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Abstract: Information about the current biomass state of crops is important to evaluate whether the 

growth conditions are adequate in terms of water and nutrient supply to determine if there is need 

to react to diseases and to predict the expected yield. Passive optical Unmanned Aerial Vehicle 

(UAV)-based sensors such as RGB or multispectral cameras are able to sense the canopy surface and 

record, e.g., chlorophyll-related plant characteristics, which are often indirectly correlated to above-

ground biomass. However, direct measurements of the plant structure can be provided by LiDAR 

systems. In this study, different LiDAR-based parameters are evaluated according to their relation-

ship to aboveground fresh and dry biomass (AGB) for a winter spelt experimental field in 

Dahmsdorf, Brandenburg, Germany. The parameters crop height, gap fraction, and LiDAR intensity 

are analyzed according to their individual correlation with AGB, and also a multiparameter analysis 

using the Ordinary Least Squares Regression (OLS) is performed. Results indicate high absolute 

correlations of AGB with gap fraction and crop height (−0.82 and 0.77 for wet and −0.70 and 0.66 for 

dry AGB, respectively), whereas intensity needs further calibration or processing before it can be 

adequately used to estimate AGB (−0.27 and 0.22 for wet and dry AGB, respectively). An important 

outcome of this study is that the combined utilization of all LiDAR parameters via an OLS analysis 

results in less accurate AGB estimation than with gap fraction or crop height alone. Moreover, future 

AGB states in June and July were able to be estimated from May LiDAR parameters with high ac-

curacy, indicating stable spatial pa�erns in crop characteristics over time. 

Keywords: LiDAR; aboveground biomass; precision agriculture; gap fraction; crop height; LiDAR 

intensity 

 

1. Introduction 

In agriculture, aboveground biomass (AGB) is an important parameter for assessing 

the crop health status, the water and nutrient supply, and the effects of agricultural man-

agement practices [1]. Recently, it has gained importance due to agro-ecosystems becom-

ing potential sources of carbon sequestration as well as carbon-dioxide-neutral energy 

sources by cultivating biofuels [2]. 

Most published studies are utilizing passive optical systems to monitor AGB at the 

field scale or beyond. Reference [3] recently reviewed the potentials of Unmanned Aerial 

Vehicles (UAV) to retrieve AGB for the special case of grasslands. There are two main 

approach groups [4]: (i) The application of structure-from-motion, i.e., photogrammetric 

stereo RGB imagery to generate digital surface maps of crop height to relate these to AGB 

[5–7]. Here, the acquisition timing during the day on the height measurements from stereo 

imaging impacts the results due to shadowing and ground pixel visibility effects with 

different solar angles [5]. Similar results were reported for differences in the plant devel-

opment stages and cultivars [6]. To improve stereo-based AGB estimates, [8] calculated 
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the sum of pixel values in a crop surface map without soil background to include volu-

metric information. (ii) The application of plant spectral properties does not provide a 

plant height or structure information, but it does provide characteristics about the canopy 

chlorophyll status [9]. As these denote plant vitality, they are typically correlated with 

AGB. E.g., [10] evaluated image texture features and spectral vegetation indices to esti-

mate AGB for winter wheat at different growth stages. Especially, the combination of 

spectral indices with image texture such as variance, entropy, data range, homogeneity, 

second moment, dissimilarity, contrast, or correlation was able to improve the results sig-

nificantly. Similar results were obtained for other cultivars [11–13]. Ref. [14] used hyper-

spectral vegetation indices as well as red-edge position and shape parameters to estimate 

biomass. The authors found a combination of vegetation indices and red-edge parameters 

as well as multiple regression methods to be more accurate than single linear regression 

of the independent variables. For both approach groups, machine learning techniques are 

widely applied [8,15]. 

In contrast, the three-dimensional structure of plants can be obtained by light detec-

tion and ranging (LiDAR) systems to enable direct AGB observations. Those active optical 

sensors have been utilized mainly to gain forest biomass estimates [16], while in agricul-

tural ecosystems, mainly terrestrial laser scanning techniques were applied [17–19]. UAV-

borne LiDAR observations for AGB estimation are more flexible and concise and provide 

multiangular 3D point clouds without platform-related shadow effects. Ref. [20] analyzed 

the relationships of total fresh biomass measurements with LiDAR crop height during 

different nitrogen treatment levels. Similarly, [21] used LiDAR crop height estimates and 

a stepwise multiple regression to estimate AGB. Ref. [22] investigated the benefits of fus-

ing LiDAR and multispectral data for predicting sugarcane AGB. While their fusion re-

sults did not perform significantly be�er than the single source observations, they found 

that LiDAR was performing slightly be�er than multispectral imagery later in the season. 

However, most LiDAR-based biomass estimates as well as stereo-optical methods make 

use of the plant height information only. A rare exception is [23], which used a layered 

gap fraction method of [24] to retrieve a dimensionless three-dimensional profile index 

and a regression to in situ measurements. Ref. [24] used LiDAR intensity to classify vege-

tation and soil points, while [25] distinguished between active and no-longer-functioning, 

senescent vegetation. Ref. [26] used LiDAR intensity to derive links to properties of the 

biochemistry of vegetation such as nitrogen status and chlorophyll concentrations. An im-

portant milestone in the estimation of crop traits, including AGB, is the very recent publi-

cation by [27]. The authors provided detailed information about advanced methods to 

retrieve LiDAR parameters, e.g., by a vertical distribution of the normalized point heights 

within each reference area to describe the vertical structure of crops. Ref. [27] used the 

coefficient of determination and the root mean square error as statistical measures to eval-

uate the potential of the UAV LiDAR metrics. 

In this study, the LiDAR parameters height, point cloud gap fraction, and as the sig-

nal reflection intensity are evaluated for their relationship to fresh and dry aboveground 

biomass in winter spelt. 

2. Materials and Methods 

2.1. The Dahmsdorf Study Site 

The Dahmsdorf study site is located close to the city of Müncheberg in the German 

federal state of Brandenburg. Geologically, this hummocky ground moraine landscape 

consists mainly of strongly sandy glacial till from ground moraine material and sandy, 

predominantly fine-grained, partly fine silty deposits caused by meltwater from Weich-

selian glaciation. From this originates a soil heterogeneity which can be regarded as an 

important driver for crop growth variability. The long-term average annual temperature 

at this site is 9.5 °C, with an average annual precipitation of 560 mm [28]. Here, a field 

experiment has been established to implement and test a new cropping system called 
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patch cropping [29] and to analyze crop performance and technical challenges during 

management of small-scale and complex field geometries. Patch cropping is a potential 

measure to increase biodiversity and to reduce environmental impacts of agriculture 

[29,30]. 

For the delineation of management zones (patches) within the field, georeferenced 

data such as proximal sensed data sets of electrical bulk resistivity measured by the GE-

OPHILUS system [31] and indexes derived from a digital elevation model with 1 m reso-

lution such as topographic wetness index [32] and slope angle classes were used. To avoid 

fragmented smaller zones and to generate larger meaningful segments, a superpixel algo-

rithm-based tessellation with a size of approximately 600 m2 from an aerial image was 

implemented [9]. Subsequently, an unsupervised Fuzzy c-means clustering algorithm 

with equal weighting of the input data delineated two zones [33]. As direct payments un-

der Common Agricultural Policy require a minimum plot size of 0.3 ha, a merging proce-

dure to generate connected patch structures with a minimum size of 0.3 ha was per-

formed. Due to the complex geometries of the patch structures and the working widths 

used by the farmer, a manual simplification had to be carried out. The characteristics of 

the two cluster group classes in terms of soil and topographic a�ributes are listed in Table 

A1 in Appendix A. 

Two crop rotations were developed for each cluster group class according to their site 

potential (including winter spelt, buckwheat, rye, and lupine for cluster group class 1 and 

alfalfa-grass mixture, rye, and lupine for cluster group class 2). The cultivation of the field 

is under an organic farming scheme and does not include synthetic mineral fertilization 

or plant protection measures. In order to study the effects of the different cluster group 

classes in growing season 2021/2022, the field was split into a part with 7 alternating strips 

and the 2 retrieved management zone patches. The crops alfalfa-grass mixture and winter-

spelt were cultivated. The field for winter spelt was plowed and prepared for sowing on 

30 September 2021. The certified winter spelt was drilled on 11 October 2021. Weed control 

took place on 16 March 2022 using a tine harrow. 

As the alfalfa-grass mixture was already harvested at the date of the UAV flight cam-

paign, we focus in this study on the winter spelt fraction only. As is visible in Figure 1, 

topography and soil texture already push through a high variability in crop phenology in 

the winter spelt zone. To map this variability—measured as AGB—LiDAR parameters are 

evaluated. 

 

Figure 1. Aerial photography of the patch crop structure at the Dahmsdorf study site in Branden-

burg, Germany. 
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2.2. Aboveground Biomass Sampling 

Wet and dry aboveground biomass was destructively sampled at 17 locations in the 

winter spelt cultivation in the Dahmsdorf site (see Figure 2). The spacing of individual 

seed rows within the population was 12.5 cm. The sample locations were selected to cover 

both the overall field as well as the full variability of the phenology. The samples were 

taken at three dates in the vegetation period with roughly one month interval, i.e., 10 May, 

16 June, and 14 July 2022. Biomass was cut along a row of 100 cm and dried 48 h at 60 °C 

and is therefore given in g/m. Due to mechanical weed control and biomass cu�ing of 

plant material within the seed row, only weed-free plant material was sampled. 

 

Figure 2. UAV-based Orthophoto of the Dahmsdorf study site with in situ aboveground biomass 

sampling points. 

Four samples were taken per point. To relate those samples to the LiDAR parameters, 

the median values were calculated, and a 2 m buffer was applied to the LiDAR parameter 

maps to reduce small-scale heterogeneity. Moreover, the buffer reduces the impact of the 

invasive sampling, as the flights were performed after the in situ measurements. 
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2.3. UAV-Based Yellowscan Surveyor LiDAR 

The UAV carrying the YellowScan® Surveyor LiDAR (YellowScan, Saint-Clément-de-

Rivière, France) is a DJI Matrice 600 (DJI, Shenzhen, China), equipped also with a DJI 

Zenmuse X5 RGB camera [34]. The LiDAR is based on the Velodyne VLP-16 Puck scanner 

(Velodyne, San Jose, USA) and the Applanix APX15 (Trimble Applanix, Richmond Hill, 

Canada) single board GNSS-Inertial solution. The 1.6 kg weight sensor sends out 300,000 

rapid laser pulses (in 360°) per second and captures the returning signals with a precision 

of ~4 cm. The wavelength of the LiDAR is given with 903 nm, i.e., operating in the near 

infrared (NIR) spectrum. 

The flight campaign took place on 18 May 2022. The Internal Measurement Unit 

(IMU) was calibrated by flying in forward, backward, and U-turn paths with strong accel-

eration and slowdown. The field of view was limited to 70° with maximum ±35° off-nadir 

point observations. The UAV was operating in an altitude of 55 m above ground with a 

ground speed of 18 km/h; one ba�ery stop was necessary in between. The 10 flight paths 

were planned with an azimuth angle of 57° along the cultivation lines within the flight 

planning software DJI Ground Station Pro. This sampling scheme was selected to ensure 

adequate coverage and point density (see also [23]). An external Septentrio Altus NR3 

(Septentrio, Leuven, Belgium) GNSS base station recorded >3 h GPS and GLONASS data. 

After flight, the collected data were processed in Applanix’s POSPac (version 8.6) 

software, where a Smooth Best Estimated Trajectory (SBET) file was created. Afterwards, 

YellowScan’s CloudStation software was used to align the stripes of the flights for georef-

erencing. Corrections through GNSS offset (lever-arms), sensor angle (boresight), and 

GNSS postprocessing with precise position techniques were applied. 

2.4. Extraction and Calculation of LiDAR Parameters 

The software CloudCompare (version 2.11.1) was used to calculate the required Li-

DAR parameters from the calibrated point cloud. The LiDAR parameters crop height, gap 

fraction, and intensity were extracted at a grid size of 15 cm, resulting in high-resolution 

maps covering the multiple crop heterogeneities. The 15 cm grid was selected as a com-

promise between an adequate number of LiDAR points in a grid cell according to our 

observation scheme and the ability to generate a high-resolution map required by preci-

sion farming practices. The lowest point in the 15 cm grid cell defines the value for the 

minimum point map, whereas the highest point in the 15 cm grid cell defines the value 

for the maximum point map. To calculate the crop height (��), the minimum points map 

was subtracted from the maximum points map. 

The gap fraction (��) is a measure of canopy density. It relates LiDAR point meas-

urements reaching the ground through the canopy in relation to the total number of points 

including those that return from on top and within the canopy, resulting in the following 

equation: 

�� =
�������

�
 (1)

where ������� is the number of points reaching the ground in the defined area, and � is 

the total number of points (sum of ground points and off-ground points) in the same de-

fined area. Therefore, it is necessary to separate the LiDAR dataset into ground and 

nonground points. This was achieved by Cloth Simulation Filtering (CSF) in CloudCom-

pare [35]. 

The LiDAR intensity (���) is recorded as the strength of the return signal of a laser 

beam. It depends not only on the composition of the reflecting surface objects, but also on 

range, angle, roughness, and moisture content [36]. The YellowScan Surveyor intensity 

values were not calibrated in this study, and an accuracy level information was not pro-

vided by the manufacturer. Without calibration, they are provided in terms of digital 

numbers (DN). Mean intensity values were transferred to the 15 cm grid. 
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2.5. Statistical Analysis 

The LiDAR parameter maps at 15 cm resolution served as the basis to extract the 

average crop height, gap fraction, and intensity data of the AGB sampling locations—av-

eraged for the 2 m buffer area. The resulting table was analyzed according to the individ-

ual relationships between the parameters. Here, the focus was set on the proportions of 

LiDAR parameters to wet and dry AGB in the May sampling campaign, which were the 

temporally closest to the UAV measurements. However, as biomass samples for June and 

July 2022 were also available, the continuity of AGB pa�ern were investigated in addition. 

The standard Pearson correlation coefficients were calculated between parameters. 

Moreover, to identify the potential of multiple parameters to estimate AGB jointly, 

an ordinary least squares regression (OLS) was applied. With this approach, coefficients 

of linear regression equations were estimated, which describe the relationship between 

the multiple independent quantitative variables (LiDAR parameters) and a dependent 

variable (AGB). This is achieved by minimizing the sum of the squares of the differences 

between the observed dependent variable in the input dataset and the output of the linear 

function of the independent variable (see, e.g., [37]). After mean normalization of the var-

iables, this also provides insights into the relative predictive skill of each dependent vari-

able, i.e., providing their importance. 

However, if two or more predictor variables are highly correlated, they will not pro-

vide unique information in the regression model. Therefore, multicollinearity needs to be 

considered. We performed a multicollinearity analysis for the LiDAR parameters crop 

height, gap fraction, and intensity with the variance inflation factor (VIF). VIF is based on 

an ordinary least squares regression analysis and quantifies the severity of multicolline-

arity. It provides a measure that clarifies how much the variance of an estimated regres-

sion coefficient is increased because of collinearity. The LiDAR parameter showing VIF 

greater than 5 can be removed without losing information. 

3. Results 

The retrieved LiDAR crop heights on the investigated patch crop field in Dahmsdorf 

are presented in Figure 3. Besides the trees and the phone line masts (three masts in the 

area of investigation), the patch crop structure clearly stands out. Particularly striking are 

the three stripes running parallel to each other and the jagged m-shaped area. Moreover, 

the machine lines and tracks visible in Figure 1 can be observed in the high-resolution 

crop height map. This justifies the application of the 2 m buffer for the correlation analysis, 

as those could affect the relationship. Within the winter spelt zones, variability in crop 

height has been recorded. The values range between 10 cm in and nearby the cultivation 

tracks to 60 cm within areas of high fertility. 

In Figure 4, the LiDAR gap fraction as a result of the point separation into ground 

and off-ground points by the CSF is presented. Clear variability in the winter spelt sub-

field conditions is visible. Especially in the already-harvested regions, the laser returns 

originate mainly from near the soil surface level, resulting in a gap fraction close to 1. In 

the regions where the winter spelt is still cultivated, the values vary between 0.5 and 1, 

whereas the general gap fraction level is high. This is a typical situation in upright stand-

ing vegetation such as cereals and observations with UAV LiDAR. Here, only a few small 

areas have this low gap fraction level of 0.5, and most values are above 0.8. 
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Figure 3. Crop height observation by UAV LiDAR at the Dahmsdorf site on 18 May 2022. 

 

Figure 4. Gap fraction retrieval by UAV LiDAR at the Dahmsdorf site on 18 May 2022. 
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The mapping result of the LiDAR intensity is presented in Figure 5. The harvested 

areas provide higher intensity levels (above 10,000 DN) than the winter spelt areas. The 

la�er are characterized by a decent variability ranging between 5000 and 10,000. Striped 

artifacts are visible in the final map orthogonal to the flight and cultivation direction. 

 

Figure 5. LiDAR NIR intensity observation at the Dahmsdorf site on 18 May 2022. 

Correlations were calculated between the LiDAR parameters and the AGB data sam-

pled in May 2022 at the 17 predefined points (see Figure 6). Here, AGB differs between 

dry and wet vegetation conditions. We found positive relationships to crop height with R 

= 0.664 (dry) and R = 0.773 (wet). The uncertainties are higher at lower AGB magnitudes. 

The highest absolute correlation coefficients were found with gap fraction but with an 

inverse relationship. The results are given with R = −0.697 (dry) and R = −0.822 (wet). The 

relationship of AGB with LiDAR intensity is also negative, but relatively weak with R = 

−0.216 (dry) and R = −0.271 (wet). According to the p-value statistics, the correlations of 

AGB to crop height and gap fraction are significant; the ones to intensity are not. 
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Figure 6. Statistical relationships between dry (left column) and wet (right column) aboveground 

biomass sampled in May (g/m) and corresponding LiDAR parameters crop height (top row) (cm), 

gap fraction (middle row) (-), and NIR intensity (bo�om row) (DN). The shaded areas denote the 

95% confidence intervals. 

The OLS results after normalization for wet AGB are given with: 

��� ������� ��� = −0.1517 ∗ ��� − 0.9981 ∗ ��� + 0.0791 ∗ ��� (2)

providing an R2 of 0.682, while the intercept is negligible. The corresponding wet AGB is 

estimated by the OLS with: 

��� ������� ��� = −0.0399 ∗ ��� − 0.7648 ∗ ��� + 0.0759 ∗ ��� (3)

providing an R2 of 0.490. Additionally, here, the intercept is negligible. For both situations, 

the relationship of normalized AGB to the normalized gap fraction provides the highest 

(in this case negative) coefficients. For wet biomass, the coefficient is −0.9981, i.e., it is al-

ready suitable to use this parameter alone to estimate wet AGB. The other parameters 

contain less predictive power here. 

To exclude multicollinearity, the VIFs were calculated. The factors for the LiDAR pa-

rameters crop height, gap fraction, and intensity are given with 11.10, 11.91, and 1.26, re-

spectively. This indicates that crop height or gap fraction can be removed without losing 

information, whereas intensity cannot be removed without losing information. I.e., crop 

height and gap fraction are highly collinear. 

4. Discussion 

The maps of crop height, gap fraction, and intensity in Figures 3–5 provide interest-

ing spatial detail and certain variability in the winter spelt phenology. As we are focusing 

in this study on the relative relationships between the LiDAR parameters and the two 

AGB measurement types, absolute accuracy of these parameters is not important. 

The crop height records from UAV LiDAR (Figure 3) are similar to those of [23], who 

obtained an R2 of 0.78 and an RMSE of 3.4 cm. They showed, for another cereal crop (win-

ter wheat), an underestimation of crop height, with its relatively open and upright struc-

ture allowing the laser beams to easily penetrate into the canopy. With ~50 returns per 15 
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cm scale pixel, the maximum of the height of the plants may not be captured. To avoid 

underestimation, a larger pixel scale could be defined to increase the number of points per 

pixel and calculate the maximum height for that area. In contrast, internal pixel variability 

cannot be captured, so overestimation cannot be quantified. 

The gap fraction map already provides a relative index value, calculated by the ratio 

of ground points to total points. As the total number of points would change with UAV 

flight line spacing, altitude, speed, and LiDAR parameters such as scan angle and pulse 

repetition frequency, an absolute measure cannot be obtained. Therefore, adequate cali-

bration or normalization is needed to retrieve absolute AGB estimated for different dates, 

crops, or fields. However, the spatial variability of the gap fraction map provides the high-

est information content, as it is not only related to the crop height, but also to the 3D struc-

ture and canopy density of the crops. High biomass winter spelt locations at the 

Dahmsdorf site are characterized by low gap fractions, resulting not only from taller 

plants, but also from increased size and quantity of leaves as well as bigger ears. 

The LiDAR NIR intensity map in Figure 5 shows the same spatial pa�erns as the 

other two parameters; however, the noise is larger. We already mentioned the striping 

orthogonal to the flight direction. This may be related to the changing insolation condi-

tions due to passing clouds. This may impact the reflection at NIR wavelengths. Similar 

observations were made for the RGB mapping results in Figure 2, where darker and 

brighter areas are visible originating from changing light conditions. While the RGB map 

is based on passive optical measurements, the intensity is still an active measurement. 

However, the intensity is prone to additional solar energy contributions modifying the 

reflected signal. Additional records of incoming light, as typical for multispectral cameras 

such as the Micasense RedEdge-M, may help to calibrate the LiDAR intensity to obtain 

clean signals of NIR plant reflectivity. Further improvements may be investigated such as 

a range-normalized intensity (see [37]). In contrast, the two parameters crop height and 

gap fraction are not affected by changing insolation conditions, as these are location-based 

measurements, indicating a distance between sensor and target. With this in mind, the 

LiDAR intensity signals can be considered as radiances, indicated also in the unit of digital 

numbers. Correction is needed to obtain reflectances, which are typically unitless, indicat-

ing the ratio of the amount of light in the NIR domain leaving a target to the amount of 

light striking the target. 

As indicated by the aerial image in Figure 1 and the orthomap in Figure 2, the winter 

spelt area is greener than the harvested area. This should result in higher intensity values 

for the crops, because the reflectance in the NIR domain of green healthy vegetation is 

typically higher than in unhealthy vegetation or bare soil. As can be seen in Figure 5, this 

is not the case for the LiDAR intensity results in this study. Here, additional problems for 

LiDAR intensity may occur by shadowing effects within the canopy. This is in line with 

[38], reporting a distinct vertical gradient of an index related to LiDAR intensity through 

the canopy of a forest. This energy loss within the canopy affects the accuracy that the 

intensity returns and underestimates the LiDAR intensity map for the winter spelt areas. 

The harvested area with short vegetation and broader leaves is not prone to that effect. 

The high potential of crop height measurements to predict AGB has also been re-

ported by [6]. The authors retrieved crop height for barley from multitemporal RGB ste-

reoscopy with a high resolution of 1 cm at the field scale and obtained correlation coeffi-

cients of r = 0.55–0.85. These results are in line with our findings of r = 0.66 for dry and r = 

0.77 for wet AGB, which demonstrates that crop height derived from different UAV-based 

monitoring methods is a suitable indicator for AGB. Using LiDAR systems, the number of 

information products could be further enhanced. E.g., [39] was able to achieve a correla-

tion coefficient of r = 0.96 by including a gap fraction information (separated by ground 

and vegetation returns), mean, standard deviation, skewness and kurtosis of point height, 

as well as mean and standard deviation of intensity in a machine learning environment. 

Including the full statistics of a point cloud could also enhance our results further and has 

been identified as a topic of future research. 
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The three maps in Figures 3–5 show a very similar spatial pa�ern, indicating a corre-

lation between the LiDAR parameters. E.g., where significantly taller plants are, the gap 

fraction is significantly lower. Although the OLS results indicate that the LiDAR gap frac-

tion provides highest potential to estimate AGB, the similarity of the spatial maps indicate 

common correlations. It is important to note that we do not encourage the utilization of 

the OLS equations to forward calculate wet and dry AGB from own LiDAR parameters 

due to limited number of samples to retrieve those equations, but we intended to provide 

an importance measure for individual LiDAR parameters. To clarify this further, a heat 

map of mutual correlation coefficients was generated and is displayed in Figure 7. Similar 

to Figure 6, the correlations of LiDAR parameters crop height and gap fraction to all AGB 

states and times is significant, whereas those of LiDAR intensity to these AGB states and 

times are not significant. Here, this anticipation is confirmed by correlation coefficients 

between LiDAR gap fraction and LiDAR crop height of −0.95. As discussed above, the 

relationship of LiDAR intensity to the other parameters is still complex and not easy to 

explain, resulting in correlation coefficients of 0.4 (gap fraction) and −0.31 (crop height), 

respectively. 

 

Figure 7. Heat map of correlations (Pearson) between LiDAR parameters and in situ biomass meas-

urements. 

Similarly, the VIF analysis shows that, with the coefficients of 11.10, 11.91, and 1.26 

for crop height, gap fraction, and intensity, respectively, the first two parameters are 

highly collinear and are, in principle, exchangeable. However, the slightly higher absolute 

correlation coefficient between gap fraction and wet AGB (−0.82) than between crop height 

and wet AGB (0.77) is still informative. 

An additional observation from Figure 7 is that the correlations between the LiDAR 

parameters crop height and gap fraction as well as the in situ samples obtained in May 

with the in situ samples in June and July are high. This indicates stable pa�erns in all 

observations over time. Especially, the wet biomass shows high temporal stability, so the 

LiDAR parameters crop height and gap fraction contain not only predictive power for the 

May AGB, but also for later stages in the phenological cycle. There is potential to estimate 
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even at-harvest AGB. This opens up further applications of LiDAR observations in preci-

sion agriculture and agricultural management. The results indicate stable regions of crop 

growth favoring soil and topography conditions with higher crop height, lower gap frac-

tion, and higher AGB. In contrast, in other regions, soil and topography conditions con-

strain crop growth with lower crop height, higher gap fraction, and lower AGB (see [40]). 

Therefore, the relationships between LiDAR parameters and AGB do not alter in general, 

but the predictive power may change with the phenological cycle. It seems that an obser-

vation in May, where the plants have already been widely developed, is a good point in 

time to predict AGB in the following months. The plants have already been exposed to the 

growth conditions, and a certain heterogeneity has been developed. More detailed time 

series analysis is needed to investigate the AGB predictive power throughout the pheno-

logical cycle and when observations are ideally taken. 

The aim of this study was also to retrieve a highly spatial-detailed map of LiDAR 

parameters, so we defined the spatial resolution to be 15 cm. However, with generally 25–

60 points per 15 cm grid cell, the uncertainties around adequately capturing the grid cell 

statistics (maximum height, minimum height, number of ground points, mean intensity) 

is quite high. Those uncertainties could be reduced by reducing the spatial resolution with 

larger grid cells and higher point numbers providing more robust LiDAR parameters. 

5. Conclusions and Outlook 

The results of this study indicate the potential of the LiDAR parameters crop height, 

gap fraction, and intensity to predict or invert aboveground biomass (AGB), with a 

slightly be�er performance for wet plant conditions. Especially, the gap fraction showed 

high correlations to AGB, as it is not just a piece of crop height information but denotes a 

simple representation of the full 3D plant structure. The LiDAR intensity needs further 

processing to provide valuable information about AGB. Here, a calibration could improve 

its information content. Additionally, application to crops other than cereals such as po-

tato or sugar beet with broader leaves may provide different results. 

The results of this study are limited to a single UAV flight campaign, but this already 

shows their potential to estimate future AGB states. A performance analysis of LiDAR 

parameters over the entire growing season to retrieve AGB is planned. Moreover, the cal-

culation of parameters could be improved with finer representation of the full 3D plant 

structure. Similarly, the application of machine learning approaches could provide farm-

ers with up-to-date information about their cultivates [41]. To move toward a small-scale 

cultivation structure, the LiDAR parameter retrieval methods at hand may be used for 

delineating cultivation zones with different growth conditions or even inverting toward 

soil characteristics such as soil texture, nutrient supply, or soil moisture. 
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Appendix A 

Table A1. Mean values (and standard deviation) of topography and different soil a�ributes of the 

two cluster group classes. 

A�ributes Cluster Group Class 1 Cluster Group Class 2 

Total area 4.37 ha (62,0%) 2.70 ha (38.0%) 

Electrical bulk resistivity 

(0–25 cm) (Ohm m) 
390.3 (198.9) 827.5 (305.2) 

<= 2 µm—Clay (%)* 1.77 (0.27) 1.41 (0.27) 

>2 µm and <= 63 µm—Silt (%) * 21.73 (4.42) 14.15 (2.71) 

>63 µm—Sand (%) * 76.50 (4.61) 84.44 (2.93) 

Slope angle classes I 17.0% 29.8% 

Slope angle classes II 49.7% 61.4% 

Slope angle classes III 31.2% 8.3% 

Slope angle classes IV 2.1% 0.5% 

Slope angle classes V - - 

Topographic wetness index 5.7 (1.25) 6.42 (1.47) 

* Derived from 24 soil texture analysis points of the Ap horizon. 

References 

1. Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height 

from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley Int. J. Appl. Earth Obs. 

Geoinf. 2015, 39, 79–87. https://doi.org/10.1016/j.jag.2015.02.012. 

2. Li, W.; Niu, Z.; Huang, N.; Wang, C.; Gao, S.; Wu, C.Y. Airborne LiDAR technique for estimating biomass components of maize: 

A case study in Zhangye City, Northwest China. Ecol. Indic. 2015, 57, 486–496. 

3. Gonçalves Bazzo, C.O.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A Review of Estimation Methods for Aboveground Biomass 

in Grasslands Using UAV. Remote Sens. 2023, 15, 639. 

4. Wang, T.H.; Liu, Y.D.; Wang, M.H.; Fan, Q.; Tian, H.K.; Qiao, X.; Li, Y.Z. Applications of UAS in Crop Biomass Monitoring: A 

Review. Front. Plant Sci. 2021, 12, 616689. 

5. Brocks, S.; Bareth, G. Estimating Barley Biomass with Crop Surface Models from Oblique RGB Imagery. Remote Sens. 2018, 10, 

268. 

6. Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models 

(CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. 

7. Iqbal, F.; Lucieer, A.; Barry, K.; Wells, R. Poppy Crop Height and Capsule Volume Estimation from a Single UAS Flight. Remote 

Sens. 2017, 9, 647. 

8. Han, L.; Yang, G.J.; Dai, H.Y.; Xu, B.; Yang, H.; Feng, H.K.; Li, Z.H.; Yang, X.D. Modeling maize above-ground biomass based 

on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 1–19. 

9. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel 

Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2281. https://doi.org/10.1109/Tpami.2012.120. 

10. Yue, J.B.; Yang, G.J.; Tian, Q.J.; Feng, H.K.; Xu, K.J.; Zhou, C.Q. Estimate of winter-wheat above-ground biomass based on UAV 

ultrahigh-ground-resolution image textures and vegetation indices. Isprs J. Photogramm. Remote Sens. 2019, 150, 226–244. 

11. Liang, Y.Y.; Kou, W.L.; Lai, H.Y.; Wang, J.; Wang, Q.H.; Xu, W.H.; Wang, H.; Lu, N. Improved estimation of aboveground 

biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecol. Indic. 2022, 142, 

109286. 

12. Zheng, C.W.; Abd-Elrahman, A.; Whitaker, V.; Dalid, C. Prediction of Strawberry Dry Biomass from UAV Multispectral Im-

agery Using Multiple Machine Learning Methods. Remote Sens. 2022, 14, 4511. 

13. Zheng, H.B.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.C.; Cao, W.X.; Zhu, Y. Improved estimation of rice aboveground 

biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2019, 20, 611–629. 

14. Tao, H.L.; Feng, H.K.; Xu, L.J.; Miao, M.K.; Long, H.L.; Yue, J.B.; Li, Z.H.; Yang, G.J.; Yang, X.D.; Fan, L.L. Estimation of Crop 

Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2020, 20, 1296. 

15. Viljanen, N.; Honkavaara, E.; Nasi, R.; Hakala, T.; Niemelainen, O.; Kaivosoja, J. A Novel Machine Learning Method for Esti-

mating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by 

a Drone. Agriculture 2018, 8, 70. 

16. Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. 

Remote Sens. Environ. 2013, 128, 289–298. 

17. Jin, S.C.; Su, Y.J.; Song, S.L.; Xu, K.X.; Hu, T.Y.; Yang, Q.L.; Wu, F.F.; Xu, G.C.; Ma, Q.; Guan, H.C.; et al. Non-destructive esti-

mation of field maize biomass using terrestrial lidar: An evaluation from plot level to individual leaf level. Plant Methods 2020, 

16, 1–19. 



Drones 2023, 7, 121 15 of 15 
 

18. Reji, J.; Nidamanuri, R.R.; Ramiya, A.M.; Astor, T.; Wachendorf, M.; Buerkert, A. Multi-temporal estimation of vegetable crop 

biophysical parameters with varied nitrogen fertilization using terrestrial laser scanning. Comput. Electron. Agric. 2021, 184, 

106051. 

19. Adams, T.; Bruton, R.; Ruiz, H.; Barrios-Perez, I.; Selvaraj, M.G.; Hays, D.B. Prediction of Aboveground Biomass of Three Cas-

sava (Manihot esculenta) Genotypes Using a Terrestrial Laser Scanner. Remote. Sens. 2021, 13, 1272. 

20. Sofonia, J.; Shendryk, Y.; Phinn, S.; Roelfsema, C.; Kendoul, F.; Skocaj, D. Monitoring sugarcane growth response to varying 

nitrogen application rates: A comparison of UAV SLAM LiDAR and photogrammetry. Int. J. Appl. Earth Obs. 2019, 82, 101878. 

21. Maesano, M.; Khoury, S.; Nakhle, F.; Firrincieli, A.; Gay, A.; Tauro, F.; Harfouche, A. UAV-Based LiDAR for High-Throughput 

Determination of Plant Height and Above-Ground Biomass of the Bioenergy Grass Arundo donax. Remote Sens. 2020, 12, 3464. 

22. Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content 

in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. 2020, 92, 102177. 

23. ten Harkel, J.; Bartholomeus, H.; Kooistra, L. Biomass and Crop Height Estimation of Different Crops Using UAV-Based Lidar. 

Remote Sens. 2020, 12, 17. 

24. Jimenez-Berni, J.A.; Deery, D.M.; Rozas-Larraondo, P.; Condon, A.G.; Rebetzke, G.J.; James, R.A.; Bovill, W.D.; Furbank, R.T.; 

Sirault, X.R.R. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with 

LiDAR. Front. Plant Sci. 2018, 9, 237. 

25. Liu, S.Y.; Baret, F.; Abichou, M.; Boudon, F.; Thomas, S.; Zhao, K.G.; Fournier, C.; Andrieu, B.; Irfan, K.; Hemmerle, M.; et al. 

Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model. Agric. For. 

Meteorol. 2017, 247, 12–20. https://doi.org/10.1016/j.agrformet.2017.07.007. 

26. Scaioni, M.; Höfle, B.; Baungarten Kersting, A.P.; Barazzetti, L.; Previtali, M.; Wujanz, D. Methods from Information Extraction 

from LIDAR intensity data and multispectral LIDAR technology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 

1503-1510. https://doi.org/10.5194/isprs-archives-XLII-3-1503-2018. 

27. Hütt, C.; Bolten, A.; Hüging, H.; Bareth, G. UAV LiDAR Metrics for Monitoring Crop Height, Biomass and Nitrogen Uptake: A 

Case Study on a Winter Wheat Field Trial. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 1–12. 

https://link.springer.com/article/10.1007/s41064-022-00228-6. 

28. Climate Data Center. Available online: https://cdc.dwd.de/portal/202209231028/view1 (accessed on 6 February 2023). 

29. Donat, M.; Geistert, J.; Grahmann, K.; Bloch, R.; Bellingrath-Kimura, S.D. Patch cropping—A new methodological approach to 

determine new field arrangements that increase the multifunctionality of agricultural landscapes. Comput. Electron. Agr. 2022, 

197, 106894. 

30. Grahmann, K., M. Reckling; I. Hernandez-Ochoa; F. Ewert. An agricultural diversification trial by patchy field arrangements at 

the landscape level: The landscape living lab “patchCROP”. Asp. Appl. Biol. 2021, 146, 385–391. 

31. Lueck, E.; Ruehlmann, J. Resistivity mapping with GEOPHILUS ELECTRICUS—Information about lateral and vertical soil 

heterogeneity. Geoderma 2013, 199, 2–11. https://doi.org/10.1016/j.geoderma.2012.11.009. 

32. Reyes, J.; Wendroth, O.; Matocha, C.; Zhu, J.F. Delineating Site-Specific Management Zones and Evaluating Soil Water Temporal 

Dynamics in a Farmer's Field in Kentucky. Vadose Zone J. 2019, 18, 1–19. https://doi.org/10.2136/vzj2018.07.0143. 

33. Bezdek, J.C. Pattern-Recognition with Fuzzy Objective Function Algorithms; Springer Science+Business Media: New York, NY, USA, 

1981; p. 272. 

34. Bates, J.S.; Montzka, C.; Schmidt, M.; Jonard, F. Estimating Canopy Density Parameters Time-Series for Winter Wheat Using 

UAS Mounted LiDAR. Remote Sens. 2021, 13, 710. https://doi.org/10.3390/rs13040710. 

35. Zhang, W.M.; Qi, J.B.; Wan, P.; Wang, H.T.; Xie, D.H.; Wang, X.Y.; Yan, G.J. An Easy-to-Use Airborne LiDAR Data Filtering 

Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. 

36. You, H.T.; Wang, T.J.; Skidmore, A.K.; Xing, Y.Q. Quantifying the Effects of Normalisation of Airborne LiDAR Intensity on 

Coniferous Forest Leaf Area Index Estimations. Remote Sens. 2017, 9, 163. https://doi.org/10.3390/rs9020163. 

37. Sun, C.; Feng, L.W.; Zhang, Z.; Ma, Y.C.; Crosby, T.; Naber, M.; Wang, Y. Prediction of End-Of-Season Tuber Yield and Tuber 

Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning. Sensors 2020, 20. 5293. 

38. Okhrimenko, M.; Coburn, C.; Hopkinson, C. Multi-Spectral Lidar: Radiometric Calibration, Canopy Spectral Reflectance, and 

Vegetation Vertical SVI Profiles. Remote Sens. 2019, 11, 1556. https://doi.org/10.3390/rs11131556. 

39. Revenga, J.C.; Trepekli, K.; Oehmcke, S.; Jensen, R.; Li, L.; Igel, C.; Gieseke, F.C.; Friborg, T. Above-Ground Biomass Prediction 

for Croplands at a Sub-Meter Resolution Using UAV&ndash;LiDAR and Machine Learning Methods. Remote Sens. 2022, 14, 

3912. 

40. Brogi, C.; Huisman, J.A.; Herbst, M.; Weihermüller, L.; Klosterhalfen, A.; Montzka, C.; Reichenau, T.G.; Vereecken, H. 

Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics-based 

quantitative soil information. Vadose Zone J. 2020, 19, e20009. https://doi.org/10.1002/vzj2.20009. 

41. Bates, J.; Jonard, F.; Bajracharya, R.; Vereecken, H.; Montzka, C. Machine Learning with UAS LiDAR for Winter Wheat Biomass 

Estimations. AGILE GIScience Ser. 2022, 3, 23. https://doi.org/10.5194/agile-giss-3-23-2022. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 

to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


