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ABSTRACT
Effective management of water resources in anthropogenically shaped lowlands requires a comprehensive understanding of 
hydrological processes and balancing various effects in complex settings, especially like lowland hydrology. Unlike mountainous 
headwater catchments with shallow soils, lowland hydrology is typically dominated by groundwater dynamics, often exhibit-
ing pronounced spatial correlation lengths, though other factors may also contribute. This necessitates consideration of distant 
anthropogenic impacts in water resources management. This study focuses on the Lusatia region in the northern German, a 
lowland area heavily altered by mining activities, including extensive groundwater lowering and rebound, impacting the overall 
water regime. We applied an efficient, data- based approach to unravel various impacts on the landscape water balance over a 30- 
year period (1993–2022). We integrated over 1800 ground- based time series data on groundwater levels, surface water dynamics 
and runoff, supplemented by evapotranspiration estimates from multi- temporal Landsat satellite data to account for land use 
effects. Through principal component analysis, we identified key patterns driving water balance dynamics. The first four com-
ponents explained 84% of the variance in groundwater and surface water levels, as well as of runoff dynamics. The dominant 
processes attributed to these components include anthropogenic influences from mining activities, as well as natural hydrogeo-
logical effects such as seasonal variability and the damping of the groundwater recharge signal in the unsaturated zone. A sepa-
rate principal component analysis that included evapotranspiration data explained 87% of the variance, with the first component 
predominantly reflecting seasonal variations and subsequent components elucidating land use impacts and long- term vegetation 
changes. By linking both analyses, we generated comprehensive maps detailing the spatial distribution of effects on regional 
water balance. Our approach provides a quantitative tool to assess the size and influence of natural and anthropogenic effects on 
water resources, offering a comprehensive tool for assessing spatial and temporal effects on hydrological dynamics in a lowland 
region affected by human activities.
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1   |   Introduction

Monitoring and understanding the water balance at the 
landscape scale is crucial for effective water resources man-
agement, especially in the context of climate change and in-
creasing anthropogenic pressure. Traditionally, these efforts 
have relied on ground- based observations of groundwater and 
surface water (Condon et al. 2021; Kumar et al. 2021a). While 
these methods provide high temporal resolution of hydrologi-
cal dynamics, they fall short in offering a comprehensive view 
of the water balance at the landscape scale. To extrapolate 
point data to area- wide information, modelling approaches are 
widely used (Barthel and Banzhaf 2016; Kumar et al. 2021a, 
2021b). However, these models require extensive datasets, 
limiting their feasibility for widespread landscape monitoring 
(Barthel and Banzhaf 2016; Kumar et al. 2021b). Additionally, 
models often struggle to detect and analyse the underlying 
factors influencing water balance dynamics, particularly in 
complex landscapes with significant anthropogenic alter-
ations or where landscape management practices have been 
implemented. This limitation can result in significant uncer-
tainties (Kumar et al. 2021b).

Current methods for transferring groundwater time series or ana-
lysing water dynamics from well- monitored sites to areas without 
direct observations typically rely on spatial similarity approaches 
and regression analysis (Heudorfer et  al.  2019; Rinderer, van 
Meerveld, and McGlynn 2019; Giese et al. 2020; Haaf et al. 2023). 
These methods assume that observed patterns in one location can 
be applied to similar conditions elsewhere (Barthel et  al.  2021) 
but, so far, have not been applied to heterogenous landscapes with 
massive anthropogenic modifications (Haaf et al. 2023), such as 
the Lusatia region. This approach has substantial limitations 
particularly in complex real- world settings with various synchro-
nous effects which differ in their respective spatial correlation 
length (Blöschl and Sivapalan  1995). For example, weather ef-
fects are fairly homogeneous at a scale of some 102 to 104 km in 
the lowlands, whereas open pit mining affects water levels at a 
100 to 101 km scale, and local groundwater extraction for irriga-
tion at much smaller scale (Blöschl and Sivapalan 1995; Hangen- 
Brodersen, Strempel, and Grünewald  2005; Longuevergne, 
Florsch, and Elsass 2007).

The Lusatia region, shaped by extensive mining activities, 
has experienced significant impacts on water resources and 
soil fertility over the past decades (Gerwin et al. 2023). With 
the region facing both climate change and socio- economic 
shifts, a comprehensive landscape transformation is immi-
nent. Future challenges include the flooding of open- cast 
mines, the rebound of lowered groundwater levels, the de-
velopment and preservation of fertile soils and the protec-
tion and revitalisation of peatlands (Hangen- Brodersen, 
Strempel, and Grünewald  2005; Krümmelbein et  al.  2012). 
Additionally, the region is likely to experience further water 
management difficulties due to increasing air temperature 
and evapotranspiration (ET) and decreasing precipitation 
(Reyer et al. 2012), posing challenges across various scales of 
landscape transformation.

To effectively address these challenges, innovative and effi-
cient landscape monitoring approaches are essential (Biemelt, 

Schapp, and Grünewald  2011). Advances in remote sens-
ing and statistical analysis offer new opportunities to moni-
tor water dynamics on high spatial and temporal scales. We 
propose a principal component analysis (PCA) that assists 
in mapping of spatial and temporal effects on water dynam-
ics, incorporating measured time series of water levels and 
area- wide ET data obtained from remote sensing. PCA is a 
statistical method used to identify underlying spatial effects 
by analysing large sets of time series variables (Bretherton, 
Smith, and Wallace 1992). This method is increasingly applied 
in hydrology to determine the factors influencing hydrolog-
ical and hydrogeological time series (Gottschalk  1985; Page 
et al. 2012; Yue et al. 2020; Meggiorin et al. 2022). In north-
eastern Germany, PCA has been widely used to analyse time 
series of groundwater head and surface water runoff at the 
federal states (NUTS2) level (Thomas et  al.  2012; Lehr and 
Lischeid 2020; Lischeid et al. 2021).

Despite its proven value, PCA has not been applied in regions 
with extensive anthropogenic interventions, such as Lusatia. 
This research aims at elucidating the spatial and temporal pat-
terns of various effects and at generating a spatio- temporal, 
area- wide estimation of individual effects to be related to an-
thropogenic or natural processes, respectively. Importantly, 
this estimation will be based solely on existing and available 
measurement data, including ground- based and remote sens-
ing datasets, without requiring any additional data directly 
related to the sources of these effects (e.g., time and amount 
of groundwater lowering in mining areas). This approach is 
proposed as a very efficient way contributing to a comprehen-
sive understanding of the hydrological dynamics in complex 
landscapes.

In particular, the underlying research questions are:

1. What are the key spatio- temporal patterns in ground- based 
time series on groundwater level and discharge, and how 
accurately can we differentiate here between anthropo-
genic and natural effects?

2. What are the key spatio- temporal patterns in ET time se-
ries, and how do these patterns correlate with specific land- 
use types and climatic factors in the Lusatia region?

3. To what extent can the integration of groundwater, surface 
water and ET time series data effectively map the primary 
factors influencing the water balance in both spatial and 
temporal dimensions?

2   |   Data and Methods

2.1   |   Study Site

The study region is located in northeastern Germany, approx-
imately 80 km south of Berlin, and spans around 9820 km2. It 
is situated in the Niederlausitz region, part of the northeast-
ern German lowlands (Figure 1). The boundaries of the area 
are defined by the extent of the groundwater bodies within the 
region. The landscape is characterised by the Pleistocene glaci-
ation with the typical glacial series of glacial valleys, outwash 
plains, terminal and ground moraines (Gerwin et  al.  2023), 
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constituting a complex interplay of various porous aquifers. 
Only in the southernmost part of the study region fractured 
aquifers in Mesozoic and Palaeozoic bedrock are present.

The prevailing substrate of glacial sands, gravel, partly inter-
spersed with clayey substrate, has a thickness of 40 to 120 m. 
Large groundwater resources have formed in the quaternary 
sediments. In the glacial valleys, shallow groundwater levels 
are characteristic and contributed to the formation of large fens 
in the Holocene.

Major rivers in the region include the Spree and Schwarze Elster 
(part of the Elbe catchment) and the Neisse (part of the Oder 
catchment). The stream network density varies from 0.3 km/
km2 on the plateaus of ground and terminal moraines to over 
2 km/km2 in the lowlands, particularly in the Spreewald, a large 
inland delta of the river Spree.

The landscape was shaped by opencast lignite mining below the 
Quaternary sediments (Gerwin et al. 2023) (Figure 1). The sys-
tematic extraction of lignite for over 120 years has created a foot-
print of over 906 km2 (Statistik der Kohlewirtschaft 2024) and led 
to quantitative and qualitative impacts on water balance over an 
area of 3200 km2 in Lusatia (Uhlmann et al. 2020). Groundwater 
extraction to access lignite seams, up to 120 m deep, has removed 
over 58 billion m3 of water (Uhlmann et  al.  2023). Open- cast 

mining led to the dumping of the sediment on the surface and 
large areas to be recultivated, on which agriculture and for-
estry are once again practised. On the other hand, some for-
mer open- cast mines were flooded with surface water from the 
largest streams in the region to prevent acidification caused by 
rising groundwater contaminated by pyrite oxidation (Hangen- 
Brodersen, Strempel, and Grünewald 2005).

The region's climate, with continental influences (Gädeke 
et  al.  2017), has an annual average temperature of 9.7°C and 
615 mm of precipitation based on a 30- year period from 1991 to 
2020 (Deutscher Wetterdienst [DWD] 2023a, 2023b). The region's 
climatic water balance is negative at around −145 mm/year. on a 
long- term average from 1991 to 2020 (DWD 2024). Around half 
of the precipitation is distributed over the growing season from 
March to September, with mostly short, convective showers. Due 
to low water holding capacity of the prevailing sandy soils periods 
of low precipitation can lead to periods of drought (Krümmelbein 
et al. 2012; Reyer et al. 2012).

Land use is characterised by forestry and arable land (44% and 
28% of the total area). Due to the sandy, low- yield soils and the 
occurring water stress, forestry use with pine (Pinus sylvestris) 
dominates as the predominantly planted tree species (Hofmann 
and Pommer 2005). Grassland is occasionally used in the glacial 
valleys on former moorland.

FIGURE 1    |    Map of the study site in East Germany with former and active opencast mines and the selection of groundwater observation wells and 
gauging stations. Upper right map: Federal states of Germany with the location of the study region.
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2.2   |   Data

To assess hydrological patterns, we considered time series 
data from different water balance components. The analysis of 
groundwater, surface water levels and runoff from watercourses, 
which represents the water balance components runoff and 
groundwater and surface water storage, included time series 
datasets collected by conventional, ground- based monitoring. In 
total, data was provided from 16 177 measuring points, including 
913 measuring points for surface water levels and discharges col-
lected up to 2022.

We analysed ET as a further water balance component. For this 
purpose, we used the Landsat Collection 2 Provisional Actual ET 
Science Product (Senay 2018; Senay et al. 2023) due to its high 
spatial resolution of 30 m and temporal availability in the en-
tire study period from 1993 to 2022. The data product is based 
on Landsat Collection 2 Level- 2 Surface Temperature product 
which is the input to the Operational Simplified Surface Energy 
Balance (SSEBOp) model (Senay et al. 2022). Besides land surface 
temperature (LST), other inputs for the ET calculation include 

normalised difference vegetation index (NDVI) as well as air 
temperature, a digital elevation model (DEM), net radiation, and 
reference ET (Petrakis et al. 2024). Overall, we accessed and anal-
ysed 2459 ET images covering the entire study site.

We used additional environmental data such as land use, soil 
characteristics, geological and climatological data to interpret 
the results and to provide a comprehensive estimation of the 
effects on hydrological dynamics across the entire area. Table 1 
lists the datasets and their sources. Datasets on land use were 
used to assess the impacts of land use distribution and transfor-
mation over nearly three decades, especially in relation to an-
thropogenic activities like mining, and their effects on the water 
balance. We derived lithological and hydraulic permeability data 
of the upper aquifer to describe the geological and hydrological 
determinants of groundwater flow and storage area. The soil's 
ability to retain water might affect both ET and groundwater re-
charge. Therefore, we included spatial soil water content data. 
Maps of groundwater table depth and mean annual precipitation 
provided additional key information on the spatial variability of 
groundwater levels and precipitation.

TABLE 1    |    Data on hydrological and geological conditions, soil properties, and land use for estimation of hydrological dynamics.

Parameter Dataset type Description and data sources

Groundwater level, surface water 
level and runoff

Time series Datasets requested from Brandenburg State Office for the 
Environment (LfU), the Saxony State Office for the Environment, 

Agriculture and Geology (LfULG), the Federal Institute 
of Hydrology (BfG) and the Lausitzer and Mitteldeutsche 

Bergbau- Verwaltungsgesellschaft mbH (LMBV)

Evapotranspiration Raster dataset Landsat Collection 2 Provisional Actual Evapotranspiration 
Science Product (Senay 2018; Senay et al. 2023)

Land use ESRI- Shapefile Derived from CORINE Land Cover/Land use data 2018 
with 100 m spatial resolution (European Environment 

Agency 2019a) and aggregated to 8 land use classes 
(residential, open- cast mining, arable land, grassland, forest, 

moors and heathland, non- vegetated, water bodies)

Land use change ESRI- Shapefile Change in land use categories between 1990 and 2018 
derived from CORINE Land Cover/Land Use data 

datasets (European Environment Agency 2019b, 2019c, 
2019d, 2019e) and aggregated to 16 land use change 

classes based on the aggregated land use classes

Hydraulic permeability of the upper 
aquifer

ESRI- Shapefile Derived from the General Hydrogeological Map of the 
Federal Republic of Germany 1:250 000 (HÜK250) of the 

German Federal Institute for Geosciences and Natural 
Resources (BGR) and the State Geological Surveys (SGD)

Lithology ESRI- Shapefile Derived from HÜK250 of the BGR and SGD

Soil water content ESRI- Shapefile Derived from the Soil Geological Map of Brandenburg 
at a scale of 1:300 000 (BÜK300) and the Soil Map 

of Saxony at a scale of 1:50 000 (BK50)

Groundwater table depth ESRI- Shapefile Derived from maps of groundwater table depth of LfU and LfULG

Mean annual precipitation Raster dataset 30- year average annual precipitation based on 
station data, averaged for each year in the period 

from 1991 to 2020 and interpolated to a 1 km × 1 km 
grid (DWD Climate Data Center (CDC) 2021)
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2.3   |   Processing of Ground- Based and ET 
Time Series

The data analyses described below were carried out using R 
software version 4.2.3 (R Core Team 2024) and the packages sf 
(Pebesma 2018; Pebesma and Bivand 2023) and dplyr (Wickham 
et al. 2023) for time series and spatial data processing.

For the analysis of the ground- based time series for the 30- year 
period from 1993 to 2022, we initially selected time series auto-
matically based on five criteria:

— Measurements begin before 1993,

— Measurements end after 2022,

— Average measurement intervals of at least 1 month,

— Gaps less than 1 year,

— Autocorrelation of the time series for the largest gap length 
is greater than 0.6.

The autocorrelation criterion serves as a measure of the tem-
poral consistency and predictability of a time series. In combi-
nation with the maximum length of the gap, autocorrelation is 
an indicator of the extent to which the gaps in the time series 
can be reconstructed based on the previous data. We set the 
autocorrelation threshold of 0.6 based on visual inspection of 
various time series. We focused on the consistency of seasonal 
patterns, the stability of long- term trends, and the strength of 
the relationship between successive measurements. The aim 
of this inspection was to identify a threshold that retains pre-
dictable and meaningful temporal structures while excluding 
highly irregular time series. The measurement interval crite-
rion was added to maintain seasonality in the subsequent inter-
polation of the gaps. After the criteria selection, a total of 590 
time series remained, including 62 time series of surface water 
levels and discharges.

We synchronised the selected time series to weekly values in 
preparation for the PCA and filled existing data gaps using lin-
ear interpolation.

The processed time series were first z- normalised, ensuring that 
each series had a mean of zero and a standard deviation of one, 
which standardises the data and allows for a meaningful com-
parison across different series. Following this normalisation, we 
subjected the time series to PCA.

For the ET data, we processed the Landsat satellite images into 
time series per pixel for the entire period from 1993 to 2022. We 
checked the time series for completeness and removed time series 
with gaps of more than 1 year. Time series with smaller gaps were 
filled by linear interpolation followed by a synchronisation of all 
time series to weekly values. We included around 10 285 310 time 
series in the further analysis of ET time series.

2.4   |   PCA

PCA of time series (also known as Empirical Orthogonal 
Function analysis) decomposes the time series into orthogonal 

(independent) principal components (PCs). These components 
are derived in such a way that each successive component cap-
tures the maximum possible variance from the data, given the 
constraints of being orthogonal to the preceding components. 
The eigenvalue of each PC indicates the amount of variance it 
explains. The sum of all eigenvalues equals the total variance in 
the data set. Therefore, the proportion of the explained variance 
by each component is determined by dividing its eigenvalue by 
the total sum of all eigenvalues.

The PCs are ranked by the amount of variance they explain, with 
the first component explaining the largest portion of the vari-
ance. We retained only those PCs that each explained more than 
5% of the total variance, reducing the dimensionality of the data-
set while preserving most of the important information.

For each PC, a separate time series was generated, where the 
length of each time series matches that of the input data. These 
time series represent the scores for each time step and each PC. 
The relationship between a PC and a time series of the input data 
was determined by calculating loadings. A loading indicates the 
strength and direction of correlation between each input time 
series and a specific PC. These loadings are crucial as they pro-
vide insight into how much each time series contributes to the 
identified patterns of variability (the PCs). High loadings on a 
particular component suggest that the corresponding time series 
shares a significant underlying effect or pattern, which may be 
related to specific physical processes influencing the time series 
at those measurement points. The loadings were calculated as 
the Pearson correlation between the z- normalised input time se-
ries and the time series of a specific PC.

In addition to the PCA of water level and discharge time series, 
we conducted a second PCA on Landsat ET time series to iden-
tify the most significant variables influencing this component of 
water balance.

2.5   |   Mapping the Primary Factors Influencing 
the Water Balance

In the next step, we transferred the dominant effects on the 
groundwater and surface water balance, identified through the 
PCA of spatially point- based time series, to the entire study re-
gion. This allowed us to spatially delineate the effect strengths 
and make statements about the hydrological dynamics in the 
area. To achieve this, we predicted the loadings of the PCs from 
10 area- wide available covariates. These covariates included the 
loadings of the PCA of ET time series and geological, land- use 
and soil characteristics (Table 1). Given the spatio- temporal and 
non- linear relationships between the effects on groundwater 
and surface water resources and area characteristics, we applied 
a random forest regression model to spatially predict these ef-
fects across the study area.

To increase training and test data samples, we included addi-
tional time series loadings by reconstructing incomplete time 
series previously excluded from the PCA. We selected 1253 time 
series (including 129 time series of surface water levels and 
discharge rates) for reconstruction, focusing on those with at 
least 25 years of data during the period from 1993 to 2022, and 



6 of 17 Hydrological Processes, 2025

a minimum measurement frequency of four observations per 
year. Using the first eight PCs as predictors, we performed mul-
tiple linear regression to supplement the additional time series 
and calculate the loadings for each time series. We evaluated the 
quality of the regression models using the coefficient of deter-
mination R2.

The loadings from the groundwater and surface water time se-
ries at the 1843 monitoring sites served as training (90%) and 
test data (10%) for model development and testing. Separate 
models were created for the area- wide regression of each PC's 
loadings. The random forest models were developed using the 
R software and the caret package (Kuhn  2008). We set the 
number of decision trees to 500, balancing estimation error 
optimization and computation time. The number of variables 
selected for each node in the decision tree was determined 
by the internal algorithm of the R function train(). This al-
gorithm compares the model's accuracy across three differ-
ent variable selections and chooses the number of variables 
that results in the highest model accuracy. We performed a 
10- fold cross- validation to evaluate robust model performance 
metrics.

Additionally, the models were optimised following the ap-
proach of Millard and Richardson (2015). We used the variable 
importance calculated by the function train() and Spearman's 
rank correlation coefficient to determine pairwise correla-
tions among the variables. Our goal was to use only the most 
relevant and uncorrelated variables for classification without 
increasing the error rate. The random forest algorithm was 
applied to the training data with 100 repetitions, creating a 
ranking of the five most relevant variables for each of the first 
to fourth PC. For the final models, we included only those 
variables that were within the five most relevant variables in 
at least one of the repetitions.

To evaluate the performance of the random forest regression 
model, we employed several accuracy metrics on the validation 
and testing dataset. These included the mean absolute error 
(MAE), root mean squared error (RMSE), and the R- squared 

(R2) value, which collectively provide a comprehensive assess-
ment of prediction accuracy and model fit.

3   |   Results

3.1   |   PCA of Ground- Based Time Series Data

PCA of the 590 selected ground- based time series produced 
590 uncorrelated components. The first four components 
explained at least 5% of the variance each, specifically, 55%, 
18%, 6% and 5%, respectively. Together, these four compo-
nents explain approximately 84% of the total variance in the 
groundwater and surface water time series in Lower Lusatia. 
Consequently, the following analysis is restricted to these four 
PCs (PCg).

The time series of scores of the first PC (PCg1) shows an almost 
linear increase over the entire observation period with slight 
seasonal fluctuations (Figure 2). High positive loadings of PCg1 
are concentrated in areas corresponding to closed opencast 
mines, while high negative loadings are associated with active 
opencast mining sites (Figure 3). This suggests that PCg1 cap-
tures the long- term effects of mining activities on groundwater 
trends, particularly the lowering and subsequent rebound of 
groundwater levels.

The second PC (PCg2) exhibits pronounced seasonality, with 
clear fluctuations corresponding to seasonal hydrological 
changes (Figure 2). High loadings of PCg2 occur at greater dis-
tances from the opencast mining areas (Figure  3), indicating 
that this component reflects natural hydrological seasonality, 
relatively unaffected by direct mining activities.

The time series of PCg3, like PCg1, displays low seasonality but 
with a marked increase between 1995 and 2011 (Figure 2). This 
period corresponds to the gradual recharge of the groundwater 
level after the termination of extensive drainage measures in 
former mining areas and illustrates the long- term hydrologi-
cal recovery and its influence on the dynamics of the regional 

FIGURE 2    |    Time series of scores of the first four principal components of the ground- based time series.
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water balance. The spatial distribution of PCg3 loadings high-
lights areas with mining- influenced groundwater bodies that 
experienced both lowering and rebound over the past 20 years. 
High positive loadings specifically occur where, after the re-
bound, groundwater levels have been kept artificially lower 
than their natural state through pumping to prevent water-
logging and protect settlement infrastructure (Figure 3). PCg3 
thus captures delayed groundwater rebound effects linked to 
decommissioned mining operations.

When comparing the loadings of the PCs with various covariates, 
no significant correlations were found between the loadings of 
the first three PCs and land cover, geology, or soil type.

The fourth component (PCg4) also shows seasonal patterns, but 
exhibits phase shifts compared to PCg2, with variations in the 
timing and amplitude of peaks (Figure 2). The spatial patterns 
of PCg4 are less distinct, but high positive loadings are generally 
found near watercourses. PCg4 exhibited an inverse correlation 

FIGURE 3    |    Spatial patterns of loadings of PCg1 to PCg4 of ground- based time series.
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with mean groundwater table depth, with loadings decreasing 
as groundwater table depth increased (Figure  4), suggesting 
this component represents attenuation of the groundwater re-
charge signal.

3.2   |   PCA of ET Remote Sensing- Based Time 
Series Data

The first three PCs of PCA on ET data explain approximately 
87% of the total variance in the time series data. Each of these 
components (PCe) exhibits distinct seasonal patterns. However, 
no significant spatial correlations were found between their 
loadings and the 30- year mean precipitation pattern or soil 
characteristics.

PCe1 accounts for 84% of the explained variance and captures 
the overall seasonal pattern of ET, characterised by high values 
in the summer months and low values in the winter months 
(Figure 5). The spatial distribution of PCe1 loadings is relatively 
uniform across the study region. However, sparsely vegetated 
areas and opencast mines have lower loadings and therefore 

differ from the other areas (Figure 6). PCe1 thus represents the 
dominant seasonal ET cycle across the study region.

PCe2, explaining around 2% of the variance, reflects ET 
 differences associated with land use. High positive loadings 
are seen in forestry sites and water bodies, while negative 
loadings are observed in agricultural areas and open- cast 
mines (Figure 6). The time series of PCe2 shows an annual de-
crease in spring with negative peaks in May and June followed 
by a sharp increase and positive peaks in July and August 
(Figure 5). This component captures the impact of land use on 
ET patterns, particularly the earlier peak in agricultural areas 
compared to forests, as well as its sensitivity to dry years (e.g., 
2018–2020).

The time series of PCe3 shows a general increasing trend of ET 
peaks in summer, with less pronounced peaks during dry years 
(Figure  5). The spatial distribution of PCe3 loadings reveals 
distinct patterns of high positive loadings in areas undergoing 
natural succession, afforestation and land use restoration (e.g., 
former military training sites and closed open- cast mines), and 
high negative loadings in active mining areas (Figure 6). PCe3 

FIGURE 4    |    Mean groundwater table depth and loadings of ground- based time series on PCg4 (A) and time series of two monitoring sites with 
high (B) and low loadings (C).



9 of 17

therefore reflects long- term changes in ET due to land use tran-
sitions and restoration efforts over the past 30 years.

3.3   |   Mapping of Primary Factors Influencing 
the Water Balance

To increase the training and test dataset for the random forest 
model, we added incomplete time series to the groundwater and 
runoff time series dataset. The additional time series were re-
constructed using multiple linear regression. The quality of the 

1253 reconstructed time series was evaluated using the coeffi-
cient of determination (R2). For the reconstructed time series, 
R2 values ranged from 0.2 to 0.99 (Figure 7), indicating varying 
levels of model performance. The median R2 was 0.96, reflecting 
a high overall accuracy in the reconstruction process. This sug-
gests that the majority of the reconstructed time series closely 
match the observed data and PCs, with the most linear regres-
sion models explaining a significant portion of the variance. 
However, the lower end of the R2 range (0.2) indicates that some 
time series exhibited poorer fits, likely due to limitations in data 
coverage or underlying variability not captured by the model.

FIGURE 5    |    Time series of scores of the first three principal components of the ET time series.

FIGURE 6    |    Distribution of loadings on PCe1 and PCe2 divided into the most frequent land use classes and distribution of loadings on PCe3 divid-
ed into the most frequent land use change categories in the period from 1993 to 2022.
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The random forest regression models for spatial prediction of the 
dominant effects on groundwater and runoff dynamics (PCg1 to 
PCg4) exhibited moderate predictive performance, with R2 val-
ues of 53%, 46%, 33% and 25% for PCg1, PCg2, PCg3 and PCg4, 
respectively (Table 2). The variable importance rankings high-
lighted that land- use classes, geological characteristics, and ET 
loadings were among the five most predictive covariates in pre-
dicting PCg1 to PCg4 and thus played a crucial role in determin-
ing their spatial distribution (Table 2).

Although the R2 values indicate limited explanatory power, the 
models were still able to capture key trends in the spatial distri-
bution of effect sizes. The MAE and RMSE metrics, while not 
exceptionally low, indicate that the predictions align with the 
general spatial patterns of the observed data. Despite the mod-
erate accuracy, the spatial distribution of the loadings of PCg1 to 
4 reflects the patterns observed in the point- wise groundwater 
and discharge measurements. The area- wide maps of the load-
ings for PCg1 to 4 can be found in the Appendix A.

4   |   Discussion

This study aimed at the identification and quantification of 
spatio- temporal patterns of various effects on hydrological 

dynamics in Lusatia. Our findings demonstrate the effective-
ness of this data- driven approach in determining the main in-
fluences on groundwater, discharge and ET across the massively 
anthropogenically shaped lowland region.

4.1   |   Key Spatio- Temporal Patterns in 
Ground- Based Time Series

The high loadings on PCg1, predominantly located near former 
and active open- cast mines, underscore the significant influ-
ence of mining activities on groundwater dynamics within the 
region. However, PCg1, which typically represents the average 
dynamics of the dataset (Gottschalk 1985; Lischeid et al. 2021) 
is primarily defined by the strong spatial clustering of moni-
toring sites around mining sites. The uneven distribution of 
measurement stations, with 80% of sites located within 10 km of 
mining areas (which covers 50% of the study region), suggests a 
potential sampling bias. This imbalance may amplify the dom-
inance of mining- related effects in PCg1, overshadowing other 
regional influences.

This dominance reflects the spatially extensive impacts of 
mining, as groundwater lowering and rebound can propagate 
over large areas due to high permeability of the subsurface 

FIGURE 7    |    Map of R2 distribution for additional 1253 groundwater and discharge time series as an indicator of reconstruction accuracy.
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layers in the region. The long spatial correlation lengths inher-
ent in lowland hydrology, characterised by extensive ground-
water connectivity, make these mining- related dynamics not 
only locally but also regionally influential. This underlines 
the importance of incorporating approaches that are capable 
of resolving such spatially extensive impacts, as emphasised 
in the introduction.

PCg2 appears to capture seasonal variations, as indicated by its 
correlation with time series from sites situated more than 10 km 
away from mining areas. Unlike PCg1, which is primarily asso-
ciated with anthropogenic influences, PCg2 likely reflects natu-
ral hydrological processes, particularly seasonal fluctuations in 
water balance driven by precipitation and ET (Longuevergne, 
Florsch, and Elsass  2007; Lischeid et  al.  2021). This suggests 
that PCg2 represents groundwater dynamics less affected by 
mining activities, offering insight into the region's background 
hydrology. Specifically, the spatial distribution of PCg2 loadings, 
which are concentrated in areas away from direct mining im-
pacts, highlights their role in delineating hydrological regions 
shaped by natural variability rather than human alteration. 
Such insights are crucial for distinguishing fundamental hydro-
logical processes from the superimposed effects of mining and 
provide a key reference point for sustainable water management 
in lowland regions.

PCg3 and PCg4, while explaining a smaller portion of the vari-
ance, reveal more localised yet significant patterns. PCg3 reflects 
delayed groundwater responses to mining, particularly in areas 
where groundwater levels have fluctuated as a result of decom-
missioning and controlled rebound efforts (Hangen- Brodersen, 
Strempel, and Grünewald 2005). The distinct temporal trend in 
PCg3's time series, marked between 1995 and 2011, coincides 
with the closure of several mining operations a few years earlier 
in the western parts of the region, leading to a managed recov-
ery in groundwater levels. This delayed response points to the 

spatial distance from active mining sites and the extended time-
frame over which groundwater adjustments occur.

Loadings of PCg4, on the other hand, are closely correlated with 
mean groundwater table depth, suggesting that it represents pro-
cesses associated with groundwater recharge. The spatial pat-
tern of loadings of PCg4 captures the degree of attenuation and 
delay in the precipitation signal as it passes through the unsat-
urated zone, an effect well- documented in lowland catchments 
(Hohenbrink and Lischeid 2015; Lehr and Lischeid 2020). This 
effect, detected through PCA, emphasises the role of groundwa-
ter recharge in shaping the region's water dynamics, indepen-
dent of mining activities.

Interestingly, while previous studies, such as Thomas et al. (2012), 
have found correlations between land cover and PCs in PCA of 
discharge data, such effects were not prominent in the first four 
PCs of this study. The absence of significant land cover correla-
tions in PCg 1 to 4 suggests that the overriding influence of mining 
activities likely masks subtle land use effects that may be present 
in groundwater and runoff dynamics. Such land use effects are 
clearly revealed by the PCA of the ET time series.

4.2   |   Key Spatio- Temporal Patterns in ET 
Time Series

The PCA of ET time series highlighted the spatial and temporal 
heterogeneity in ET patterns across the region. The time series 
of PCe1 exhibits a clear seasonal pattern, with peak values in 
June and July and the lowest values from December to January. 
PCe1 thus represents the dominant seasonal cycle for most of the 
study area, capturing the annual rhythm of ET driven by tem-
perature and vegetation growth cycles. This mean behaviour 
is consistent across the landscape but is modified by PCe2 and 
PCe3 at specific locations, which account for deviations such as 

TABLE 2    |    Random forest model covariates and accuracy for spatial prediction of first four principal components. Covariates were selected based 
on their variable importance: Only the five most important covariates, as identified in at least one of 100 model training iterations, were included in 
the RF regression models. The number of iterations in which each covariate ranked among the five most important variables is indicated in brackets.

PC Covariates for RF model

Model validation Model testing

R2 RMSE MAE R2 RMSE MAE

1 PCe2 (98) and PCe3 (100) of PCA from ET 
data, groundwater table depth (100), land 
use (2), lithology (100), precipitation (100)

0.54 [0.04] 0.42 [0.02] 0.29 [0.02] 0.53 0.44 0.32

2 PCe1 (98), PCe2 (100) and PCe3 (3) of PCA from 
ET data, groundwater table depth (100), land 

use (96), lithology (3), precipitation (100)

0.51 [0.07] 0.20 [0.01] 0.14 [0.01] 0.46 0.21 0.15

3 PCe1 (93), PCe2 (100) and PCe3 (65) of PCA 
from ET data, groundwater table depth (100), 

available water content in soil (6), land use 
(8), lithology (29), precipitation (100)

0.41 [0.04] 0.21 [0.01] 0.16 [0.01] 0.34 0.23 0.17

4 PCe1 (100), PCe2 (100) and PCe3 (39) of PCA 
from ET data, groundwater table depth (100), 

available water content in soil (5), land use 
(26), lithology (30), precipitation (100)

0.38 [0.07] 0.16 [0.02] 0.11 [0.01] 0.25 0.18 0.13
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amplified or reduced seasonality and potential phase shifts in 
ET dynamics. This pattern is consistent with the findings of Lei, 
Ren, and Bian (2016), who applied PCA to MODIS NDVI time 
series in a semiarid mining area and observed that the first PC 
captured the annual cycle of vegetation dynamics. Similarly, in 
our study, the spatial distribution of PCe1 loadings highlights 
deviations from this seasonal pattern, particularly in areas af-
fected by mining activity or with sparse vegetation. These areas 
exhibit lower ET values due to reduced water availability and 
vegetation cover over the past 30 years. Lei, Ren, and Bian (2016) 
also noted high values in areas with dense vegetation coverage, 
indicating a pronounced annual cycle, while areas with sparse 
vegetation had less distinct seasonal patterns. This comparison 
reinforces the strong influence of vegetation density and water 
availability on ET dynamics.

PCe2 shows a strong correlation with land use, particularly re-
lated to soil water availability and the variability of ET across 
different land use types. Over the last 30 years, agricultural areas 
have experienced shifts in ET patterns, especially in response 
to climate variations. During the warmer and drier years (e.g., 
2015, 2016, 2018–2020, 2022), ET in agricultural regions tends 
to peak earlier in the growing season (May/June), after which 
it drops sharply. In contrast, forested areas maintain higher ET 
during the summer months, due to increased water availabil-
ity and sustained transpiration (Kleine et  al.  2020; Landgraf 
et  al.  2022). Notably, during the 1990s, agricultural areas ex-
hibited higher ET earlier in the season compared to forests and 
water bodies, but this trend has reversed in more recent years. 
This suggests that the effect of recent climatic shifts dispropor-
tionately impacts agricultural areas.

The evidence from Trnka et al. (2011) also highlights that ag-
ricultural areas are experiencing increased vulnerability to 
climatic shifts, particularly with regard to ETET and water 
availability. Rising temperatures and increased drought stress 
have shortened the growing seasons and caused earlier col-
lapses of ET in arable land compared to forests, which benefit 
from deeper root systems and higher soil water retention, allow-
ing them to maintain more stable ET rates (Trnka et al. 2011; 
Teuling et  al. 2019). Additionally, Renner and Hauffe  (2024) 
emphasises that forest areas, due to deeper rooting depths and 
greater water retention capacities, demonstrate more resilience 
in ET behaviour under drought conditions compared to crop-
lands. These findings corroborate the trend of arable land being 
more sensitive to the increasing ET demands of the atmosphere 
caused by recent climatic shifts.

PCe2 also captures long- term changes in ET in regions affected 
by mining activities. The lowering of groundwater tables in and 
around active open- cast mining areas is reflected in the negative 
loadings of PCe2, indicating a sustained decrease in ET. This 
suggests that long- term groundwater depletion significantly in-
fluences ET patterns.

PCe3 highlights long- term trends in ET related to land use 
changes, particularly in areas affected by mining and resto-
ration activities. Areas with active mining or deforestation show 
negative loadings on PCe3 due to ongoing degradation of vegeta-
tion cover and reduced transpiration. Conversely, regions under-
going natural succession or restoration, such as former military 

training areas and afforestation sites, exhibit positive loadings 
on PCe3, signifying an increasing trend in ET as vegetation 
recovers. This pattern aligns with findings from Lei, Ren, and 
Bian (2016), where vegetation dynamics, as indicated by NDVI, 
played a critical role in shaping ET patterns. The similarity be-
tween these studies highlights the close relationship between 
ET and vegetation characteristics, particularly NDVI, which is 
a crucial input parameter in the SSEBOp model used for ET es-
timation of Landsat data.

The use of remote sensing data for ET estimation further com-
plements ground- based measurements, allowing for a more 
comprehensive analysis of water dynamics in lowland regions. 
This approach addresses the limitations of traditional monitor-
ing methods in capturing both natural and anthropogenic pro-
cesses driving ET changes over large areas.

The clear separation of ET patterns driven by water and vege-
tation dynamics underscores the effectiveness of PCA in cap-
turing complex temporal and spatial variations in ET. Mascaro, 
Vivoni, and Méndez- Barroso (2015) similarly demonstrated that 
vegetation is one of the primary factors influencing the spatial 
distribution of ET. Nevertheless, their PCA relied on model- 
based ET time series, which may be affected by underlying 
model assumptions.

However, some limitations of ET analysis should be acknowl-
edged. The derivation of ET time series from LST data, while 
physically based, operates at a global scale and may not fully ac-
count for regional or local factors influencing ET (Guerschman 
et  al.  2022). Additionally, gaps in the time series due to cloud 
cover, as well as data limitations from Landsat 7 failure, intro-
duce uncertainties in regions where temporal interpolation was 
necessary. Despite these limitations, our findings demonstrate 
that PCA applied to remote sensing- based ET time series can 
effectively detect changes in this substantial part of the water 
balance and thus supplementing ground- based hydrological 
monitoring with a more complete picture of the variables influ-
encing regional water balance.

4.3   |   Mapping of Primary Factors Influencing 
the Water Balance

The results indicate that the key factors influencing water bal-
ance in Lusatia can be effectively identified and spatially delin-
eated using data from different water balance components and 
PCA. Despite the complexity of the landscape, characterised 
by significant anthropogenic influences such as mining, water 
withdrawals and river management, the RF models successfully 
explained essential portions of the variance in groundwater dy-
namics using relatively few and easily accessible input variables. 
This underscores the strength of data- driven approaches, which 
can capture key patterns even in highly modified environments 
(McPhee and Yeh 2008; Yu and Chu 2010).

The variable importance rankings in the RF models highlighted 
land- use classes, geological characteristics and ET loadings as 
the most predictive covariates for the spatial distribution of the 
PC loadings. This finding emphasises the critical role both an-
thropogenic factors (e.g., land use change, mining activity) and 
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natural processes (e.g., vegetation dynamics, geological con-
ditions) play in shaping groundwater dynamics. For instance, 
land- use classes likely capture both anthropogenic influences, 
such as changes in agricultural or industrial activity and natural 
processes, such as vegetation growth and water use. Similarly, 
geological characteristics describe the permeability and storage 
capacity of groundwater, while ET loadings indicate water avail-
ability through the impact of ET processes.

The moderate predictive performance of the RF models, as in-
dicated by relatively modest R2 values and error metrics (MAE 
and RMSE), reflects the inherent challenges of modelling com-
plex hydrological systems using statistical approaches that lack 
physically based assumptions. However, these models still 
captured general spatial trends and major hydrological driv-
ers, despite limitations like the uneven spatial distribution of 
monitoring sites, particularly near mining areas. This uneven 
sampling may have impacted the model's ability to generalise 
predictions across regions with less dense monitoring data, yet 
the results still align well with the observed effects from the 
ground- based dataset.

The maps generated from RF predictions offer valuable in-
sights, particularly for areas where monitoring data is sparse 
or unavailable. While not fully accurate, these maps provide a 
useful representation of dominant hydrological processes serv-
ing as a preliminary tool for identifying regions where ground-
water dynamics may be influenced by specific factors, such as 
land use or geology.

In conclusion, while the RF- based approach has limitations due 
to its moderate accuracy and lack of physically based assump-
tions, it nonetheless provides meaningful insights into the spa-
tial patterns of groundwater dynamics in Lusatia. This method 
represents a useful complement to traditional hydrological mod-
elling, particularly in regions with limited data availability. We 
see great potential in a systematic iterative approach merging 
the proposed statistical approach with physically based models 
to enhance the predictive accuracy and better capture the com-
plexity of the hydrological processes at play.

5   |   Conclusions

This study demonstrates the effectiveness of a data- driven ap-
proach, using PCA to answer the three main objectives of our 
study. First, we examined the key spatio- temporal patterns in 
ground- based time series of groundwater and discharge and 
attempted to distinguish between anthropogenic and natural 
effects. Our analysis revealed significant differences in the pat-
terns, with the results highlighting the dominance of anthropo-
genic influences, particularly mining activities and the seasonal 
fluctuations caused by natural processes such as precipitation 
and ET. PCA allowed us to effectively differentiate these effects 
and gain a clearer understanding of the groundwater dynamics 
in the region. Second, we examined the main spatio- temporal 
patterns in ET time series and assessed how they correlate with 
specific land use types and climate factors. Our results showed 
pronounced ET dynamics with notable correlations between 
land- use types—such as agricultural land, forests and water 
bodies—and seasonal variations in ET. Finally, we investigated 

how the integration of groundwater, surface water and ET time 
series data can map the primary factors influencing the water 
balance in both spatial and temporal terms. By combining 
these datasets with additional environmental parameters, we 
mapped the most important factors and their spatio- temporal 
patterns across the entire study area.

Our findings demonstrate the value of PCA as a powerful tool 
for analysing complex hydrological interactions and offering 
valuable insights for spatio- temporal hydrological assessments in 
regions with limited data. The findings provide a robust basis for 
further research and can serve as a preliminary tool for guiding 
future hydrological investigations and informing water manage-
ment strategies. Building on this foundation, the approach can be 
refined through the use of more granular datasets or alternative 
modelling techniques to enhance the predictive accuracy.
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Appendix A

Spatial patterns of loadings of PCe1 to PCe4 of Landsat- ET time series. 
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Spatial patterns of loadings of PCg1 to PCg4 based on RF model of ground- based time series. 
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