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Abstract
Grassland plays an important role in German agriculture. The interplay of ecological processes in grasslands secures impor-
tant ecosystem functions and, thus, ultimately contributes to essential ecosystem services. To sustain, e.g., the provision of 
fodder or the filter function of soils, agricultural management needs to adapt to site-specific grassland characteristics. Spa-
tially explicit information derived from remote sensing data has been proven instrumental for achieving this. In this study, 
we analyze the potential of Sentinel-2 data for deriving grassland-relevant parameters. We compare two well-established 
methods to calculate the aboveground biomass and leaf area index (LAI), first using a random forest regression and second 
using the soil–leaf-canopy (SLC) radiative transfer model. Field data were recorded on a grassland area in Brandenburg in 
August 2019, and were used to train the empirical model and to validate both models. Results confirm that both methods 
are suitable for mapping the spatial distribution of LAI and for quantifying aboveground biomass. Uncertainties generally 
increased with higher biomass and LAI values in the empirical model and varied on average by a relative RMSE of 11% for 
modeling of dry biomass and a relative RMSE of 23% for LAI. Similar estimates were achieved using SLC with a relative 
RMSE of 30% for LAI retrieval, and a relative RMSE of 47% for the estimation of dry biomass. Resulting maps from both 
approaches showed comprehensible spatial patterns of LAI and dry biomass distributions. Despite variations in the value 
ranges of both maps, the average estimates and spatial patterns of LAI and dry biomass were very similar. Based on the 
results of the two compared modeling approaches and the comparison to the validation data, we conclude that the relation-
ship between Sentinel-2 spectra and grassland-relevant variables can be quantified to map their spatial distributions from 
space. Future research needs to investigate how similar approaches perform across different grassland types, seasons and 
grassland management regimes.
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Zusammenfassung
Schätzung von Grünland-Parametern basierend auf Sentinel-2-Daten: Ein Vergleich von zwei Modellierungsansätzen. Grün-
land spielt eine wichtige Rolle in der deutschen Agrarlandschaft. Das Zusammenspiel ökologischer Prozesse unterstützt 
wichtige Ökosystemfunktionen und somit letztlich eine Reihe zentraler Ökosystemleistungen. Um diese gesellschaftlich 
relevanten Ökosystemleistungen wie z.B. die Bereitstellung von Futter oder die Filterfunktion der Böden zu erhalten, ist 
ein dem Grünlandstandort angepasstes Management entscheidend. Hierfür haben sich aus Fernerkundungsdaten abgeleitete 
räumlich explizite Informationen als sehr hilfreich erwiesen. In dieser Studie stellen wir die zwei methodischen Ansätze 
der empirischen Modellierung sowie des Strahlungstransfermodells soil–leaf-canopy (SLC) gegenüber, und beleuchten die 
Vor- und Nachteile beider Methoden für die Ableitung grünlandrelevanter Parameter aus Sentinel-2-Daten. Basierend auf 
Felddaten zu Biomasse und Blattflächenindex (LAI), die auf einer Grünlandfläche in Brandenburg im August 2019 auf-
genommen wurden, konnten die Ansätze trainiert und validiert werden. Die Ergebnisse zeigen, dass beide Methoden die 
räumliche Verteilung des LAI sehr gut erfassen und die oberirdische Biomasse quantifizieren können. In der empirischen 
Modellierung nahmen die Unsicherheiten mit höheren LAI- und Biomassewerten zu und variierten im Durchschnitt um einen 
relativen RMSE von 11% für die Modellierung von trockener Biomasse und einen relativen RMSE von 23% für LAI. Ähnliche 
Ergebnisse wurden bei der Verwendung von SLC mit einem relativen RMSE von 30% für die LAI-Modellierung und 47% 
für die Schätzung der trockenen Biomasse erzielt. Die aus beiden Ansätzen resultierenden Karten zeigten übereinstimmende 
und realistische räumliche Muster von LAI- und Biomasseverteilungen. Trotz Abweichungen in den Wertebereichen beider 
Karten sind die durchschnittlichen Schätzungen von LAI und Biomasse sehr ähnlich. Die Ergebnisse beider Modellansätze 
und der Abgleich mit den erhobenen Validierungsdaten belegen, dass die Beziehung zwischen Sentinel-2-Spektren und 
grünlandrelevanten Variablen geeignet sind, deren räumliche Verteilung quantitativ abzubilden. Künftige Untersuchungen 
werden zeigen, welche Möglichkeiten und Grenzen beide Ansätze bei der Übertragung auf unterschiedliche Grünlandtypen, 
unterschiedliche Jahreszeiten und bei verschiedenem Flächenmanagement aufzeigen.

1  Introduction

Grasslands make up about 28.51% of the agricultural area 
in Germany (Destatis 2020) and are, thus, a characteristic 
landscape element. Depending on the respective manage-
ment regime, these areas provide a wide range of ecosys-
tem services that e.g., include carbon sequestration, water 
filtering, the provision of often species-rich habitats or the 
provision of fodder (Zhao et al. 2020; Blair et al. 2014; Sala 
and Paruelo 1997). The main economic use of grasslands is 
the production of dairy products and meat, by either herding 
livestock on pastures or mowing for fodder stocks (Smit et al. 
2008). To sustain crucial ecosystem services in the context 
of a changing climate, while at the same time extracting suf-
ficient amounts of nutrients to fulfill the demands on dairy 
products, appropriate management schemes are required. In 
Germany, grasslands are used both intensively and exten-
sively and the management related to both systems requires 
information on optimal timing for management practices 
such as fertilization, harrowing, harvesting, or grazing 
periods. To optimize management decisions, remote sens-
ing data have been proven to be instrumental for improved 
management decisions (Bastiaanssen et al. 2000; Schellberg 
et al. 2008; Schellberg and Verbruggen 2014), as informa-
tion from space enables to gather management relevant data 
over large extents and in a frequent manner (Wachendorf 
et al. 2018; Bastiaanssen et al. 2000; Schellberg et al. 2008; 
Schellberg and Verbruggen 2014). An important parameter 
that can be derived from remote sensing is the leaf area 

index (LAI), which resembles the quantification of vegeta-
tion foliage per unit of ground area and is related to bio-
sphere–atmosphere interactions such as photosynthesis and 
evapotranspiration (Chen and Cihlar 1996). The LAI allows 
insights into the state of vegetation, but also renders an 
important input variable for various modeling approaches, 
aiming to derive spatially explicit information on param-
eters that are relevant for grassland management such as 
soil moisture, yield estimates or fodder quality estimation 
(Herrmann et al. 2005; Löpmeier 1983; Nendel 2014).

Several studies have shown relations between spectral fea-
tures in optical data and proxies of vegetation that relate e.g., 
to the percentage of grass cover, grassland biomass, or fod-
der quality (Gao 2006; Wang et al. 2019). These approaches 
are either based on empirical models that use spectral data 
combined with reference (field) data in a regression (e.g. 
Ali et al. 2014; Friedl et al. 1994; Obermeier et al. 2019) or 
sophisticated biophysical models, such as Radiative Transfer 
Models (RTM, e.g., Darvishzadeh et al. 2011; Quan et al. 
2017). The latter are based on general formulized physi-
cal relationships between spectral properties and relevant 
variables that influence the scattering mechanisms in vegeta-
tion canopies (Verhoef 1998). RTMs model the transfer of 
radiation originating from the sun, its interaction with the 
earth’s surface and its way back through the atmosphere to 
the satellite’s sensor. Even though a fine spectral resolution 
of the input data is beneficial for both modeling approaches 
(Darvishzadeh et al. 2011, 2008; Obermeier et al. 2019), 
spaceborne hyperspectral data are not yet easily available, 
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limiting studies to regional extents. Multi-spectral space-
borne data from the sensors onboard of the Sentinel-2A and 
B (S-2) satellites (Drusch et al. 2012), however, bear high 
potential for mapping grassland-relevant parameters (Del-
egido et al. 2011; Punalekar et al. 2018) at a spatial scale that 
suffices management demands (Ali et al. 2016).

The objective of this study is, thus, to analyze the poten-
tial of S-2 data for quantifying the leaf area index of grass-
land as well as the dry above ground biomass in managed 
temperate grasslands in Germany. We use S-2 data together 
with LAI and biomass reference data for a test site in 
Brandenburg in an empirical modeling approach as well as 
with the radiative transfer model soil–leaf-canopy (SLC), to 
answer the following research questions:

	 (i)	 Are the spectral and spatial resolutions of S-2 data 
sufficient to quantify and map the spatial distribution 
of LAI and above ground biomass on grasslands in 
Germany?

	 (ii)	 How do results from empirical modeling and SLC 
compare?

2 � Methods

2.1 � Study Area

Our study area is a managed grassland site located in the 
administrative district Havelland (Brandenburg) in north-
eastern Germany. In this administrative district, which is 
located in the North German Plain, grasslands represent 
a third of all agricultural land. This makes grassland an 
important land use in the area (Landkreis Havelland 2018). 
The study area has a size of approximately 43 ha (Fig. 1) 
and is a permanent grassland which is used for animal 
feed production. The study area is in the Havelländisches 
Luch, which is characterized by drained shallow fen soils 
with varying peat layer thickness and groundwater levels, 

causing moist or moderate moist sites within the fields. 
In the western half of the field, groundwater levels are 
somewhat higher compared to eastern parts. The canopy is 
dominated by grasses, mainly Lolium perenne L., Phalaris 
arundinacea L., Elymus repens L., Alopecurus pratensis L. 
and Festuca arundinacea Schreb.. Phalaris arundinacea 
and Festuca arundinacea which have a moisture index of 
8 and 7 (Dierschke and Briemle 2008), and are very well 
adapted to the moist conditions on fen grassland. Under 
these conditions, the grasses can produce very high bio-
mass with heights from 0.5 to 1.0 m when used for feed but 
can reach more than 1.5 m at older morphological stages. 
Furthermore, Phalaris arundinacea is an endemic grass 
species of Havelländisches Luch (common name: Havel-
militz), which was observed in similar sites to produce up 
to 5 t DM/ha dry biomass (BM) per cut at a LAI > 8. The 
other grasses occur rather on the moderate moist parts of 
the site (moisture index 5–6). They are high yielding but of 
medium plant height with less than 0.5 m when young and 
up to 0.8–1 m at flowering. Herbs also appear in the can-
opy, though in lower proportion than grasses. The herbal 
plants present are Rumex ssp., species of Taraxacum and 
Ranunculus as well as of the legume Trifolium. The grass 
sward is usually mown three times per year, depending on 
the meteorological conditions during the growing season. 
The climate of the study region is characterized by con-
tinental conditions with warm summer temperatures and 
moderately cold winters. Based on the long-term average 
(1961–1990), the climate of the area is characterized by 
a temperature of 8.6 °C and a precipitation of 521 mm. 
Compared to the long-term average temperature of 13.6 °C 
in the main vegetation season (April–October), the years 
2018 and 2019 were very warm, as both had an average 
temperature of 16.7 °C. Additionally, the region suffered 
from drought during the years 2018 and 2019 (ZALF 
2020). Although grasslands are more resilient to drought 
conditions than other crops, drought-related yield losses 

Fig. 1   Study area in Branden-
burg and the location of the 
field plots



382	 PFG (2020) 88:379–390

1 3

are expected to increase in the next decades with ongoing 
climatic changes across the region (Schindler et al. 2007).

2.2 � Field Measurements

Field measurements were taken on the 9th of August 2019 
approximately within 2 h before and after solar noon. The 
weather conditions were ideal with high solar radiation 
and few clouds. To capture the variability of vegetation 
within the field, we based our sampling design on a S-2 
enhanced vegetation index (EVI) cluster map from the 
28th of July 2019 with six classes of similar EVI values, 
which helped to identify appropriate sampling locations 
on site. Based on this map, 21 sample plots were selected 
as central measurement locations (Fig. 1). To capture the 
coordinates of the selected positions, we took GPS meas-
urements with a Garmin Oregon device, and averaged 
the received signal over several minutes to minimize the 
positional error (Gao 2006). At the central plot, we took a 
white reference measurement using an Analytical Spectral 
Devices (ASD) FieldSpec 2 spectroradiometer that covers 
the spectral wavelength region from 450 to 2500 nm and 
subsequently a reflectance measurement of the vegeta-
tion (average of five measurements). We measured from a 
height of approximately 1.20 m leading, with an opening 
angle of 25°, to a ground sampling resolution of around 
0.2 m2. Following the spectral measurement, we measured 
the compressed sward height (CSH) using a falling plate 
meter with a size of 0.46 m × 0.46 m (0.2 m2) following 
the instructions in Rayburn and Lozier (2003). We then 
cut the vegetation within the area of the falling plate meter 
approximately 5 cm above the ground, put the grasses in 
sampling bags with air holes and stored in cool box until 
processing in the laboratory. The fresh weight of the col-
lected samples was measured in a laboratory before they 
were dried at 60 °C for 24 h in a convection oven after 
which the dry weight was measured. Around the central 

plot, we established an adapted star sampling design (Muir 
et al. 2011), with four 20-m transects in cardinal directions 
to cover a representative area surrounding each central 
plot, on each of which we took measurements on a transect 
point every 5 m (Fig. 2).

We obtained spectral reflectance measurements (using an 
ASD FieldSpec 3 spectroradiometer), CSH, and leaf area 
index (LAI) using the SS1 SunScan Canopy Analysis Sys-
tem, which measures the incoming light from the bottom of 
the canopy with 64 sensors within a lance of 1-m length. In 
parallel, the irradiance was measured using a hemispheri-
cal sensor on a tripod. Accordingly, we collected data at 17 
locations per plot. Due to changing weather conditions, we 
could not use all measured spectra/LAI measurements at 
all transect points. Overall, we obtained 207 LAI measure-
ments, 21 biomass samples, 229 CSH measurements and 
229 spectra (Fig. 3). Dry biomass (BM) values for each sam-
pling point were estimated based on the CSH measurements 
using a linear regression (Fig. 3). The spectral measurements 
were used to simulate S-2 bands using the respective spectral 
response function (ESA 2017).

2.3 � Satellite Data

For the model comparison, the S-2 scene was chosen which 
was recorded closest in time to the time of the LAI meas-
urements. A cloudless scene was acquired by S-2 on 28th 
of July 2019, 13 days before the field measurements were 
taken.

The scene was pre-processed using the Vista Imaging 
Analysis algorithm (VIA, Niggemann et al. 2014; Nigge-
mann et al. 2015). Pre-processing within this processing 
chain includes an atmospheric correction, a land-use clas-
sification, masking of clouds and cloud shadows as well as 
detection and correction of cirrus clouds. Since the cho-
sen scene was not covered by clouds or cirrus on the pix-
els within the area of interest no cloud masking or cirrus 

Fig. 2   Field plot sampling 
design and measurements over-
view (left; details in the main 
text). Example of field spectral 
measurement and Sentinel-2 
bandwidths (shaded) used in 
this study (right; blue (b), green 
(g), red (r), three red-edge 
bands (re), near infrared (nir), 
shortwave infrared 1 (swir1), 
shortwave infrared 2 (swir2)
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correction was performed on the pixels within the test site. 
No Bidirectional Reflectance Distribution Function (BRDF) 
correction was performed within the VIA, since a BRDF 
correction is part of the radiative transfer modeling process 
within SLC. For the analysis, the 20-m and 60-m bands of 
the S-2 scene were resampled to 10-m resolution. To reduce 
the effect that neighbouring pixels influence each other, an 
adjacency correction was applied. In this way, the influence 
of brightness differences of neighbouring pixels is reduced 
(Verhoef and Bach 2007; Bach 1995).

2.4 � Modeling Approaches

We used a random forest regression to relate the simulated 
S-2 spectra with the LAI and biomass field measurements in 
an empirical model (EMP). Random Forests are an ensemble 
of individually trained decision trees aiming to average out 
modeling errors (Breiman 2001). To randomize the training 
of the decision trees they are grown with a subset of the 
input training data and only a pre-defined number of input 
predictors (mtry) is used at each decision tree node to find 
the optimal split. The empirical modeling was done in R (R 
Core Team 2018) using the RandomForest package (Liaw 
and Wiener 2002) in which we set the number of trees to 
500 and tuned the model parameters mtry using the tuneRF 

function. To get statistically robust results and an estimation 
of uncertainty, we iterated the modeling approaches for each 
of the variables (LAI and BM) 100 times with random splits 
of the input data using 70% of the data for model training 
and 30% of the data for model validation. Within each itera-
tion model, performances were assed using the coefficient of 
determination (R2) and the root-mean-square error (RMSE). 
To make the performance metrics comparable between the 
two response variables, we normalized the RMSE (NRMSE) 
to the mean value of the respective set of validation data. 
The individual variable importance was assessed by calcu-
lating the increase in mean squared error (MSE) between 
the initial model and a model in which the variable to be 
assessed was permutated (Liaw and Wiener 2002).

As a second method to derive LAI estimates from the S-2 
scene, the radiative transfer model SLC was used (Verhoef 
and Bach 2003, 2007). SLC is a physically based surface 
reflectance model that evolved from the GeoSAIL model 
(Verhoef and Bach 2003). Direct and diffuse fluxes of inci-
dent and reflected radiation are taken into account while 
modeling the radiation transfer in a so-called four-stream 
approach. Input variables for SLC are grouped into four dif-
ferent groups of variables including information about the 
satellite sensor, the observation geometry at the moment of 
satellite data acquisition, biophysical and biochemical prop-
erties of the vegetation canopy and the properties of the soil 
below the canopy. A two-layer modernized version of the 
model SAILH (Verhoef 1985) is used for canopy modeling 
in SLC; whereas, spectral reflectance and transmittance of 
green and brown leaves are calculated using the PROSPECT 
sub-model (Jacquemoud and Baret 1990). To account for 
soil reflectance characteristics a non-Lambertian soil BRDF 
sub-model for soil reflectance and its variation with mois-
ture is incorporated in SLC (Verhoef and Bach 2007). SLC 
models potential reflectance spectra by varying the input 
parameters. For this study, a look-up-table approach was 
used to calculate all possible solutions resulting of the vari-
ation of the inverted parameters. The parameter combination 
that best describes the conditions of earth’s surface is chosen 
by comparing modeled and measured reflectance spectra and 
choosing the result with the lowest RMSE. The soil input 
dataset was adapted to resemble the soil characteristics of 
the study site by measuring reference spectra on adjacent 
arable fields during a moment when the bare soil was visible 
and converting the derived S-2-spectra into single scattering 
albedo values to use as soil-background layer for the model 
calculations in SLC (Verhoef and Bach 2007). By doing this, 
the influence of the reflectance characteristics of the soil, 
that can influence the reflectance spectra of a site when the 
soil is not entirely covered by vegetation, can be taken into 
account. Green leaf area, leaf chlorophyll content and the 
leaf angle distribution within the canopy were inverted. Dry 
biomass values for each pixel were calculated by multiplying 

Fig. 3   Histograms of the LAI (a) and CSH (b) field measurements 
and a scatterplot (c) of the dry biomass values and the respective 
CSH measurements, which were used for modeling biomass values 
for each measurement point
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the inverted green leaf area with the leaf mass per area 
(LMA). Leaf mass per area is a species-specific parameter 
that also varies with the phenological stage of the plants 
and with LAI. For this study, the LMA value was calculated 
from the field data by calculating the ratio between dry bio-
mass values and the measured leaf area for each sample site 
and averaging the values. The site-specific LMA was then 
applied to calculate the dry biomass values from the inverted 
green leaf area. Model performance of SLC is evaluated by 
comparing modeled to input spectra, where input spectra 
refer to the surface reflectance measured by S-2.

2.5 � Validation

To assess the model accuracy, the calculated values were 
compared to the reference data collected in the field. This 
was done separately for both modeled parameters LAI and 

BM. Once the LAI values from sample locations with vary-
ing lighting conditions had been excluded, a total of 207 LAI 
and 228 BM (calibrated using CSH) measurements could be 
used for validation. Based on the transect sampling design, 
we matched the point measurements of LAI and BM to the 
estimated pixel values from the SLC and the EMP. CSH and 
LAI measurements were taken on the 20-m transect lines 
with a distance of 5 m between each sample point (Fig. 2). 
This means that often more than one sample point lies within 
a pixel of the S-2 scene. Therefore, we averaged all values 
per plot and compared the mean value for each plot with the 
averaged modeled pixel values located within a 20-m buffer 
around the central coordinate of the plot. For this validation, 
only the 13 plots were used, at which all point measurements 
were valid (Fig. 4). In this way, we accounted for geometric 
inaccuracies which might be due to GPS positioning errors 
and the positional accuracy of the S-2 image.

3 � Results

3.1 � Empirical Models

Based on the randomly sampled sets of training and val-
idation data during each of the 100 model iterations, we 
were able to derive robust model performance measures 
for the estimation of LAI and biomass. BM was estimated 
with a mean R2 of 52% (44–66%) and an NRMSE of 17% 
(14–22%). LAI models performed with a mean R2 of 0.62 
(0.44–0.81) and an NRMSE of 23% (19–28%; Fig. 5).

The comparison between the values of the LAI and the 
BM map showed comparable spatial patterns and a strong 
correlation with a Pearson-correlation coefficient of 0.98, 
with higher deviations at low and high ends of the data 
ranges (Figs. 5, 6). The related standard deviations also 
revealed similar spatial patterns, with higher deviations from 
the mean with increasing LAI and BM values (Fig. 6). Both 
maps indicated higher LAI and BM values on the western 

Fig. 4   Location of the transects and field sampling points within the 
study area. The 20-m buffer around the central plot coordinates were 
used for averaging LAI and BM model estimations, which were sub-
sequently used for validation

Fig. 5   Distribution of the 
internal model performance 
measures R2 (a), relative RMSE 
(b) for LAI and BM models 
after 100 iterations. Scatterplot 
of LAI and BM mean estimates 
for the whole study area after 
100 iterations with Pearson cor-
relation coefficient r (c)
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half of the field in the moist part and lower values of both 
variables in the eastern half in the moderate moist part, 
along with smaller local variations in both sides of the field. 
This resulted in an overall mean LAI of 3.5 and an overall 
mean BM of 2.2 t/ha. The comparison with the field data 
resulted in a R2 of 79% and a NRMSE of 23% for the LAI. 
Agreement between the field data and the mapped BM was 
assessed with an R2 of 90% and a NRMSE of 11% (Fig. 9).

For both variables, we observed a similar ranking in vari-
able importance. On average, the most influential predictor 
variable for estimating LAI and BM was the Rededge-NIR 
band (central wavelength (CW): 779.7 nm), followed by the 
bands NIR (CW: 864 nm) and red (CW: 664.9 nm) for LAI 

prediction; and red and Redegde-2 (CW: 739.1 nm) in the 
BM models (Table 1).

3.2 � Radiative Transfer Models

Comparison of reflectance spectra modeled by SLC to 
reflectance spectra measured by S-2 across all pixels of the 
test site result in an average RMSE of 1.57, indicating an 
overall good model fit. Spatial analysis of the RMSE shows 
an even distribution over the entire test site (Fig. 7), which 
indicates that the allowed variation of parameters used for 
model inversion provides robust modeling without cluster-
ing of residuals. The eastern part of the study site shows 
smaller LAI and BM values in comparison to the western 
half, with some smaller areas with the highest values (LAI 
of 7; BM of 5 t/ha). The mean modeled green LAI over all 
validation plots for the satellite scene acquired on 28th of 
July 2019 was 4.02, in comparison to a mean measured LAI 
of 4.48 derived from field measurements in 9th of August 
2019. Comparison of the modeled LAI values to the valida-
tion data results in an R2 of 78% and a NRMSE of 30%. The 
biomass prediction was evaluated with an overall R2 of 90% 
and NRMSE of 47% (Fig. 9).

3.3 � Model Comparison

Visual comparison of the results revealed similar spatial 
patterns modeled by both approaches, both for LAI as 
well as for biomass estimation. The mean values for the 

Table 1   Mean random forest variable importance after 100 iterations 
for BM and LAI estimation

Mean increase MSE LAI 
[%]

Mean increase 
MSE BM [%]

Blue 13.70 10.21
Green 10.91 11.06
Red 15.77 15.35
RE1 10.31 9.99
RE2 13.34 15.19
RENIR 17.69 17.74
NIR 16.76 15.12
SWIR1 9.27 13.98
SWIR2 9.84 12.69

Fig. 6   LAI and BM estimates 
(a, c) and related standard 
deviation (STD; b, d) based on 
100 model iterations
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entire field were very similar with a mean LAI (SLC) of 
3.61 compared to LAI (EMP) of 3.51 and average BM 
values of 2.49 t/ha (SLC) and 2.23 t/ha (EMP). In both 
maps, the western half of the study site was dominated 
by higher LAI and BM values; whereas, the eastern part 
of the field had lower values (Figs. 6, 7). The highest dif-
ferences between both maps were found at the extreme 
ends of the data range with empirical model results being 
higher than the SLC results in the lower value ranges and 
lower values at the high end of the data range (Fig. 8). 
Direct comparison of model results to each other for every 
modeled pixel within the study site resulted in a very 
high correlation for LAI (r = 0.95) and BM (r = 0.96). In 
comparison to the results of the radiative transfer model, 

where modeled LAI values varied between 0.68 and 9, the 
results of the empirical model showed slightly less varia-
tion, with modeled values for LAI which varied between 
1.86 and 6.31. The comparison of the plot-wise averaged 
modeling results (within a 20-m buffer) to the field data 
(mean values per plot), showed good relations (in terms 
of R2 values) for the SLC as well as for the EMP models 
(Fig. 9). The per plot-averaged LAI field values range from 
1.78 to 6.91, while the SLC results range from 0.86 to 
8.14, and the EMP values from 2.07 to 6.09. Mean BM 
field measurements range from 1.77 to 3.53 t/ha, SLC BM 
estimates from 0.59 to 5.62 t/ha and EMP BM values from 
1.59 to 3.07 t/ha. These differences are quantified in the 
respective NRMSE values. In general, it can be observed 

Fig. 7   SLC LAI estimates with related RMSE (a, b) and biomass estimates (c)

Fig. 8   Difference maps (A, 
C) and scatterplots (B, D) of 
LAI and BM resulting from the 
empirical model and the RTM
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that the plot-wise standard deviation is higher in the field 
values, in comparison to both model estimations of LAI 
and BM (Fig. 9).  

4 � Discussion

We were able to quantify and map the spatial distribution 
of LAI and above-ground dry biomass with two modeling 
approaches on a grassland site in Brandenburg from field ref-
erence data and S-2 spectra. The results corroborate that the 
spectral characteristics of S-2 data enable to derive grassland 
parameters with a spatial resolution of 10 m that allows to 
adjust local management schemes. As expected, the spectral 
bands of the red and near-infrared regions of the electromag-
netic spectrum were the most influential in the empirical 
model. This confirms findings of other studies (Darvishza-
deh et al. 2009, 2019; Punalekar et al. 2018); whereas in 
our study, especially the Rededge-NIR band with a central 
wavelength of 783 nm and a bandwidth of 20 nm (Drusch 
et al. 2012) was ranked as most important for the estimation 
of LAI and BM, while the SWIR bands were less important.

The spatial patterns in the resulting maps of the SLC and 
the empirical model are highly correlated and the compari-
son of the results from both modeling approaches led to 
comprehensible spatial patterns of LAI and BM. In all four 
maps from the two modeling approaches, the western half 
of the observed field was characterized by higher values, in 
comparison to the eastern half. This is particularly due to 
Phalaris arundinacea that reaches higher portions in the 
swards under moist site conditions and occurs mostly in the 
western part. The variation of measured and modeled values 
for LAI and BM is very high on the plot level. This is prob-
ably due to the high heterogeneity of species composition 
in the stand.

In general, the model performance metrics as well as the 
ones derived from the comparison of field reference data 
with the model outcomes suggest that both variables, LAI 
and BM, could be modeled with similar accuracies, although 
the predicted data range in the SLC model is somewhat 
higher. Still both models led to LAI predictions in a range 
that is comparable to values that were modeled for other 
grassland sites in Germany (e.g., Asam et al. 2015). Mode-
ling errors might partly be due to the spatial heterogeneity of 

Fig. 9   Comparison of average 
(± 1 standard deviation) LAI 
(upper row) and BM (lower 
row) values for each transect 
measured in the field to the SLC 
and empirical model outputs 
averaged within a 20-m buffer 
around the central coordinate
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the species distribution within the observed grassland. The 
grassland canopy in the study site is very heterogeneous, 
with areas of varying species composition that may have 
led to LAI hotspots with comparably high values especially 
in the SLC results. These species differ, e.g., in their chlo-
rophyll content and leaf angle, which are both inverted vari-
ables for the SLC model, in which not all possible variable 
combinations that were present on the grassland site might 
have been included in the initial model. Similar observations 
were reported in Darvishzadeh et al. (2008) where radiative 
transfer LAI model performances increased when consider-
ing only plots with two species. Here, additional informa-
tion on expected species composition could be helpful to 
fine-tune the model accordingly. For the empirical modeling 
approach, a high species heterogeneity is also challenging, 
as it requires a high number of representative field samples 
covering variations in LAI (and BM) but also species com-
position. Here, LAI was measured in the field using a pre-
defined leaf angle, which was not adjusted for individual 
species. Furthermore, no LAI below one was measured in 
the field, which explains the discrepancy in the lower values 
of the SLC and empirical model results.

Concerning the estimation of BM, the empirical model 
in this study led to better model performances as it was 
directly trained with the entire range of BM across the study 
site. However, the final map with mean BM values of 100 
model iterations did not cover the extreme values of the field 
samples. This might be due to the empirical random for-
est modeling approach which is based on subsets of field 
data and may not always include data from the few extreme 
values. Moreover, the calibration of the falling plate meter 
measurements with the 21 dry BM weights showed mod-
erate correlation, which propagates to the final model and 
explains model uncertainty. This could be improved using 
more calibration samples. Nonetheless, the high correlation 
between the LAI and BM values resulting from the empiri-
cal model from independent data collections suggests that 
the field data are reliable and the estimated values realistic. 
For the SLC, the time lag of 13 days between field data col-
lection and the acquisition date of the S-2 image might have 
impacted the accuracy of the results since the LMA, that 
was derived from the field measurement data, might have 
changed in the period between the acquisition of the satellite 
scene and the field sampling. Variations of LMA within time 
can be accounted for by assimilating derived LAI values into 
a plant growth model and calculating the biomass within 
the model (Hank et al. 2012, 2015). Due to a lack of precise 
information, we here assumed an average LMA for the entire 
study site based on field data. Supporting the importance of 
species-specific input parameters, Punalekar et al. (2018) 
found that biomass estimates from a radiative transfer model 
were more accurate for grassland sites with homogenous 
species composition compared to mixed-species fields.

Overall, BM estimations of the two models agree well 
with the actual reported yield. The analyzed area was har-
vested on 10th of August (1 day after the field measure-
ments were taken) with an average BM yield of 1.9 t/ha. In 
comparison, we estimated average BM values of 2.49 t/ha 
with the SLC model and 2.23 t/ha with the empirical model, 
which underlines the reliability of the modeling results. The 
mean BM estimates are in a reliable range when compared to 
reported average grassland yields in Havelland for the period 
2010–2015, with a mean annual yield (after several cuts) of 
5.34 t/ha (AfS Berlin-Brandenburg 2017). Despite severe 
drought in 2018 and temperatures above the average in 2019, 
the measured and modeled BM is within the expected range 
for a summer cut on a moist/moderate moist fen grassland.

5 � Conclusion

Based on the results of the two compared modeling 
approaches, we conclude that the relationship between S-2 
spectra and grassland-relevant variables was suitable to map 
their spatial distribution. We were able to map LAI and dry 
BM with comprehensible spatial patterns and meaningful 
overall estimates of the observed values for the test site in 
Brandenburg. The modeled dry biomass from the two com-
pared approaches was well in line with the actual reported 
yield. Under similar conditions, which can for example be 
found in large parts of northern Germany, the established 
models will likely perform similar. However, future stud-
ies shall model the transferability of our results, specifi-
cally concerning different environmental conditions such 
as soil type, water availability, species composition, as well 
as different management regimes. Our results showed high 
correlations between the outcomes of SLC and empirical 
modeling, even though both approaches were trained and 
parameterized independently. Highest differences between 
the two approaches were observed at the low and far end 
of the data range, which highlights the importance of a 
representative distribution of training data for the empiri-
cal model and an optimized parametrization of the SLC 
for modeling LAI and BM for heterogeneous grasslands. 
Follow-up studies should, thus, investigate how the com-
bination of SLC with sophisticated plant growth models 
influences the results, and if this combination enables model 
generalization.
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