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Abstract
We propose an approach to develop a solar radiation model with spatial portability based on deep
neural networks (DNNs). Weather station networks in South Korea between 33.5–37.9◦ N latitude
were used to collect data for development and internal testing of the DNNs, respectively. Multiple
sets of weather station data were selected for cross-validation of the DNNs by standard distance
deviation (SDD) among training sites. The DNNs tended to have greater spatial portability when a
threshold of spatial dispersion among training sites, e.g. 190 km of SDD, was met. The final
formulation of the deep solar radiation (DSR) model was obtained from training sites associated
with the threshold of SDD. The DSR model had RMSE values<4 MJ m−2 d−1 at external test sites
in Japan that were within±6◦ of the latitude boundary of the training sites. The relative difference
between the outputs of crop yield simulations using observed versus estimated solar radiation
inputs from the DSR model was about 4% at the test sites within the given boundary. These results
indicate that the identification of the spatial dispersion threshold among training sites would aid
the development of DNN models with reasonable spatial portability for estimation of solar
radiation.

1. Introduction

Solar radiation is one of the key variables that determ-
ine the productivity of agricultural ecosystems (Yang
et al 2019). It is often measured using electrical
sensors, e.g. pyranometers, installed at weather sta-
tions. However, observed data are not readily avail-
able in most areas due to high costs and technical
limitations for the installation and maintenance of
sensors (Fan et al 2018). For example, Thornton
and Running (1999) reported that solar radiation is

measured at about 0.2% of weather stations across
the globe. Weather stations even in developed coun-
tries are equipped with solar radiation sensors at a
low rate, e.g. about 1% and 4% of weather stations in
the United States (Wang et al 2016) and South Korea
(Kang et al 2019), respectively.

Models have been developed to estimate solar
radiation using observed weather data available at
a site of interest. Empirical models have been com-
monly used for this purpose due to their simpli-
city, convenience, and availability (Zhang et al 2019).
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These models can be classified into four groups
by input variable (Besharat et al 2013): sunshine
duration-based models (Ångström 1924, Hamon et
al 1954), temperature-based models (Bristow and
Campbell 1984), cloud cover-based model (Black
1956), and other meteorological parameters-based
models (Reddy 1987).

Application of machine learning methods can aid
the development of a solar radiation model using
commonly available weather data such as temper-
ature and precipitation. Artificial neural networks
(ANNs), which consist of input layers, hidden lay-
ers, and output layers, have been used to predict
solar radiation (Çelik et al 2016, Antonopoulos et al
2019). Ghimire et al (2019) reported that ANN out-
performed other machine learning methods includ-
ing support vector regression, Gaussian process,
and genetic programming approaches. ANN models
would have greater accuracy than the other types of
empirical models because ANN can reflect the com-
plex nonlinear relationships between target and input
variables (Abdelkawy et al 2020).

The training data for solar radiation models are
often gathered from weather stations in a specific
region. As a result, these models tended to have
small errors of solar radiation estimates in the regions
where the training data were obtained. In contrast,
the accuracy of the given model can decrease when
applied to other regions. For example, Muneer et al
(2007) reported that cloud-based models had relat-
ively greater accuracy in estimation of solar radiation
using locally fitted coefficients instead of coefficients
generalized over a larger region.

To the best of our knowledge, the spatial bound-
ary of empirical models is rarely assessed during
the model development stage. Here we propose an
approach to develop a solar radiation model using
spatial properties among weather stations where
training data are collected. It was hypothesized that
a threshold of the spatial distribution among training
sites would exist to ensure spatial portability of the
model. The research questions in the present study
include:

(1) What is the error of the empirical solar radiation
model taking into account the spatial distribu-
tion of weather stations where training data were
obtained,

(2) What is the spatial boundary of the given model,
(3) What is the impact of the model on preparation

of inputs for a crop model used for the assess-
ment of agricultural productivity?

These questions were examined using data collec-
ted from weather stations in South Korea and Japan
as inputs to deep neural networks (DNNs), which is a
type of ANN that has multiple hidden layers between
input and output layers. This paper is organized as

follows: The DNNmodel is introduced in section 2.1
through 2.6 with the procedures for evaluation of
spatial portability and training of the DNN model.
The model outputs are compared with observed solar
radiation data from sites where no training data were
obtained in section 3. In section 3, spatial portabil-
ity of the DNN model was also examined compar-
ing rice yield predictions using observed versus sim-
ulated solar radiation data. A discussion on our find-
ings was provided in section 4. Finally, the conclusion
in section 5 summarizes the key findings and high-
lights the significance of further studies.

2. Materials andmethods

2.1. Collection of weather data
Daily datameasured at synoptic weather stationswere
collected in South Korea and Japan (figure 1). These
data included maximum and minimum temperat-
ures, precipitation, and solar radiation. Weather data
measured in these countries were used as internal and
external data for model building and testing, respect-
ively (table 1). The internal data were used for the
cross-validation and internal test of solar radiation
models whereas the external data were used for an
external test. The internal data were downloaded
from the Korea Meteorological Administration
website (https://data.kma.go.kr). These data were
obtained from 20 weather stations where long-
term measurements of solar radiation (>26 years)
were available in South Korea. The external data
were obtained from 49 weather stations in Japan
using the Japan Meteorological Agency website
(www.jma.go.jp).

2.2. Preparation of inputs
DNNs were used to develop a solar radiation model
that requires a minimum set of weather variables
(figure 2). DNNs have advantages in learning com-
plex relationships between variables because a large
number of hidden layers would allow for accurate
estimation connecting a small number of input vari-
ables in a dense network (Ryu et al 2017). In the
present study, DNNs were developed to estimate
solar radiation using only two meteorological inputs
including temperature and precipitation (figure 3).
Geographic coordinate and date were also used
as additional inputs to DNNs. Furthermore, these
inputs to DNNs were transformed to account for the
impact of topographic and geographic properties at a
given site on estimation of solar radiation. As a result,
potential temperatures of minimum and maximum
temperature, precipitation and extraterrestrial solar
radiation were used as the actual inputs to the DNNs
(see supplementary information 1).

Potential temperatures (Θ) at a reference atmo-
spheric pressure level of 100 kPa (P1K) were used to
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Figure 1. Spatial distribution of weather stations used to collect weather data for the development and the external test of the solar
radiation estimation model. Internal data was used to train and validate deep neural network (DNN) and external data was used
to external test for DNN. The weather stations were allocated to the zones identified by the latitude of weather stations. For
example, Zone 0 and Zone 6 include the weather stations within 33.5–37.9◦ N and 27.5–43.9◦ N, respectively.

represent a reference temperature condition (Aybar-
Ruiz et al 2016). Θmax and Θmin were determined
for daily maximum and minimum temperatures as
follows:

Θ= To

(
P1K
P

)R/CP

(1)

where R and Cp indicate the gas constant of air
(8.314 J K−1 mol−1) and the specific heat capacity
(1.005 kJ kg−1 K−1), respectively. To is maximum
(max) orminimum (min) temperature (K)measured
at a weather station. The barometric pressure P (kPa)
at the weather station with altitude alt (m) was estim-
ated as follows (Azevedo and Crisóstomo 2016):

P= p0

(
1− L · alt

T0

) gM
RL

(2)

where p0 and T0 indicate standard atmospheric pres-
sure (101.3 kPa) and standard temperature (288.16K)
at sea level, respectively. L, g, and M indicate the
temperature lapse rate for dry air (0.00976 K m−1),
gravitational acceleration (9.81 m s−2) and the molar
mass of dry air (0.0290 kg mol−1), respectively.

The extraterrestrial solar radiation (Ra; W m−2),
which is solar radiation at the top of the atmosphere,
was determined using date and geographic coordin-
ates at a given site as follows (King et al 2015):

Ra =
86400

π
ISC

[
1+ 0.033cos

(
2π

doy

365

) ]
× [cosϕ cosδ sinωs +ωs sinϕ sin δ ] (3)

where Isc and ϕ indicate the solar constant
(1367 W m−2) and latitude, respectively. The solar

declination δ and the mean sunrise hour angle ωs

were calculated as follows (Teke et al 2015):

δ = 0.409 sin

(
2π

doy

365
− 1.39

)
(4)

and

ωs =
π

180
arccos (−tan ϕ tan δ ) . (5)

2.3. Identification of training site sets by spatial
distribution of weather stations
The weather stations included in the internal data
were grouped to identify theminimum level of spatial
distribution among training sites for improvement
in spatial portability of solar radiation models. The
standard distance deviation (SDD) among weather
stations was determined to represent the spatial dis-
tribution of training sites. The SDD has been used to
quantify the degree of spatial dispersion across local-
ities (Christodoulakis et al 2018). The SDD was cal-
culated as follows (Hu et al 2014):

SDD=

√∑(
λj −λ

)2
+
∑(

ϕ j −ϕ
)2

nws
(7)

where λ̄j and ϕ j are longitude and latitude of an indi-
vidual weather station j, respectively, and λ̄ and ϕ
represent the average longitude and latitude for all
weather stations, respectively. The total number of
weather stations, nws, was 15 in the present study. The
SDD value was determined for every combination of
these 15 weather stations included in the 20 synoptic
weather stations. In total, 11 sets of weather stations
were selected to have the SDD at each decile as well as
at the minimum (143 km) and maximum (216 km)
values (figure 4).
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Table 1. Summary of the weather data collected from the weather stations in figure 1.

Site Starta Enda nb Zonec Site Start End n Zone

South Korea (Used for cross-validation and internal test)

Jeonju 1982 2017 13 024 0 Incheon 1982 2017 12 535 0
Jeju 1982 2017 12 930 0 Andong 1983 2017 12 505 0
Mokpo 1982 2017 12 929 0 Daegu 1982 2017 12 387 0
Gwangju 1982 2017 12 923 0 Chuncheon 1982 2016 12 153 0
Pohang 1982 2017 12 773 0 Daejeon 1984 2017 12 074 0
Suwon 1982 2017 12 681 0 Jinju 1982 2015 11 978 0
Busan 1982 2017 12 656 0 Daegwallyeong 1982 2015 11 674 0
Seoul 1982 2017 12 616 0 Wonju 1982 2015 11 648 0
Seosan 1982 2017 12 562 0 Chupungnyeong 1982 2015 10 467 0
Cheongju 1982 2017 12 560 0 Gangneung 1982 2008 9304 0

Japan (Used for external test)

Watsukanai 2011 2020 3652 8 Matsue 2011 2020 3648 0
Asahikawa 2011 2020 3647 6 Maizuru 2011 2013 818 0
Abashiri 2011 2020 3651 7 Hikone 2011 2020 3647 0
Sapporo 2011 2020 3651 6 Shimonoseki 2011 2020 3634 0
Obihiro 2011 2020 3643 5 Hiroshima 2011 2020 3650 0
Muroran 2011 2020 3650 5 Osaka 2011 2020 3647 0
Hakodate 2011 2020 3652 4 Nara 2011 2020 3578 0
Aomori 2011 2020 3648 3 Fukuoka 2011 2020 3650 1
Akita 2011 2020 3649 2 Saga 2011 2020 3647 1
Morioka 2011 2020 3646 2 Oita 2011 2020 3651 1
Yamagata 2011 2020 3652 1 Nagasaki 2011 2020 3649 2
Sendai 2011 2020 3651 1 Kumamoto 2011 2020 3638 2
Fukushima 2011 2020 3651 0 Kagoshima 2011 2020 3646 3
Niigata 2011 2020 3471 0 Miyazaki 2011 2020 3636 2
Toyama 2011 2020 3650 0 Matsuyama 2011 2020 3649 1
Nagano 2011 2020 3652 0 Takamatsu 2011 2020 3649 0
Utsunomiya 2011 2020 3652 0 Kochi 2011 2020 3650 1
Fukui 2011 2020 3650 0 Naze 2011 2020 3649 6
Maebashi 2011 2020 3641 0 Ishigakijima 2011 2020 3651 10
Nagoya 2011 2020 3652 0 Miyakojima 2011 2020 3652 10
Kofu 2011 2020 3650 0 Naha 2011 2020 3652 8
Tsukuba 2011 2020 3649 0 Minami-Daito 2011 2020 3640 9
Choshi 2011 2020 3643 0 Chichijima 2011 2020 3651 7
Shizuoka 2011 2020 3649 0 Marcus island 2011 2020 3651 10
Tokyo 2011 2020 3306 0 — — — — —
a Start and End are the first and the last years in which data were collected.
b n is the number of quality-checked data.
c Zone indicates the boundary identified by the latitude of weather stations. Zone 0 indicates the upper and lower boundary of South

Korea.

2.4. Cross-validation of DNNs by training site set
Eleven preliminary models were obtained using the
cross-validation procedure for the given training
site data sets identified by the SDD value. Cross-
validation has been used to minimize the selection
bias for the development of DNNs (Renno et al
2015). In N-fold cross-validation, a whole dataset is
randomly split into N groups for training and val-
idation. The training and validation sets are pre-
pared choosing N-1 subsets and the remaining data,
respectively.

Cross-validation was performed as an alternat-
ive method to compare the central tendency of error
statistics among the preliminary models (figure 5).
The internal data was split into two groups for

cross-validation and the internal test. Sixty percent of
the weather data from each site were allocated ran-
domly for cross-validation. The remaining data were
reserved for the internal test. This approach ensures
that a fraction of weather data at every site is left
unknown or independent to the models.

In each cross-validation procedure, multiple can-
didate DNNs were obtained using training data
(figure 5(a)). Training data were split into subgroups
to obtain five DNNs. Each DNN was obtained using
the gradient descent method, which searches the
optimum set of parameter values through the back-
propagation algorithm (Quej et al 2017). The learn-
ing rate, which determines the range of weight adjust-
ment for the neural network, was set to be 0.000 05.

4



Environ. Res. Lett. 18 (2023) 104020 D G Kang et al

Figure 2. The process for development and validation of the deep neural network (DNN) model for estimation of solar radiation.
Data sets for cross-validation and Internal test were obtained from weather stations in South Korea. Candidate models obtained
from cross-validation were evaluated in terms of spatial portability using the internal test set. The model that had the greater
spatial portability than other candidate models was chosen to be the deep solar radiation (DSR) model. Spatial portability of DSR
model was assessed using the external test set, which consist of weather observation data in Japan.

Figure 3. The overview of deep neural network architecture for estimation of daily solar radiation. The meteorological input data
include Tmax, Tmin, and prcp, which represent daily maximum and minimum temperature and precipitation, respectively. These
input data were converted into the input variables to the DNN includingΘmax,Θmin, Ra, which indicate potential temperatures of
daily maximum and minimum temperatures and extraterrestrial solar radiation, respectively. Geographic and topographic
properties of a site including latitude, and elevation were used to determine these variables along with day of year (doy).Θmax and
Θmin were calculated using Tmax and Tmin at a given elevation, respectively. The DNN model had 10 hidden layers and 64 nodes
for each layer. ReLU was set to be the activation function. No bias was used in the present study.

The rootmean square errorwas used to determine the
loss for each training process as follows:

RMSE=

√∑
(esti − obsi)

2

n
(8)

where obsi and esti indicate observed and estim-
ated values of solar radiation (MJ m−2 d−1) using
the neural network for the total number of records
n in the given training set. The Adam optimiza-
tion method, which has been recommended for deep
learning (Bock et al 2018), was used to update the
parameter values.

The preliminary model was selected from five
DNNs using the validation set split into five subsets
(figure 5(b)). The RMSE values were calculated for
each subset. One of the DNNs was chosen to have the

minimum of the RMSE value on average for further
analysis of spatial portability.

The DNNs for solar radiation estimation were
implemented using TensorFlow (Google Inc.,
Mountain View, CA, USA). TensorFlow has a high
degree of flexibility in organizing the structure of
neural networks, which makes it suitable for the
development of a solar radiation estimation model
(Zang et al 2022). For example, Kaba et al (2018)
used TensorFlow to develop a model to estimate daily
solar radiation using sunshine duration, cloud cover,
and other weather variables.

2.5. Spatial portability assessment of a deep solar
radiationmodel
The internal test set was used to evaluate spatial port-
ability of 11 preliminary models obtained from the
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Figure 4. Empirical cumulative density function (ECDF) of
the standard distance deviation (SDD) for the given set of
weather stations, which is a combination of 15 weather
stations selected from the 20 synoptic weather stations in
South Korea.

cross-validation procedures. The RMSE values were
initially determined for each weather station. These
RMSE values were subsequently averaged across all
weather stations and denoted by mRMSE to represent
the overall error across sites for the individual pre-
liminary models. The coefficient of variation was also
determined to indicate the spatial variation of RMSE
as follows:

CVRMSE =
sdRMSE

mRMSE
(9)

where sdRMSE indicates the standard deviation of the
RMSE by site. A lower value of mRMSE and CVRMSE

indicates higher spatial portability of model across
sites.

The final solar radiation model, referred as the
deep solar radiation (DSR) model, was chosen from
the 11 preliminary models for further analysis. The
relationships between the errors of the preliminary
models and SDDwere obtained using the internal test
set. A segmented regression analysis was performed
between mRMSE and CVRMSE, and SDD to exam-
ine if a threshold value of SDD exists for improve-
ment in spatial portability. Under such an assump-
tion, the model with the value of SDD near the
breaking point where the slope of the regression
model changes, e.g. from negative to positive, was
chosen to be the DSR model. Such regression ana-
lysis was carried out using the segmented R package
(Muggeo 2017).

Spatial portability of the DSR model was eval-
uated using the external test set. The error stat-
istics were grouped by weather station zones to
examine the spatial boundary for the DSR model
(figure 1). Zone 0 was set to include weather sta-
tions in South Korea in which latitude ranged from
33.5 to 37.9◦ N. The boundary of the following zones

increased by 1◦ of latitude. For example, Zone 1
and Zone 6 were defined within 32.5–38.9◦ N and
27.5–43.9◦ N, respectively. In addition, the errors
of the DSR models were analyzed in terms of dis-
tance from the sea (DFS) of each weather station
included in the external test set (see supplementary
information 2).

2.6. Simulation of crop yield using observed and
estimated solar radiation
Crop growth simulations were performed to
evaluate the applicability of the DSR model for
assessment of agricultural ecosystem productiv-
ity. In the present study, the ORYZA2000 model
(Bouman and van Lear 2006) was used to simulate
rice yield using observed and estimated solar radi-
ation data at each of the weather stations (see sup-
plementary information 3). Crop growth was sim-
ulated under common crop management options
for japonica rice in Japan. Transplanting dates for
rice grown near each weather station were obtained
from the Ministry of Agriculture, Forestry and
Fisheries (MAFF) where yearly statistics of the cul-
tivation schedule of rice are provided (www.maff.go.
jp/j/tokei/kouhyou/sakumotu/sakkyou_kome/index.
html). Seedbed duration was set to be 30 d. The num-
ber of hills per m2 and the number of plants per hill
were set to be 3 and 16.67, respectively. Nitrogen fer-
tilizer was set to be 90 kg N ha−1, which was split
as a 50:20:30 application ratio at basal, tillering, and
panicle initiation stage, respectively. It was assumed
that no water stress occurred because rice was fully
irrigated in Japan. The leading rice cultivar data by
prefecture was collected from the statistical year-
books available on the MAFF website (www.maff.
go.jp/j/tokei/kouhyou/syokuryo_nenkan/). The rice
cultivars were classified into three maturity groups:
early, medium, andmid-late. The cultivar parameters
of the three maturity groups were obtained from Lee
et al (2015).

The outputs from the ORYZA2000 model were
grouped by weather input data for comparison pur-
poses. The input data for the reference crop yield
simulations were prepared using observed solar radi-
ation at the weather stations in Japan. Another set of
weather input data was generated using estimates of
solar radiation obtained from the DSR model. The
values of RMSE and normalized RMSE (NRMSE)
were determined by comparing rice yield values
obtained from these sets of input data. The value of
NRMSE was calculated as follows:

NRMSE=
RMSE

ȲObs
(10)

where ȲObs indicates the mean value of rice yield sim-
ulated using the solar radiation observation.
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Figure 5. Simple representation of (a) data preparation and (b) cross-validation. Korean data were used as internal data whereas
Japanese data were used for external testing. Internal data were classified into two groups for cross-validation and internal testing.
The cross-validation dataset was further divided into training and validation sets by site. Training (Si, Sj, Sk) and validation sites
(Sl, Sm) were selected to be 60% and 40% of weather stations with specific standard distance deviation (SDD). These training
(T) and validation (V) sets were split into five subgroups. As a result, five candidate models were obtained from cross-validation.
Another combination of training sites with a different SDD (e.g. Si, Sk, Sm) and validation sites (e.g. Sj, Sl) were selected to
perform cross-validation and internal test, separately.

3. Results

3.1. Spatial portability of preliminary models for
internal test set
The preliminary models had greater spatial portab-
ility for the internal test set when the given train-
ing sites had the values of SDD near the threshold
value of 192 km (figure 6; see supplementary inform-
ation 4). The value of mRMSE decreased at the rate
of 0.01 MJ m−2 d−1 with the increase of 10 km
in SDD when the values of SDD were lower than
192 km. However, the value of mRMSE increased at
the rate of 0.005 MJ m−2 d−1 with the increase of
10 km in SDD when the values of SDD were higher
than 192 km. The value of CVRMSE also decreased
at the rate of 0.018 with the increase of 10 km
in SDD values up to 192 km. However, the rate
decreased to 0.004 when the values of SDD were
higher than 192 km. Under such relationships, the

DSR model was chosen to be the solar radiation
model with the value of SDD near 192 km for further
analysis.

3.2. Spatial portability of the final model for the
external test set
The error statistics of the DSR model differed by
the latitude zone for the external test (figure 7).
From the latitude zone of South Korea, i.e. Zone 0,
(33.5–37.9◦ N), to Zone 6 (27.5–43.9◦ N), the DSR
model had relatively smaller errors at the external
test sites. For example, the mRMSE and CVRMSE of the
DSR model were relatively similar. In contrast, these
values of DSR tended to increase as the SDD value
increased for the training sites. In particular, the DSR
model had RMSE values <4 MJ m−2 d−1 at 73% of
weather stations within Zone 6 (figure 8(a)). In con-
trast, the values of RMSE were >5 MJ m−2 d−1 at
every weather station outside of Zone 6 (figure 8(a)).
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Figure 6. Relationships between the standard distance deviation (SDD) and the error mean (a) and variation (b) of the solar
radiation models for the internal test set.mRMSE and CVRMSE are the mean and coefficient of variation of the root mean square
error, respectively.

Figure 7. The error statistics of the deep solar radiation (DSR) model for the external test set within different latitude zones.
(a)mRMSE and (b) CVRMSE indicate the mean and coefficient of variation of the root mean square error, respectively.

For example, Marcus Island had the largest error with
RMSE of>9 MJ m−2 d−1 (figure 8(b)).

Spatial portability of the DSR model tended
to decrease as the DFS decreased (figure 9). For
example, mRMSE and CVRMSE of the DSR model were
3.5 MJ m−2 d−1 and 0.03, respectively, at weather
stations with DFS ⩾ 50 km within Zone 6. Those
for weather stations with DFS < 50 km within
Zone 6 were 4.0 MJ m−2 d−1 and 0.13, respect-
ively. The smallest error of RMSE of 3.3 MJ m−2 d−1

occurred at Utsunomiya station where DFS is 76 km
(figure 8(c)). In contrast, the greatest error, e.g. RMSE

of 6.2MJm−2 d−1, within Zone 6 occurred at Choshi
station where DFS is 9 km.

3.3. Application of the DSRmodel to crop growth
simulations
The outcomes of the rice yield simulation had a rel-
atively large degree of agreement within Zone 6 when
observed and estimated solar radiation datawere used
as inputs to the crop model (figure 10(a)). In con-
trast, the discrepancy between simulation outputs
increased at sites outside Zone 6 when input data
were prepared using the estimates of solar radiation

8
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Figure 8. The errors of the deep solar radiation (DSR) model at (a) all the external test sites, (b) the worst sites and (c) the best
sites. RMSE indicates root mean square error. ∗∗∗ represents p< 0.001.

Figure 9. Relationship between the distance from the sea and the RMSE values of the DSR model for the external test set.
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Figure 10. Scatter plots of simulated rice yield using observed solar radiation and simulated rice yield using the estimated solar
radiation obtained from the deep solar radiation (DSR) model for the external test set (a) within Zone 6 (27.5–43.9◦ N) and
(b) outside the range of Zone 6. RMSE and NRMSE indicate root mean square error and normalized root mean square error,
respectively. ∗∗∗ represents significance at p< 0.001.

(figure 10(b)). For example, crop yield RMSE was
0.29 t ha−1 and 0.76 t ha−1 at the sites within and
outside Zone 6, respectively. The values of NRMSE
were about one-third (4.3%) at the sites within Zone
6 compared with that (13.1%) at sites outside Zone 6.

4. Discussion

Our results demonstrated that a DNN for estima-
tion of solar radiation had greater spatial portabil-
ity when the training sites were identified using the
threshold value of spatial distribution (see supple-
mentary information 5). It was found that spatial
portability of the solar radiation models was signific-
antly affected by SDD among training sites. Yet, there
was a breakpoint where the impact of SDD on spatial
portability of the model was positive. When the DSR
model was chosen from multiple sets of DNNs using
the threshold value, it had spatial portability within a
large area, e.g. the latitude boundary between 27.5◦ N
and 43.9◦N inNorth East Asia. Furthermore, the out-
puts of the model resulted in a large degree of agree-
ment between crop yield simulations using observed
and estimated solar radiation as inputs. These results
suggest that it is preferable to identify a reasonable set
of training sites using SDD.

It is likely that an optimum spatial distribution
range would exist for training sites where spatial port-
ability can be improved for the solar radiationmodel.
Knowledge on this range of SDD can be used to eval-
uate the suitability of training sites. It was found
that a minimum level of spatial dispersion among
training sites would be about 190 km in the study
region because the mRMSE and CVRMSE tended to

remain similar for SDD > 190 km (see supplement-
ary information 6–7). However, the upper limit of the
optimum range of SDD was yet to be found due to a
small spatial extent where training sites were used for
the cross-validation procedures in the present study.
This merits further research to examine the impact of
SDD values on spatial portability of the DNNs using
more weather stations in both Korea and Japan, for
example.

Our results indicate that spatial portability of
solar radiation models would be affected by the topo-
graphic complexity of study regions. The magnitude
of irradiation on a surface would be greater at a higher
altitude due to a shorter path length through the
atmosphere (Blumthaler et al 1997). In the present
study, such an effect was taken into account using
the potential temperatures (Θ) at the reference atmo-
spheric pressure level of 100 kPa. The DFS was
another topographic factor that affected spatial port-
ability of the DSR model. For example, the RMSE
values of the DSR model tended to decrease as the
DFS decreased at sites of interest. The DFS can be
added to the input variables of the DNNs once train-
ing data measured at the weather stations located in
both inland and coastal areas become available.

It is likely that application of DNNs facilitated the
representation of the complex relationship between
solar radiation and weather variables commonly
available from weather stations. Empirical models
that use temperature and precipitation as inputs have
been reported to have relatively low errors in the
region where the parameters of the models were cal-
ibrated. For example, Fan et al (2018) reported that
the temperature and precipitation based model had a

10



Environ. Res. Lett. 18 (2023) 104020 D G Kang et al

RMSE of about 3.6 MJ m−2 d−1 in southern China.
Hunt et al (1998) also reported that the same type
of model had a RMSE of about 4.1 MJ m−2 d−1

in Ontario, Canada. Still, these models resulted in
large differences between crop yield simulated using
observed and estimated solar radiation as inputs to
the cropmodel in comparison with the DSRmodel at
the weather stations in Japan within Zone 6 (see sup-
plementary information 8). In particular, this out-
come was obtained although parameters for those
models were calibrated using the same training data
for the DSR model. Because the identical weather
input data, e.g. temperature and precipitation, were
used to develop these models, the differences in spa-
tial portability likely resulted from differences in the
model algorithms. Çelik et al (2016) and Alsina et al
(2016) reported that the error statistics for a DNN
model differed by the number of nodes. In the present
study, the solar radiationmodels had a relatively large
number of nodes, e.g. 64 within each fully connec-
ted layer. Such complex structure of neural networks
would have allowed for the DSR model to have relat-
ively small errors in estimation of solar radiation.

A crop model has higher sensitivity to changes
in solar radiation than other weather variables (Bert
et al 2007). This indicates the importance of accurate
estimation of solar radiation in crop growth simula-
tions. In the present study, the rice yield values sim-
ulated using estimated and observed solar radiation
as inputs had smaller differences when SDD was lar-
ger for the solar radiation models (see supplement-
ary information 9). In particular, the DSR model
had a NRMSE of 4% within the latitude range of
±6◦, which extends the suitable areas up to 1200 km
from the boundaries of training sites. This result sug-
gests that the DSR model would be a useful tool for
researchers to generate weather input files of crop
models at local sites where solar radiation data are
unavailable.

5. Conclusion

Our results demonstrated that the use of SDD
among training sites improved spatial portability
of the solar radiation models, which resulted in
RMSE < 4 MJ m−2 d−1 at the majority (73%) of
sites in Japan. The DSR model with larger SDD, e.g.
>190 km, had accurate estimates of solar radiation
within the latitude range of±6◦ from the areas where
training data were obtained. Furthermore, the differ-
ence between simulated rice yield values using solar
radiation observations versus estimates from the DSR
model as inputs to a crop model were small, e.g. 4%,
within the same latitude range. These results indicate
that the assessment of the spatial distribution of train-
ing sites would aid the development of solar radiation
models with reasonable spatial portability. Further

studies using a weather station network with a wide
range of SDD values would be merited to determine
the upper limit of the optimum SDD range.
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