
data or both. All models additionally included information about the cultivated main crop 
in 2021.

Model Input features Number of features

Optical 5 vegetation indices × 4 time periods × 6 metrics + 
main crop

121

SAR 3 bands × 3 time periods (T2–T4) × 4 metrics + 
main crop

37

Combined 5 vegetation indices × 4 time periods × 6 metrics + 
3 bands × 3 time periods (T2–T4) × 4 metrics + 
main crop

157
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Results

Model comparison

The fitted models achieved different accuracies for 
distinguishing ICs grown between summer 2021 and 
spring 2022 from other crop types in the region (see 
Table 5). Overall accuracies ranged from 78.5% to 
92.9%, depending on the different input features 
used and the chosen MMU.

While optical data alone yielded high classification 
accuracies, the independent use of SAR data led to less 
accurate results. Highest accuracies were attained for 
the combined use of optical and SAR data, indicating 
that SAR data can effectively improve the classifica-
tion. Moreover, aggregation to field level consistently 
improved OA and class-wise accuracies across all 
models. This particularly reduced the omission error 
of other crop types by the Optical and SAR models. 
The improvement in accuracy, however, was less pro-
nounced for the Combined model, suggesting that the 
model provides more robust estimates of the target 
classes. Despite the overall enhancement, aggregation 
to field level occasionally introduced artefacts, e.g. if 
the declared IACS field boundaries differed from the 

actual cropping pattern. The applied majority vote 
would then result in an under- or overestimation of 
the IC area of the respective field.

In general, features from T3 and T4 were found to 
have the largest impact on all classifiers (Figure 5). In 
the Optical model, features from T2 proved to be 
valuable inputs when providing information on low 
or high biomass levels (e.g. TCG-MIN/MAX, SAVI- 
MIN/MAX), while T1 features were least informative. 
Most optical indices – except for TCB – demonstrated 
high importance with a particular relevance of their 
MIN, MAX and Q50 values. These trends were also 
reflected in the Combined model where feature impor-
tances of optical input variables were usually higher 
than importances of SAR metrics. Nevertheless, the 
highest-scoring SAR metrics (VV/VH from T3) had 
a significant impact on the Combined model’s perfor-
mance. In contrast, SAR data from T1 introduced 
noise leading to a decrease in accuracy by over 3% 
and were excluded from the final models. Compared 
to the satellite data, the inclusion of the cultivated 
main crop in 2021 as input feature provided limited 
value and resulted in moderate feature importances 
across all models.

Table 5. Validation results for the obtained maps. For classifications at pixel level, we compared the validation sample to the class 
assigned to the pixel containing the validation sample. For field level, we compared the validation sample to the most frequent 
class within each corresponding field.

Classification Overall accuracy in %

Producer’s accuracy in % User’s accuracy in %

Intermediate crop Other crop type Intermediate crop Other crop type

Optical, pixel level 85.36 94.97 66.25 84.83 86.89
Optical, field level 92.47 96.23 85.00 92.73 91.90
SAR, pixel level 78.48 93.04 49.37 78.61 78.00
SAR, field level 83.68 93.08 65.00 84.09 82.54
Combined, pixel level 90.30 96.20 78.48 89.94 91.18
Combined, field level 92.89 96.23 86.25 93.30 92.00

Figure 5. Normalised feature importance of the fitted models. Shown are the ten most important variables of each tested input 
set. The features are labelled by their index or band, statistical metric and aggregation period.
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Representation of phenological patterns

The STMs used in this study were computed for per-
iods that specifically aim to capture the anticipated 
phenology of ICs in the study area. In an exemplary 
way, SAVI-Q50 and VV/VH-MEAN profiles were 
examined to assess the actual representation of phe-
nological patterns (Figure 6). For this purpose, some 
of the crop types reported in the field were grouped to 
facilitate visualisation. The grouping was chosen as 

a compromise between interpretability and detail, 
allowing to identify potential sources of misclassifica-
tion that would otherwise be masked by the great 
heterogeneity within the two target classes.

Optical and SAR metrics often displayed similar 
patterns and were able to detect phenological differ-
ences between groups (Figure 6). The largest differ-
ences were observed for T2, T3 and T4, corresponding 
to the feature importance results (Figure 5). ICs were 

Figure 6. Temporal profiles for observed crop groups, considering training samples only. The black lines represent average 
phenological trends over the aggregation periods used to calculate the spectral-temporal metrics, the violins display underlying 
value distributions. (a): Optical metric (median of the soil-adjusted vegetation index: SAVI-Q50). (b): SAR metric (average cross- 
polarisation ratio: VV/VH-MEAN).
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mostly characterised by peak vegetation signals in T3 
followed by a significant decline in T4. Since this 
decrease is related to ploughing events or severe frost 
damage, it appeared rather moderate for frost- 
resistant winter ICs (Figure 6a). The SAVI-Q50 values 
of frost-resistant winter ICs thus resembled those of 
oil-seed rape which also develops a high leaf mass 
before winter and is marginally affected by frost. 
However, SAR metrics might resolve this potential 
source of confusion as they showed distinct VV/VH- 
MEAN values for oil-seed rape in the last period 
(Figure 6b). ICs sown late in the year, e.g. after silage 
maize, developed very little aboveground biomass in 
T3 with an increasing growth in T4 (Appendix 
C Figure C1). Consequently, their temporal profiles 
differed strongly from most winter ICs, making them 
susceptible to misclassification with winter cereals. 
Apart from that, the general patterns of winter cereals, 
fallows and sugar beet clearly differed from that of ICs. 
Summer ICs, volunteers and weeds were characterised 
by similar trajectories with high standard deviations 
across the illustrated metrics. Although summer ICs 
are typically grown earlier in the year and peak in T2, 
their average temporal profile was flattened due to the 
potentially large amount of lucerne and clover samples 
being cultivated as perennial crops. Weeds and volun-
teers, on the other hand, are not grown on purpose 
and can develop very differently on each field. Their 
individual samples may show a unique pattern or 
resemble any other reported crop type.

Summarising, the varying development of unma-
naged crops (i.e. weeds or volunteers) as well as the 
incorporation of different main crops – each following 
a distinct phenology – add to a significant heteroge-
neity of the target class “other crop types”. Conversely, 
most IC species and mixtures follow distinct patterns 
with minor differences depending on their sowing 
date, frost resistance and growth period. The consid-
ered metrics suggest a potential confusion between ICs 
and oil-seed rape, winter wheat, volunteers and weeds.

Best model and comparison to official statistics

In this section, we focus on the classification of the 
Combined model aggregated to field level which 
yielded the highest overall and class-wise accuracies. 
The model was based on STMs from optical and SAR 
data, as well as on auxiliary information about the 
cultivated main crop in 2021. ICs were mapped on 
all field sizes ranging from fine-scale structures to very 
large parcels, sometimes forming clusters across 
neighbouring fields. The map displays regional man-
agement differences with significantly less IC plots on 
very fertile soils, e.g. in the Uckermark (Figure 7a). 
Higher shares of ICs were present in areas with low 
(Figure 7c) to medium (Figure 7b) soil qualities.

According to the confusion matrix (Table 6), the 
majority map achieved an OA of 92.9%. The best class- 
wise accuracies were attained for ICs with both high 

Figure 7. Binary crop type classification of the study area based on the Combined model aggregated to field level. The three 
detailed views are characterised by decreasing soil qualities from a to c.
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UA (93.3%) and PA (96.2%). Other crop types were 
mapped with a comparable UA (92.0%), but lower PA 
(86.3%). This suggests an overestimation of ICs 
mainly arising from other crop types being mistaken 
for ICs. Among the misclassified validation samples, 
weeds and volunteer grain were most prominent. 
Additionally, sugar beet and winter cereals introduced 
confusion with ICs. Vice versa, seed mixtures were 
partially mapped as other crop types, as were lucerne, 
white mustard, sunflower and turnip rape.

The overestimation of ICs was also reflected in the 
obtained area proportion which yielded 32.4% of all 
cropland. A subsequent exclusion of lucerne and clover 
fields that were declared as main crops in the IACS 
reduced the area proportion of ICs to 28.9%. 
Comparison data from agricultural structure surveys 
are reported every four to 6 years by the German 
Federal Statistical Office and were therefore not available 
for the growing season of interest. Data from previous 
years reported significantly lower area proportions of ICs 
with an increasing trend over the last decade (13.2% in 
2009/10; 16.2% in 2015/16; 17.9% in 2019/20). Following 
these records, a realistic area proportion of ICs would 
amount to approximately 20%. The reported area pro-
portions are statistical estimates based on a sample of 
1300 farms in Brandenburg indicating whether an IC 
was grown between two main crops from June to May of 
the following year. Both subsidised ICs as well as ICs that 
were not cultivated in relation to greening measures of 
the EU were detected.

Discussion

Overcoming challenges of mapping ICs

Despite the challenges of mapping ICs, we were able to 
capture most phenological differences between ICs 
and other crop types with the chosen methodology. 
The derived STMs resembled the anticipated pheno-
logical development of crops over time, suggesting 
that the spectral information was summarised in 
a meaningful way. Our results confirm the particular 
importance of autumn and winter months for identi-
fying ICs which has been reported in previous studies 
using SAR data (Fendrich et al., 2023; Najem et al.,  
2024) or optical satellite data (Schulz et al., 2021). 
While optical data densities during winter are critical 
for IC detection, a combination of data from multiple 
optical sensors can help overcome this challenge 
(Lewińska, Frantz, et al., 2024). The higher probability 

of missing or low-quality pixels due to clouds during 
the growing season of ICs additionally justifies the use 
of STMs. We improved the only existing approach for 
mapping ICs from optical satellite data (Schulz et al.,  
2021) we are aware of by implementing more optical- 
based metrics and by SAR-based input features. Direct 
comparison to accuracies from other studies is diffi-
cult, though, given the wide range of training and 
validation data used. A consistent definition of ICs 
across Europe, as proposed by Fendrich et al. (2023), 
and a publicly available reference dataset are required 
to improve validation of single studies and compar-
ability between studies. Still, several findings of our 
study compare well to previous research. In line with 
Schulz et al. (2021), similar phenological characteris-
tics occur in different IC profiles, indicating that 
a differentiation of IC species composition is not yet 
feasible. Moreover, our models encountered problems 
in detecting weakly developed ICs as found by Najem 
et al. (2024), especially when grown after silage maize. 
Beyond that, the use of our own field data enabled the 
identification of other potential sources of misclassifi-
cation and allowed for a wide representation of var-
ious ICs in the derived map. As a result, our map 
provides a spatial overview of the cultivation of ICs 
at field level, no matter if the IC was reported in the 
IACS data (i.e. registered for subsidies) or not. We 
hence provide the first comprehensive wall-to-wall 
mapping of ICs for the study area. The conducted 
field campaign further allowed to include volunteers 
and weeds which are neither reported in the IACS nor 
in official ground-truth campaigns (e.g. Land Use – 
Land Cover Area Frame Survey (LUCAS)), nor in 
agricultural structure surveys as used by Fendrich 
et al. (2023). Unmanaged crops can serve as a bridge 
for pests and diseases and have a different agronomic 
and ecological value than ICs. A clear distinction 
between ICs and volunteers or weeds is therefore 
necessary, but remains challenging given their consid-
erable spectral-temporal similarities.

Impact of remote sensing-based input features on 
IC mapping

Based on the results presented, we strongly recom-
mend the incorporation of multiple optical sensors 
allowing for better data coverage, since optical metrics 
of the winter periods (T3, T4) were most important for 
model performance. The primary reason for T3 
(October – December) and T4 (January – March) 

Table 6. Confusion matrix of the Combined classification at field level.
Reference

SumIntermediate crop Other crop type

Prediction Intermediate crop 153 11 164
Other crop type 6 69 75

Sum 159 80 239
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being most important is that those phases capture 
critical growth stages of winter ICs and highlight 
their seasonal variations in contrast to other crop 
types. Accurate and continuous data during those 
periods are therefore essential for reliable model per-
formance. NDTI and SAVI were among the most 
important variables because they provide crucial 
insights into the vegetation and soil conditions during 
the winter periods. NDTI is effective in detecting 
tillage activities and is sensitive to changes in moisture 
(Quemada et al., 2018), which are key during the post- 
harvest of main crops and pre-planting phases of ICs. 
SAVI, on the other hand, adjusts for soil brightness 
and enhances vegetation signal detection, particularly 
useful in periods with sparse vegetation cover.

The varying observation density of optical data, how-
ever, compromises the robustness of complex distribu-
tional metrics (i.e. STD, IQR) across time and space 
(Lewińska, Ernst, et al., 2024). This questions the relia-
bility of these STMs and might contribute to their low 
impact on the classifiers. A sensitivity analysis could be 
performed to better understand the minimum require-
ments in terms of optical data coverage for mapping 
ICs. For this purpose, the number of available observa-
tions could be artificially reduced step by step while 
evaluating feature importance and accuracies. 
Additional use of SAR metrics enhanced classification 
accuracies as well as robustness and should be favoured 
over a purely optical classification. Besides reducing 
misclassification of other crop types, the incorporation 
of SAR data minimises the effect of varying optical data 
densities in time and space which may be particularly 
relevant in years and study areas that yield less CSOs.

Features from T1 (June – Mid-August) yielded low 
variable importances and SAR metrics from that per-
iod were excluded from analysis because they added 
more confusion. Considering the peak vegetation per-
iod could still be valuable for the models since it 
captures information on the development of the 
main crops, including harvest, and on early sown 
ICs. Depending on the availability of optical data in 
different world regions, it might be useful to modify 
T1 to either cover a shorter period focusing on matur-
ity and harvest of the main crops (in our case e.g. 
July – Mid-August), or a longer period covering 
a major part of the growing season (e.g. April – Mid- 
August). This adjustment could help to determine the 
relevance of the first period for future analyses and 
whether a refined version of T1 is more appropriate.

Limitations

This study encountered several limitations, particu-
larly related to the crop types considered, the over-
estimation of ICs, and the validation process, all of 
which are closely tied to the field data collection 
methodology.

The training data mainly cover winter ICs due to 
the relatively late start of the conducted field cam-
paign. Each field was only visited once during the 
campaign which is related to several limitations. 
First, the field data do not include information on 
the period over which a crop was grown (e.g. annual 
or perennial cultivation of lucerne). Second, crops that 
can be grown as IC based on the timing of tillage (e.g. 
green rye) were not detected. Third, we may not know 
if a summer IC was grown before late-sown winter 
crops, such as winter wheat, were reported. And last, 
information on the proper development of the crop 
(e.g. whether farmers decided to break the crop due to 
winterkill or diseases) was not available. Some of these 
issues were addressed by closely examining the time 
series during the data cleaning process, i.e. by exclud-
ing field samples that displayed unexpected temporal 
profiles. However, interpreting individual profiles is 
highly subjective and does not completely resolve the 
limitations of the field data.

The overestimation of ICs throughout the study area 
is partly due to classifying potential perennial species as 
ICs, particularly in areas with a high percentage of 
forage crops. On average, the overestimation of ICs 
could be significantly reduced by excluding lucerne 
and clover fields from the area assessment. Applying 
this logic to the map post-classification would reveal 
that exceptionally high IC shares, as observed in 
Figure 7c, are unrealistic and result from training per-
ennial crops as ICs. Thus, training perennial crops as 
other crop types would have been more appropriate and 
could be achieved by incorporating multitemporal field 
data that provide additional information (e.g. on culti-
vation periods, crop development and crop manage-
ment). Such information would further advance the 
understanding of other classification errors, especially 
originating from volunteers and weeds.

Moreover, aggregating the map from the pixel level 
to the IACS field level assumes spatially consistent 
management over time (Appendix B cf. Figure B1). If 
farmers cultivate only parts of a field with ICs, this 
aggregation leads to misclassification and misrepresen-
tation of the cultivated area. Nevertheless, the accuracy 
assessment indicates that a greater MMU compensates 
for mixed pixel effects and intra-field heterogeneity.

Another limitation of the analysis was the lack of 
independent validation data. For this reason, we split 
the field data into a training and validation dataset 
which reduced the number of samples available for 
building the models. Determining a validation point 
for each observed crop type was not always possible, 
and in some cases only a few validation samples were 
derived. This lack of validation samples substantially 
limits our ability to assess whether a crop type was 
correctly assigned to its target class. For example, frost- 
resistant winter ICs could poorly be validated, with 
some crop types in this group being completely 
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misclassified (e.g. turnip rape) and others lacking vali-
dation samples (e.g. ryegrass). Additionally, frost- 
resistant winter ICs showed very similar temporal pro-
files to oil-seed rape but were trained with fewer sam-
ples. Therefore, if a field displays comparable patterns, 
the models are more likely to predict oil-seed rape. 
Balancing between crop groups with similar spectral- 
temporal characteristics, rather than between the two 
very heterogeneous target classes, could facilitate more 
plausible predictions and accurate validation.

While our approach does not provide species- 
specific information, the map provides essential infor-
mation for modelling soil organic carbon, water and 
nitrogen carry-over, as well as soil erosion risks. For 
these purposes, the exact IC species is less important 
than the overall presence of an IC, as the additional 
carbon input (soil organic carbon modelling) or the 
water and nutrient uptake (water and nitrogen carry- 
over) and degree of soil coverage (soil erosion) varies 
little among winter ICs. The specific IC species would 
be important, though, for modelling pest and disease 
survival (Donatelli et al., 2017), nitrogen fixation by 
legumes (Liu et al., 2011), and allelopathic effects (An 
et al., 2003; Dubey & Hussain, 2000; Martins, 2006).

Our study enhances the understanding of patterns 
from remote sensing for IC mapping and identifies 
remaining challenges which are important to address 
in future studies. The IC mapping approach demon-
strated here can be applied to agricultural systems simi-
lar to our study area. For transferability to other regions, 
it will be essential to consider local agricultural prac-
tices, climatic conditions and satellite data observation 
densities to make necessary adjustments to the temporal 
aggregation periods (Pham et al., 2024). The transfer-
ability of the approach also relies on adequate ground- 
truth data for model training and validation, which can 
be difficult to obtain in data-scarce regions. To address 
these challenges, future applications could adopt flex-
ible aggregation methods and explore the use of pub-
licly available regional databases or crowd-sourced 
agricultural data to improve model generalisability.

A significant source of misclassification in our study 
arose from volunteers and weeds which were often mis-
taken for ICs. Addressing this issue is critical for improv-
ing the reliability of IC mapping and depends on the 
availability of appropriate training and validation data. 
The detection of soil tillage prior to the cultivation of ICs, 
as opposed to volunteers, is one potential solution to 
enhance discrimination between unmanaged crops and 
ICs. For this purpose, complete time series or different 
aggregation periods for SAR data and suitable optical 
indices, such as NDTI, could improve detection capabil-
ities of soil tillage. Future research should address oppor-
tunities to promote the detection of different crop type 
groups (i.e. summer ICs, winter ICs, frost-resistant win-
ter ICs) or species-specific classification. This could 
involve exploring grouping strategies for IC types with 

similar spectral and temporal characteristics to enhance 
classification accuracy and reduce misclassification risks. 
Considering the spectral-temporal similarities of IC spe-
cies, integration of additional datasets, such as hyper-
spectral and thermal data might be beneficial (Barnes 
et al., 2021; Wang et al., 2023). Detailed narrowband 
hyperspectral data (such as EnMAP or PRISMA) could 
significantly improve the accuracy of identifying and 
distinguishing between various plant species. The incor-
poration of logics based on detailed and multi-annual 
crop type information (e.g. Blickensdörfer et al. (2022)) 
could contribute to achieving this objective, e.g. by 
assuming a higher probability of oil radish in crop rota-
tions with potatoes. Moving forward, it is essential to 
incorporate additional datasets and test our methods on 
data from different years and near-real-time scenarios 
(e.g. Gao et al. (2020, 2023)) to validate the robustness 
and generalisability of our findings.

Conclusions

Mapping ICs using remote sensing methods presents 
several challenges related to the diversity of IC species, 
their spectral and phenological similarity to main crops 
and varying growing periods. Additionally, the primary 
growing season for ICs in temperate regions is during 
autumn and winter, a period marked by frequent cloud 
cover, limiting the availability and quality of optical 
remote sensing data.

Despite these challenges, our study demonstrates 
an effective approach to map ICs by integrating 
Landsat, Sentinel-2 and Sentinel-1 data. Optical satel-
lite data provided crucial variables for the classifica-
tion, such as vegetation indices during the key growing 
stages of ICs. On the other hand, the integration of 
Sentinel-1 data was particularly important, enhancing 
the accuracy of the classification by compensating for 
the limitations of optical data during periods of high 
cloud cover. Temporal aggregation informed by 
knowledge of growing seasons emphasised phenologi-
cal differences between ICs and main crops. Based on 
a combination of optical metrics, SAR-based metrics 
and additional information from IACS data, the best 
classification achieved an overall accuracy of 92.9%, 
highlighting the value of integrating different remote 
sensing data sources for IC mapping. The resulting 
map not only offers valuable spatially explicit infor-
mation which is crucial for reporting and monitoring 
sustainable agricultural practices but also provides 
input for simulation models that generate further 
information on agricultural production, related emis-
sions and environmental impacts.
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