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ABSTRACT
An understanding of the key factors and processes influencing the variability of soil organic carbon (SOC) is essential for the 
development of effective policies aimed at enhancing carbon storage in soils to mitigate climate change. In recent years, com-
plex computational approaches from the field of machine learning (ML) have been developed for modelling and mapping SOC 
in various ecosystems and over large areas. However, in order to understand the processes that account for SOC variability 
from ML models and to serve as a basis for new scientific discoveries, the predictions made by these data- driven models must 
be accurately explained and interpreted. In this research, we introduce a novel explanation approach applicable to any ML 
model and investigate the significance of environmental features to explain SOC variability across Germany. The methodology 
employed in this study involves training multiple ML models using SOC content measurements from the LUCAS dataset and 
incorporating environmental features derived from Google Earth Engine (GEE) as explanatory variables. Thereafter, an expla-
nation model is applied to elucidate what the ML models have learned about the relationship between environmental features 
and SOC content in a supervised manner. In our approach, a post hoc model is trained to estimate the contribution of specific 
inputs to the outputs of the trained ML models. The results of this study indicate that different classes of ML models rely on 
interpretable but distinct environmental features to explain SOC variability. Decision tree- based models, such as random forest 
(RF) and gradient boosting, highlight the importance of topographic features. Conversely, soil chemical information, particu-
larly pH, is crucial for the performance of neural networks and linear regression models. Therefore, interpreting data- driven 
studies requires a carefully structured approach, guided by expert knowledge and a deep understanding of the models being 
analysed.
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1   |   Introduction

Soil organic carbon (SOC) is critical for maintaining soil health 
and fertility, enhancing its structure, water retention and nutrient 
availability. SOC plays a significant role in mitigating global warm-
ing by sequestering atmospheric CO2, thereby reducing green-
house gas concentrations (Lal  2004; Zeraatpisheh et  al.  2022). 
Additionally, SOC supports biodiversity by providing energy and 
habitat for microorganisms, which are essential for nutrient cy-
cling and decomposition processes (Powlson et al. 2011). Effective 
management of SOC is vital for sustainable agricultural practices 
and long- term food security (Smith et al. 2008). In this context, 
modelling SOC using machine learning (ML) is critical for accu-
rately predicting SOC dynamics and supporting more effective 
soil management, particularly when accounting for both spatial 
and temporal variations in 4D mapping (e.g., Gerke et al. 2022).

ML technologies are now extensively applied across various 
domains. This advancement has significantly boosted the inte-
gration of ML in scientific research. Typically, ML models are 
trained to achieve high accuracy, and there is a growing demand 
to grasp model functioning and rationalise decisions (Burkart 
and Huber 2021). This is crucial, since many scientists apply ML 
methodologies to optimise/generate scientific findings (Roscher 
et  al.  2020). Interpretability is paramount to the scientific va-
lidity of results to derive new insights and discoveries from 
observed or simulated data (Samek et al. 2017). Recent advance-
ments in this field have significantly influenced other scientific 
disciplines such as soil science and biogeochemistry through the 
availability of new tools to leverage explainable AI, providing 
deeper insights and understanding of complex datasets.

Many studies have applied explainable AI to understand and 
predict various soil and ecological processes (e.g., Wadoux and 
Molnar  2022). One of the most frequently used approaches is 
Shapley Additive Explanation (SHAP) (Lundberg and Lee 2017). 
For example, a study developed a Shapley value- based approach 
to interpret ML spectroscopic models. When applied to an RF 
prediction model for SOC, Shapley values provided dominant 

spectral contributions, increasing understanding and trust in 
soil spectroscopy predictions (Wadoux 2023). While SHAP val-
ues are widely used for model interpretability, they have notable 
limitations. They are computationally intensive, especially for 
large datasets and complex models (Vowels 2022). Additionally, 
SHAP relies on approximation methods such as KernelSHAP 
and TreeSHAP to make the calculations feasible, which can in-
troduce inaccuracies (Sundararajan and Najmi  2020). Wadoux 
et  al. (2020) explored the use of ML for digital soil mapping 
(DSM) and highlighted methods for interpreting deep learning 
models. They specifically discussed the use of feature importance 
metrics and partial dependence plots (PDPs) and accumulated 
local effects plots for model explainability. However, for models 
that make abrupt or highly non- linear predictions (e.g., decision 
trees with deep splits), PDPs may not accurately capture the rela-
tionship between features and the outcome due to their inability 
to reflect complex interactions in the data (Vowels 2022).

Another research effort developed a physics- guided ML approach 
that integrated physical parameters into ML models to improve 
the monitoring and prediction of soil and environmental dynam-
ics. This method combines simulated data with various physical 
parameters to enhance model accuracy and reliability, leverag-
ing scientific knowledge to better understand and manage soil 
processes (Chen et  al.  2023). In another study, the coupling of 
microbial- explicit models with ML improved the simulation 
of SOC turnover, demonstrating the synergy between domain- 
specific knowledge and advanced algorithms (Xu et  al.  2024). 
These hybrid modelling approaches align with explainable AI 
by incorporating known physical laws and mechanisms into ML 
models, ensuring that predictions are both accurate and interpre-
table. However, physics- based ML approaches require significant 
expert knowledge and are often limited to specific scenarios.

Model- specific feature importance estimations are widely used 
for explaining ML models. For instance, these methods were ap-
plied in France (Mulder et al. 2015) and utilised for agricultural 
soils in Germany (Vos et al. 2019). These methods generate sta-
tistics that assess the relative importance of different features 
within the model. While these indicators are both valid and 
valuable, they only provide a global measure of variable impor-
tance across the entire study area. They do not consider spatial 
variations in the interaction between environmental factors and 
SOC contents, which can lead to regional differences in mod-
elling (Wadoux et al. 2022). In a recent study, activation maps 
and a local error- correction mechanism have been proposed for 
elucidating deep learning models (Tziolas et al. 2024). However, 
this method also requires generalisation to be applicable to 
models beyond deep learning. Despite these efforts, a critical 
research gap remains in systematically comparing feature im-
portance measures across different ML algorithms.

Another approach to model interpretation is to treat the task of pro-
viding explanations for ML model decisions as a learning problem, 
training an explanation model to estimate the influence of specific 
inputs on another ML model's outputs (Schwab et al. 2019). One 
such method is CXPlain (Schwab and Karlen 2019), which uses a 
supervised learning process to deliver post hoc explanations—i.e., 
explanations generated after the model's predictions—without 
requiring modifications to the original model. Such an explana-
tion model employs an objective to train a supervised ML model 

Summary

• The integration of machine learning in environmental 
and soil sciences advances research but lacks trans-
parency in decision- making processes, necessitating 
model explainability.

• Framed as a supervised learning task, we aim to train 
an explanation model to quantify input influence on 
ML model outputs, supplemented with expert- based 
environmental interpretations.

• Different ML model classes rely on distinct environ-
mental features to explain SOC variability. Decision 
tree- based models (e.g., random forest, gradient boost-
ing) highlight topographic features, while neural net-
works and linear regression models depend on soil 
chemical information.

• Interpreting data- driven studies requires a structured 
approach, guided by expert knowledge and a deep un-
derstanding of the models analysed.
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to explain another ML model (Covert et al. 2021). This approach 
has several advantages over previously described methods. It 
is applicable to any ML model and data modality, as it does not 
require modifying or retraining the original prediction model. 
Additionally, it can be computationally efficient.

This method has been widely applied across various contexts 
such as deep learning and computer vision and is well- received in 
the research community for its flexibility and effectiveness. For 
instance, in Chen et al. (2024), it was used to explain graph neural 
networks (GNNs) by focusing on the most relevant graph struc-
tures influencing predictions. The approach generates counter-
factual and model- level explanations while ensuring reliability 
by keeping the explanations aligned with the underlying data dis-
tribution. In another paper (Situ et al. 2021), the authors propose 
a method called Learning to Explain (L2E), which uses CXPlain 
as a base approach to generate explanations for black- box models. 
Instead of directly explaining the model output, L2E distils the 
explanation algorithm into a separate explainer network. This al-
lows for the generation of more stable and faster explanations by 
learning the behaviour of the underlying model and applying it to 
new instances. Inspired by this methodology, other researchers 
in Chuang et al. (2023) introduced a similar L2E concept, where 
they trained an explanation model to mimic the behaviour of an 
existing explanation algorithm. They designed a framework that 
uses an explanation encoder to learn latent explanations through 
positive and negative sampling strategies based on contrastive 
learning. The authors in Hostallero et  al.  (2023) used CXPlain 
to make their deep learning framework interpretable. CXPlain 
was leveraged to help identify key genes that influence the drug 
response predictions made by the model. This interpretability al-
lowed them to highlight a small set of genes whose expression 
levels are crucial for predicting drug sensitivity, thus aiding in the 
identification of biomarkers related to drug response.

In this paper, we demonstrate how the aforementioned explana-
tion model can assist in explaining the association between a soil 
property (SOC) and environmental factors identified by an ML 
model. After preparing a comprehensive set of environmental 
feature inputs, we applied several popular regression models, in-
cluding decision trees, neural networks (NNs) and linear regres-
sion, to generate a map of SOC content across Germany. Using 
multiple models ensures a robust and comprehensive analysis by 
allowing result comparisons and verifying reliability. We then 
implemented the explanation model to compute the importance 
score of each feature. The outcome of the explanation model, 
specifically the feature importance, provides insights into which 
environmental factors most significantly influence SOC content. 
We complemented our analysis by interpreting the results based 
on expert knowledge towards understanding the key factors and 
processes influencing the variability of SOC and compared them 
with previous studies that predict SOC content over Germany.

2   |   Datasets

2.1   |   Ground Reference Samples

The LUCAS Programme was initiated in 2001 as a Eurostat- 
managed area frame survey by the statistical office of the EU. 
The survey is based on the visual evaluation of agricultural 

policy- relevant factors. Since 2006, sampling has been con-
ducted at the intersections of a regular 22 km grid covering 
the EU's territory. Eurostat, together with the European 
Commission's Directorates- General for the Environment and 
the Joint Research Centre, designed a topsoil assessment com-
ponent (‘LUCAS- Topsoil’) within the LUCAS survey (Toth 
et al. 2013; Ballabio et al. 2016). This component, with a sam-
pling depth of 0–20 cm, was created to produce the first har-
monised and comparable data on soil at the European level 
to support policymaking (Orgiazzi et  al.  2018). In our anal-
ysis, we utilised this dataset for both 2015 and 2018, which 
contains SOC information for all EU countries. However, 
we restricted our study area to Germany only to focus on the 
specific factors affecting SOC estimation in this region. The 
spatial distribution of 1686 samples throughout Germany is 
displayed in Figure 1. The soil samples exhibit severe skew-
ness, with fewer samples in the upper quantiles, as shown in 
Figure 2. Additionally, Figure 3 shows the distribution of land 
cover classes at 200,000 randomly selected locations across 
Germany (Table 1).

2.2   |   Input Features

In this study, we employed five distinct categories of environ-
mental features: soil information, remote sensing images, veg-
etation, climate and topography. These features are designed to 
quantify SOC by providing insights into the key biotic and abi-
otic processes that influence SOC content, utilising the expertise 
and domain knowledge of field specialists (Sakhaee et al. 2022). 
We followed a meticulous procedure to prepare these features, 
which will be thoroughly discussed in the following sections. 
Google Earth Engine (GEE), leveraging Google's computing 
infrastructure and publicly accessible remote sensing datasets, 

FIGURE 1    |    The spatial distribution of SOC ground truth (GT) 
samples.
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was the primary source for all the features used (Figure 4). A 
comprehensive list of all input features is provided in Table 2, 
and the final spatial resolution of the analysis is 250 m. To facil-
itate further exploration and adoption of our analysis, we have 
made it freely available at: https:// github. com/ nafis ehkak hani/ 
XAI-  for-  SOC-  models.

2.2.1   |   Soil Information

Eight features representing various aspects of soil properties 
were included: the map of clay content, as it directly correlates 
with SOC (Ballabio et al. 2016); the map of pH, since soil acidity 

affects microbial activities that drive soil organic matter turn-
over, thereby influencing SOC (Beugnon et  al.  2023; Malik 
et al. 2018) and the map of water content, due to its interaction 
with SOC through plant productivity (Ballabio et  al.  2016). 
Additionally, we considered soil taxonomy and texture maps, 
as they differentiate soil types and explain their geographical 
distribution across the nation (Yu et al. 2020). These maps are 
accessible via GEE (Hengl et al. 2017).

2.2.2   |   Remote Sensing Images

Publicly available remote sensing images were used for predic-
tions in numerous studies in soil science, following detailed pre-
processing steps. For instance, in a study by Broeg et al. (2024) soil 
reflectance composites based on Landsat images were used for 
large- scale predictions of soil properties. Similarly, another study 
by Wang et al. (2021) carefully prepared Sentinel- 2 images to pre-
dict soil organic matter. In this study, we used the Harmonised 
Landsat and Sentinel- 2 (HLS) dataset, which combines these 
two prominent satellite imagery sources, for our analysis. The 
HLS project, a NASA initiative, aims to produce a virtual con-
stellation of surface reflectance data from the Operational Land 
Imager (OLI), on Landsat 8 and the MultiSpectral Instrument 
(MSI) on Sentinel- 2. HLS products are generated using a set of 
algorithms that ensure seamless integration of data from both 
sensors, including atmospheric correction, cloud and cloud- 
shadow masking, spatial co- registration, common gridding, 
bidirectional reflectance distribution function normalisation FIGURE 2    |    Histogram and KDE plot of SOC values.

FIGURE 3    |    Land cover classes in selected locations with corresponding legends.

TABLE 1    |    Statistical summaries of SOC samples utilised in this study.

Mean s.d. Min. Q1 Median Q3 Max.

LUCAS samplesa 36.86 55.41 2.20 13.20 21.00 37.50 559.70
aThe SOC content is measured in (g/kg).
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and spectral bandpass adjustment (Claverie et  al.  2018). The 
HLS dataset provides a higher temporal resolution compared 
to individual Landsat- 8 and Sentinel- 2 datasets, which is partic-
ularly beneficial for our analysis, especially for removing cloud- 
affected images.

To minimise the impact of vegetation on our analysis, we fo-
cused on images captured during the seeding season as rec-
ommended by Dvorakova et  al.  (2023), specifically between 
day of year 70 and 120. This period is less likely to be affected 
by dense vegetation cover. We also applied a filtering pro-
cess to exclude images with significant cloud cover, snow, ice 
and shadow, ensuring these accounted for less than 20% of 
the total image area. Given the high likelihood of cloud cover 
during this period in most European countries, we included a 
5- year interval starting from 2014 to increase the probability 
of obtaining usable images. The final selected HLS bands are 
red, green, blue, near- infrared and two bands of shortwave 
infrared.

2.2.3   |   Vegetation

Natural vegetation serves as one of the major sinks for terres-
trial organic carbon (Razzaghi et al. 2022), making vegetation 
data crucial for predictive modelling. To assess information 
about natural vegetation, we utilise various features. First, we 
consider net primary productivity (NPP), which measures the 
rate at which plants absorb atmospheric carbon through the bal-
ance of photosynthesis and plant respiration (Yuan et al. 2021). 
Additionally, we gather data on tree cover percentage using a 
product from MODIS. For both features, we used the maximum 
composite for Germany. The other dataset we used is PALSAR, 
which shows forest and non- forest areas.

We also carefully examined different remote sensing indices 
and identified five key ones for our study. The Normalised 
Difference Vegetation Index (NDVI) is widely used for pre-
dicting soil properties. The Enhanced Vegetation Index (EVI) 
is similar to NDVI but corrects for atmospheric conditions and 
canopy background noise, making it more sensitive in areas 
with dense vegetation (Grunwald 2009). Additionally, we used 
the Global Environment Monitoring Index (GEMI), which is 
designed to minimise the effects of atmospheric disturbances 
while retaining information about vegetation cover (Pinty and 
Verstraete 1992). The Green Leaf Index (GLI) ranges from −1 
to +1, with negative values representing soil and non- living 
features, and positive values representing green leaves and 
stems (Louhaichi et al. 2001). Finally, we used the Bare Soil 
Index (BI), a numerical indicator that captures soil variations 
(Rikimaru et al. 2002). The formulas for these indices are pro-
vided in Table 3.

2.2.4   |   Climate

To investigate the diverse environmental conditions that ei-
ther promote or impede climate regulation, we utilised a 
comprehensive set of parameters provided by TerraClimate 
(Abatzoglou et al. 2018). These parameters were derived from 
gridded meteorological data using a climatically aided spatio-
temporal interpolation technique applied to the WorldClim 
datasets (Hijmans et  al.  2005), enabling the estimation of 
monthly time series. The environmental factors selected for 
this study were divided into two categories: (1) primary cli-
mate variables, including maximum temperature, minimum 
temperature, vapour pressure, precipitation accumulation and 
downward surface shortwave radiation, and (2) derived or 
secondary variables, including reference evapotranspiration, 

FIGURE 4    |    The process of preparing input features in GEE for various applied products.
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TABLE 2    |    The features utilised in this study along with their descriptions.

No Feature Description Unit Category

1 Bulk density Bulk density Percent Soil

2 Clay Clay content Percent Soil

3 pH pH Unitless Soil

4 Soil moisture Soil moisture mm Soil

5 Texture Soil texture (Class) Unitless Soil

6 Taxonomy Taxonomy (Class) Unitless Soil

7 Water content Water content Percent Soil

8 HLS bi Harmonised LandSat- Sentinel Bare Soil Index Unitless Soil

9 HLS red Harmonised LandSat- Sentinel red band Unitless RS

10 HLS green Harmonised LandSat- Sentinel green band Unitless RS

11 HLS blue Harmonised LandSat- Sentinel blue band Unitless RS

11 HLS nir Harmonised LandSat- Sentinel near infrared band Unitless RS

12 HLS swri1 Harmonised LandSat- Sentinel shortwave infrared1 band Unitless RS

13 HLS swri2 Harmonised LandSat- Sentinel shortwave infrared2 band Unitless RS

14 HLS evi Harmonised LandSat- Sentinel Enhanced Vegetation Index Unitless Vegetation

15 HLS gli Harmonised LandSat- Sentinel Green Leaf Index Unitless Vegetation

16 HLS gemi Harmonised LandSat- Sentinel Global Environment Monitoring Index Unitless Vegetation

17 HLS ndvi Harmonised LandSat- Sentinel Normalized Vegetation Index Unitless Vegetation

18 MODIS Tree The fraction (%) of pixels that are covered by trees Unitless Vegetation

19 PALSAR Forest The global forest/non- forest map Unitless Vegetation

20 NPP Net primary product MODIS (NPP), Terra sensor kg*C/m2 Vegetation

21 aet Actual evapotranspiration, derived using a one- 
dimensional soil water balance model

mm Climate

22 pdsi Palmer drought severity index Unitless Climate

23 def Climate water deficit, derived using a one- 
dimensional soil water balance model

mm Climate

24 pet Reference evapotranspiration mm Climate

25 pr Precipitation accumulation mm Climate

26 srad Downward surface shortwave radiation W/m2 Climate

27 tmmn Minimum temperature °C Climate

28 tmmx Maximum temperature °C Climate

29 vap Vapour pressure deficit kPa Climate

30 vpd Vapour pressure kPa Climate

31 vs Wind speed at 10 m m/s Climate

32 An Hill Analytical hillshading Unitless Topography

33 Elevation Elevation metres Topography

34 Slope Slope Percent Topography

35 Aspect Aspect Percent Topography

(Continues)
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actual evapotranspiration, climate water deficit, soil moisture, 
Palmer drought severity index (PDSI) and vapour pressure 
deficit. These specific variables were chosen due to their well- 
recognised influence on SOC dynamics (Sakhaee et al. 2022; 
Fick and Hijmans  2017) and their role in the ecosystem's 
climate regulation function (Tamburini et  al.  2020; Yang 
et al. 2020). Meteorological data from aforementioned 5 years 
were downloaded for this study and the median composite of 
the data were used for this study.

2.2.5   |   Topography

We utilised digital elevation data from the Shuttle Radar 
Topography Mission (SRTM), specifically the SRTM- V3 (SRTM 
Plus) product provided by NASA JPL, with a resolution of 1 arc- 
second (approximately 30 m) (Farr et al. 2007). To incorporate 
topographic and geomorphological relief features, additional 
variables derived from this dataset were included, such as slope, 
aspect, topographic wetness index, profile curvature and val-
ley depth. A comprehensive list of these variables is provided 
in Table  2. These topographic factors influence soil distribu-
tion across the landscape, impacting SOC dynamics through 
mechanisms such as overland flow and erosion (Carter and 
Ciolkosz 1991; Scholten et al. 2017).

3   |   Methodology

3.1   |   Explanation Model

The main idea is to create a separate explanation model, f̂expl, to 
interpret the prediction model, f̂pred, as shown in Figure 5. This 
flexible approach does not require retraining or modifying the 
prediction model to explain its outputs and has been thoroughly 
evaluated using well- known datasets, such as MNIST, ImageNet, 
Boston Housing and CIFAR10 (Schwab and Karlen  2019). We 
use an objective function to measure the importance of individ-
ual input features to the prediction model's accuracy, thereby 
training the explanation model. This method transforms the 
task of estimating feature relevance for a prediction model into a 
supervised learning problem, solvable with existing supervised 
ML models.

The core of the proposed explanation model is its objective 
function, which enables the optimization of the explanation 
model to elucidate another predictive model. The objective 
on which we base our work was first proposed to provide ac-
curate predictions and estimates of feature importance in a 
single NN model (Schwab et al. 2019). This version does not 
depend on any specific model structure, allowing it to train 
explanation models to interpret any ML model. It is important 
to note that the objective from (Schwab et al. 2019) is grounded 
in Granger's definition of causality (Granger 1969). According 
to this principle, a relationship X→ Y  exists if we can predict 
Y  more accurately with all available information than without 
X . In other words, the absence of xi diminishes our ability to 
accurately predict ŷ. Given input features X , we define �X�{i} 
as the predictive model's error when no information from the 
i th input feature is included and �X  as the predictive model's 
error when all available input features are considered. We use 
the loss function of the predictive models Losspred to compare 
the predictions to the ground reference values y and thus the 
aforementioned errors.

(1)
Δ�X,i=�X�{i} −�X=Losspred

(
y, ŷX�{i}

)

−Losspred
(
y, ŷX

)

No Feature Description Unit Category

36 TWI Topographic wetness index Unitless Topography

37 Ch Net Ba Le Channel network base level metres Topography

38 Ch Net Dis Channel network distance metres Topography

39 Cl De Closed depressions Unitless Topography

40 Conv Ind Convergence index Unitless Topography

41 Pl Curv Plan curvature 1/m Topography

42 Prof Cur Profile curvature 1/m Topography

43 Rel Slope Pos Relative slope position Unitless Topography

44 LS Factor LS- factor Unitless Topography

45 TCA Total catchment area m2 Topography

46 Valley Depth Valley depth metres Topography

TABLE 2    |    (Continued)

TABLE 3    |    Remote sensing indices and their corresponding 
formulas.

Index Formula

NDVI (NIR − R)∕(NIR + R)

EVI 2.5 × ((NIR − R)∕(NIR + 6 × R − 7.5 × B + 1))

GEMI A×(1−0.25×A)−(R−0.125)∕(1−R),

A=
(2×((N2)−(R2))+1.5×N+0.5×R)

(N+R+0.5)

GLI (2.0 × G − R − B)∕(2.0 × G + R + B)

BI ((Swir1 + R) − (N + B))∕((Swir1 + R) + (N + B))
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To quantify the contribution of the ith input feature to the mod-
el's output, denoted Δ�X,i, we evaluate the reduction in prediction 
error when this feature is included, using the loss function Losspred, 
which takes the initial input features as inputs. This measure indi-
cates the reduction in error. We implement a masking technique 
to elucidate the contributions of different features. This technique 
involves systematically replacing portions of the input data with 
zeros and observing the resulting changes in model outputs. The 
process includes dividing the input into manageable batches and 
applying zero imputation on each batch. For our explanation 
model, which is a two- layer multilayer perceptron (MLP), both the 
original and masked inputs are processed to obtain predictions, 
which are then aggregated. This process relies on four key com-
ponents: the original inputs, their corresponding predictions, the 
masked inputs and the predictions for the masked data.

Finally, we define the objective function using normalised rela-
tive errors, Δ�X,i, referred to as Wi(X), and the importance scores, 
denoted Â.

In Equation  (2), KL denotes the Kullback–Leibler (KL) diver-
gence (Kullback 1997), which is expressed as follows:

where N represents the number of samples, M represents the 
number of features, Wi(X) denotes the relative error for feature i, 
ÂXj is the importance score for feature i of sample j.

To calculate Â, which quantifies the importance of each fea-
ture, we employ an explanation model based on an MLP 
equipped with an embedded scoring mechanism. Initially, the 
input data are processed through the model, where each fea-
ture is assigned an initial score reflecting its contribution to the 
prediction. These scores are refined iteratively during training, 
allowing the model to identify the most influential features. 
To further assess feature importance, the MLP evaluates each 
feature by masking it individually to simulate its absence. This 
involves running the model twice for each feature: once with 
all features present and once with the target feature masked. 
The change in model error, calculated using KL divergence 
(Equation  3), indicates the feature's influence on the predic-
tion—a greater shift in error reflects a higher feature impor-
tance. Finally, these refined scores are normalised with the 
softmax function, ensuring they sum to 1, creating a probability 
distribution that represents each feature's overall contribution, 
denoted Â.

Minimising the function in Equation (3) aims to reduce the dis-
crepancy between the distribution of feature importance in the 
training data, represented by W , and the learned importance 
scores Â for each sample X . This alignment ensures that the 
model's scoring mechanism accurately reflects the quantified 
contributions of individual features.

(2)Lossexpl =
1

N

N∑
j=1

KL
(
Wi(X), ÂXj

)

(3)Lossexpl =
1

N

N�
j=1

M�
i=1

Wi(X)log
⎛
⎜⎜⎝
Wi(X)

ÂXj

⎞⎟⎟⎠

FIGURE 5    |    Conceptual diagram of the proposed explanation model.
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3.2   |   Evaluation Metrics

When evaluating the performance of predictive models, several 
commonly used evaluation metrics include mean absolute error 
(MAE), the coefficient of determination (R2), root mean square 
error (RMSE), ratio of performance to interquartile distance 
(RPIQ) and concordance correlation coefficient (CCC). MAE is 
calculated by taking the average of the absolute differences be-
tween the predicted values and the true values.

R2 (also known as the coefficient of determination) is a statis-
tical measure that represents the proportion of the variance in 
the dependent variable that can be explained by the independent 
variables in a regression model. It is commonly used to assess 
the goodness of fit of a regression model. This value is calculated 
using the following equation:

where n is the number of observations, yi is the observed value 
of the dependent variable for observation i, ŷi is the predicted 
value of the dependent variable for observation i based on the 
regression model and y is the mean of the observed values of the 
dependent variable.

RMSE is calculated by taking the square root of the average of 
the squared differences between the predicted values and the 
true values.

RPIQ represents the spread of the population and is calculated 
using the following equation (Bellon- Maurel et al. 2010):

The values Q1 and Q3 represent the 25th and 75th percentiles of 
the true samples, respectively, defining the interquartile distance.

CCC is a measure of the agreement between the predicted val-
ues and the true values. It considers both the mean difference 
and the variance difference between the predicted and true 
values.

Here, represents the correlation coefficient between the pre-
dicted and observed values, �y and � ŷ are the standard devia-
tions of the observed and predicted values, respectively, and �y 
�ŷ are the means of the observed and predicted values, respec-
tively. These metrics provide quantitative measures to assess the 

accuracy, correction, agreement and calibration of predictive 
models compared to the observed values.

4   |   Results

4.1   |   Prediction Models

We have selected five commonly used ML models in the field of 
soil science as prediction model. The first model is RF, a popu-
lar ML algorithm for regression tasks, especially in soil science 
(e.g., Szatmári et al. 2021). RF is a versatile ensemble learning 
method that constructs multiple decision trees during training 
and outputs the mean prediction of the individual trees for re-
gression tasks. Its ability to handle large datasets with higher 
dimensionality and the capability to estimate the importance 
of different features make it a favoured choice in various fields. 
The second model, deep forest (DeepForest), is an advanced ver-
sion of RF, which is a decision tree ensemble method that re-
quires fewer hyperparameters than deep learning models (Zhou 
and Feng 2019). DeepForest enhances the traditional RF by in-
corporating a cascade structure that enables deep representation 
learning. Each layer in the cascade comprises multiple random 
forests and completely random trees, and the output from one 
layer serves as the input features for the next. This architecture 
allows DeepForest to achieve high performance with fewer hy-
perparameter tuning requirements compared to deep learning 
models, while also maintaining the interpretability of ensemble 
methods. Additionally, DeepForest's ability to adaptively deter-
mine the depth of the cascade based on validation performance 
ensures a balance between model complexity and generalisa-
tion capability. This makes it a powerful and flexible approach 
for handling a wide range of predictive modelling tasks, es-
pecially when dealing with small-  to medium- sized datasets. 
The subsequent model is gradient boosting (GB). This method 
constructs an additive model by employing a predetermined 
number of decision trees as weak learners or weak predictive 
models (Natekin and Knoll 2013). GB falls under the category 
of boosting techniques utilised in ML. It operates under the as-
sumption that incorporating the most promising next model, 
when combined with previous models, will decrease the overall 
prediction error. Thus, defining the desired outcomes for this 
subsequent model is crucial for error minimization. The fol-
lowing model to be explored is the NN, applicable for regression 
problems. Here, a basic two- layer NN employing a mean square 
loss function is utilised. Lastly, ridge regression (Ridge) is em-
ployed. Ridge regression, also referred to as L2 regularisation, 
is one of various regularisation methods for linear regression 
models. Hyperparameters for all models were determined using 
randomised grid search. Seventy- five percent of the data were 
used for training via stratified sample selection, where the SOC 
values were divided into distinct categories, and samples were 
selected to ensure that each category was proportionally repre-
sented in the training set.

To thoroughly evaluate the performance of our selected model, 
we implemented a simple baseline approach. Given the severe 
skewness of our dataset, we initially used the median of the 
available ground truth (GT) for predictions. We then calculated 
all evaluation metrics for this naive model. Although this base-
line model is not expected to perform well, as indicated by an R2 

(4)MAE =
1

n

n∑
i=1

∣ yi − ŷi ∣

(5)R2 = 1 −

∑n
i=1

�
yi− ŷi

�2
∑n

i=1

�
yi−y

�2

(6)RMSE =

√√√√ 1

n

n∑
i=1

(
yi− ŷi

)2

(7)RPIQ =
Q3 − Q1

RMSE

(8)CCC =
2��y� ŷ

�2y + �2
ŷ
+
(
�y−�ŷ

)2
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value of zero, it provides a useful benchmark for assessing the 
effectiveness of our selected models compared to the most basic 
prediction scenario.

The evaluation metrics (Table  4) show clear differences re-
garding the performance of the five ML methods presented. 
DeepForest demonstrates superior accuracy across RMSE, MAE 
and R2, which is expected due to its integration of random forest 
and deep learning capabilities in a single model. The NN model 
achieves a comparable RMSE to RF and a higher R2, although 
with a lower RPIQ. Notably, the CCC of the NN model surpasses 
those of other models. While the RF model produces acceptable 
results, it is less accurate than its more advanced counterpart, 
DeepForest. GB exhibits the lowest RMSE and R2. Lastly, the 
ridge model achieves the highest RPIQ, despite sharing the same 
R2 as RF and displaying the highest MAE among the models 
considered.

To enhance comprehension of the different model performance, 
we sampled over 200,000 random locations within Germany, 
which were subsequently examined thoroughly. We excluded 
areas identified as permanent water bodies or urban regions. 
We have used the ESA land cover product (Zanaga et al. 2021) 
for this purpose. Subsequently, we applied the trained predic-
tion models to predict SOC at these random locations and vi-
sualised the results in Figure  6. The distribution of predicted 
SOC is largely consistent across all ML models, yet discernible 
differences are evident.

The spatial patterns of SOC contents are captured with varia-
tions in distribution across the five ML models (Figure 6). The 
low mountain ranges are clearly emphasised, showing the high-
est SOC contents. Differences are notable in the coastal areas 
along the North Sea and the Baltic Sea, where DeepForest, RF, 
GB and Ridge exhibit clear spatial variability, while NN shows 
only minor differences. The range of predicted SOC contents is 
smallest for DeepForest, RF and Ridge, with values between 0 
and ~100 g of SOC per kilogram of soil. NN and GB show about 
twice to almost three times higher contents. Among all mod-
els, NN and GB yielded more realistic prediction ranges, clearly 
exceeding 0 to ~100 g/kg but still less than the actual range 
of 0 to ~500 g/kg, making them better than the other models. 
DeepForest performs slightly better than RF, and the Ridge 
model exhibits a similar range to the RF model. There are 
some samples with very high values in the northwestern part 

of Germany that NN fails to recognise correctly. Interestingly, 
the strong deviations between measured and modelled data 
affect all landscape areas and the spatial patterns remain the 
same. The differences between the landscape areas are most 
pronounced for Ridge, with SOC contents close to zero in large 
areas in the North German Plain to the north and west of the 
low mountain ranges as well as in the Upper Rhine Graben 
and the Cologne Bay. However, all models successfully cap-
tured hotspots of SOC values in central and southern Germany. 
DeepForest outperformed RF, allowing it to accurately recog-
nise both very low and very high SOC values within a single 
model. The Ridge model had a significant shortcoming: it pro-
duced negative values that had to be converted to zero, fail-
ing to predict low SOC values accurately. These insights were 
not apparent from evaluation metrics alone. Understanding 
model performance is crucial as it directly impacts the expla-
nation model.

4.2   |   Explanation for Predictions

After making predictions, we used the trained models to gen-
erate explanations based on Equation  (2). Specifically, we 
trained a two- layer MLP to explain each model's predictions 
across different scenarios. This explanation model provided 
an importance score (percentage) for each sample, indicating 
feature importance. The scoring mechanism ensures that the 
sum of all feature scores equals 1, allowing us to rank fea-
tures by their contribution to the model's performance. After 
calculating these scores, we identified the most and least 
important features by ranking them. We then examined the 
top- contributing features at every 200,000 sample locations to 
determine the key predictors for each model. Finally, the top 
80% of contributing features and their cumulative importance 
scores in the selected locations were visualised, as shown in 
Figure 7.

The analysis in Figure  7 demonstrates that each model uti-
lises a varying number of features. Since importance scores 
are represented in percentages, the different feature counts 
across the plots indicate the degree to which each model de-
pends on specific features to generate predictions. Interesting 
observations emerged from this analysis. DeepForest and 
NN were the methods that utilised the highest number of 
input features for prediction, with 25 features contributing 
in DeepForest and 23 in NN. This indicates that NNs inher-
ently capture various information for prediction. Despite this 
commonality, they differed in terms of the most important 
features. In the DeepForest model, topography and remote 
sensing information were predominantly important for pre-
diction, whereas in the NN model, soil information, specifi-
cally pH and bulk density, was the most crucial. For the GB 
model, which is another decision tree- based model, topogra-
phy information was the most significant category of features 
affecting the prediction, with remote sensing surface informa-
tion also being important. A notable result was that the RF 
model relied mostly on elevation information for prediction, 
with 80% of the prediction based on only four features, and 
climate and soil information were not significantly utilised in 
this specific model. In the ridge regression model, more than 
45% of the information needed for prediction was provided 

TABLE 4    |    Performance results for selected ML methods as 
prediction model.

Model RMSE ↓ R2(%) ↑ RPIQ ↑ MAE ↓ CCC ↑

DeepForest 46.71 23 0.66 20.84 0.39

NN 48.37 18 0.47 21.47 0.40

RF 48.86 16 0.57 22.21 0.29

GB 50.48 11 0.60 22.76 0.38

Ridge 49.03 16 0.78 25.11 0.30

Base 55.85 0 0.42 27.98 —
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solely by soil information, specifically pH and water content. 
Overall, the most contributing features across all models were 
topography, soil and remote sensing (HLS) images. It is also 

important to note that soil information maps were primarily 
produced using surface information neglecting SOC stored in 
the subsoil, which can amount to about 50% of the organic C 

FIGURE 6    |    The distribution of predicted SOC values in (g/kg) for selected random samples from (a) DeepForest, (b) NN, (c) RF, (d) GB and (e) 
Ridge model.

(a) (b)

(c) (d)

(e)
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stored in soils worldwide (Batjes 1996). Finally, the percent-
age of importance attributed to each sample is the ultimate 
outcome of our explanation model. These outputs allow us 
to identify the highest importance score values and map the 
most important features at each location. This information is 
plotted in Figure 8. To ensure clarity, we marked only the cat-
egories in the plots.

4.3   |   Comparison to Other Methods

In addition to the explanation model's calculation, model- 
specific feature importance can also be derived for RF and GB 
algorithms to identify key predictors. Ridge regression, which 
provides coefficients for each feature, also enables the assess-
ment of feature significance. To compare the results with the 
explanation model, we plotted the model- specific feature im-
portance for an 80% contribution threshold as well (Figure 9). 
For the RF model, the most important feature identified was 
elevation, consistent with our previous findings (Figure  7). 
The HLS green band and MODIS tree were ranked second 
and fourth, respectively, further confirming our results of the 

explanation model. Together with soil, these four features ac-
counted for 80% of the predictions. However, the RF- specific 
feature importance highlights less importance score for these 
features and indicates that more features contribute to the 
predictions. It also does not specify their spatial locations or 
the exact percentage of their contributions. For the ridge re-
gression model, the four most important features identified 
align with those found using the explanation model. However, 
the percentage contribution of these features calculated by 
our model is higher than those derived from the provided co-
efficient values.

In contrast, the feature importance for the GB model presents 
a different scenario. Although elevation remains a key predic-
tor, the ranking of important features moves away from RS to 
vegetation and soil. GB constructs an ensemble of weak learn-
ers (i.e., decision trees) sequentially, with each learner ad-
dressing the errors of its predecessors. This iterative method 
aims to minimise the model's loss function, enhancing over-
all performance. Feature importance in GB is determined 
by each feature's contribution to reducing the loss function 
during training. On the other hand, our proposed approach 

FIGURE 7    |    The top 80% contributing features utilised for prediction across various models, derived by our proposed explanation model.
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tries to find the importance scores of each feature based on the 
loss function of the trained prediction model after the train-
ing phase. However, it is not limited to only training samples; 

it can also be applied to any arbitrary samples. The explana-
tion from our model shows that when used on larger samples, 
the feature importance scores can differ from model- specific 

FIGURE 8    |    The primary feature category utilised for prediction by each model at every location: (a) DeepForest, (b) NN, (c) RF, (d) GB, (e) Ridge 
model and (f) legend.

(a) (b)

(c) (d)

(e) (f)

 13652389, 2025, 2, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.70071 by L

eibniz Institut Für A
grarlandschaftsforschung (Z

alf) e., W
iley O

nline L
ibrary on [10/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 18 European Journal of Soil Science, 2025

feature importance. One reason for this could be the lack of 
sufficient GT samples as training data. This affects the predic-
tion model and, consequently, the explanation model because 
predictions for out- of- distribution samples, which are not re-
flected in the GT set, differ. As a result, the explanations we 
found for the training samples are not consistent with those 
for larger or different sample sets.

5   |   Discussion

An immediate observation from the results in Figure 8 is that 
there is a significant difference between decision- tree- based 
models, such as DeepForest, RF and GB, and other models such 
as NN and ridge regression. The primary variable category 
used for prediction in the decision- tree- based models is topog-
raphy. Topography plays a crucial role in SOC modelling, in-
fluencing the spatial distribution and variability of SOC across 
landscapes. Studies have shown that incorporating topographic 
variables into SOC models significantly enhances their accu-
racy and predictive power. For instance, Wiesmeier et al. (2013) 
demonstrated that topographic factors such as slope, aspect 
and elevation are key determinants of SOC distribution in 
agricultural soils in Bavaria, Germany. Similarly, Grunwald 

(2009) emphasised the importance of digital elevation models in 
capturing topographic variation, which is critical for accurate 
SOC predictions. Another study by Liu et al. (2003) highlighted 
that topography- driven water flow and erosion processes are es-
sential for understanding SOC dynamics in heterogeneous land-
scapes. Similarly, a study on the spatial prediction of organic 
carbon in German agricultural topsoil highlighted the necessity 
of including topographic covariates to address the high vari-
ability of SOC (Sakhaee et al. 2022). These findings collectively 
underscore the necessity of including topographic information 
in SOC modelling to improve the reliability and robustness of 
predictions, which are vital for effective environmental man-
agement and carbon sequestration strategies. Another finding is 
the significant importance of surface information, specifically 
HLS composite images, for the performance of DeepForest and 
RF models. As shown in Figure 4, which examines land cover 
classes in selected locations, remote sensing information is par-
ticularly important in cropland areas (Broeg et al. 2024). This 
indicates that when utilising random forest models, which are 
widely used in the DSM field, meticulous preparation of RS data 
is crucial for accurate SOC prediction.

NN and Ridge model explanations indicate that these mod-
els predominantly rely on soil information such as pH, bulk 

FIGURE 9    |    The top 80% contributing features derived from model specific feature importance.
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density, texture class and water content (see Figure 7). Each 
of these variables plays a critical role in predicting SOC and 
enhancing the accuracy of SOC models. Soil pH significantly 
influences microbial activity and organic matter decomposi-
tion rates, directly affecting SOC storage. High pH can pro-
mote the stability of organic matter, while low pH conditions 
may accelerate decomposition and carbon loss. A study by 
Kemmitt et al. (2006) highlighted the critical role of soil pH in 
controlling microbial processes and organic matter dynamics. 
Soil acidity, given as pH values, is an important feature for 
predicting SOC contents in topsoils of Germany, which was 
to be expected for large- scale observations (Luo et al. 2017). 
Topsoils rich in organic matter produce more organic acids 
during the decomposition of organic compounds (Hong 
et al. 2019). Other well- known processes that produce protons 
in soils and hinder the decomposition of SOC include the for-
mation and dissociation of H+ ions from carbonic acids, sili-
cate weathering, nitrification, microbial respiration and the 
release of plant root exudates.

Bulk density is a measure of soil compaction, which affects po-
rosity and root penetration. As noted in Franzluebbers (2002), 
bulk density is inversely related to SOC levels, making it a cru-
cial variable in SOC modelling. Soil texture class, which includes 
the proportions of sand, silt and clay, determines soil structure 
and influences water retention and aeration. Clay soils, for ex-
ample, can protect organic matter from decomposition due to 
their fine particles and strong aggregation, leading to higher 
SOC content. This relationship is thoroughly examined in the 
work of Hassink (1997), who demonstrated that finer- textured 
soils tend to have higher SOC due to better protection mecha-
nisms. Water content in soil impacts microbial activity and or-
ganic matter decomposition. Adequate moisture levels promote 
microbial processes that contribute to SOC accumulation, while 
excessive or insufficient moisture can hinder these processes. 
The influence of soil moisture on SOC is extensively discussed 
in Xu et al. (2014), which emphasised that water content is piv-
otal for understanding soil respiration and carbon fluxes. These 
studies underscore the importance of incorporating soil pH, 
bulk density, texture class and water content into SOC models 
to improve their predictive accuracy and reliability.

Another interesting finding, from a mathematical perspective, 
emerged when examining the NN explanation. The model pri-
oritised input features such as climate and vegetation in cen-
tral parts of Germany and high elevation areas in the Alpine 
region. When observing the SOC map derived from this model 
in Figure 6b, we notice that these areas exhibit high variability 
and heterogeneity in SOC values, making it challenging for the 
model to predict SOC values accurately for samples in these re-
gions. This difficulty may arise because the gradient of the loss 
function for the weights that are associated with soil informa-
tion features is not sufficiently minimised. During the training 
process, the optimization algorithm adjusts the weights based 
on the gradients of the loss function. Features that contribute 
more to reducing the loss will have their corresponding weights 
updated more significantly (Goodfellow et al. 2016). This sug-
gests that although in most areas, there are a limited number 
of highly influential features for an NN model, providing addi-
tional information to the NN could improve prediction accuracy 
in challenging areas where the data are heterogeneous. Ridge 

regression is the only model that predominantly relies on a sin-
gle category, primarily pH and water content (see Figure 7). As a 
linear model, it fails to capture the nonlinearity within the data, 
leading it to depend solely on information that shows a high cor-
relation with the dependent variable, SOC (Lukman et al. 2021).

Environmental factors significantly influence SOC modelling, 
but the specific variables affecting model accuracy differ across 
various ML models. Our findings demonstrate this variability, 
indicating that influencing factors are inconsistent across all 
models and depend on each model's inherent characteristics and 
design. Therefore, interpreting data- driven studies requires a 
meticulously structured approach, guided by expert knowledge 
and a comprehensive understanding of the model under inves-
tigation, as suggested by Runge et al. (2019). It is important to 
emphasise that our explanation model provides a comprehen-
sive framework for understanding the underlying patterns and 
behaviours within the data, offering significant theoretical ad-
vancements. Our findings were efficiently obtained through the 
specific design of our proposed approach. In contrast, methods 
such as SHAP rely on approximations to manage importance 
calculations, which can introduce inaccuracies and are often 
computationally intensive, especially with complex models and 
large datasets. However, its practical application in real meth-
odological decisions necessitates further integration with accu-
racy and uncertainty analyses. This additional step is essential 
to ensure that the model not only enhances interpretability but 
also maintains reliability and precision in practical scenarios. 
Additionally, the impact of feature dependence on interpret-
ability, as highlighted by recent studies (Aas et al. 2021; Heskes 
et al. 2020), warrants attention. Future research will focus on 
integrating causal knowledge and dependency- aware tech-
niques to further refine the model's explanations, ensuring they 
remain robust even when features exhibit interdependencies. 
Consequently, future research will focus on applying this model 
in conjunction with rigorous accuracy and uncertainty assess-
ments to validate its effectiveness in real- world applications.

6   |   Conclusions

We proposed and implemented an explanation model for ML 
models, using SOC content as GT and a wide range of environ-
mental features as predictors. This explanation model frames 
the task of explaining ML model decisions as a learning prob-
lem, training the explanation model to assess the extent to which 
specific inputs influence the outputs of another ML model. The 
explanations provided insights into the features influencing 
SOC content variation and how the model's predictions were al-
tered. Our explanation model is straightforward to employ, as it 
does not require retraining or modifying the original model. It 
demonstrates significant potential in interpreting complex ML 
models, particularly in soil science. The explanation model re-
vealed not only the importance score of environmental features 
to SOC prediction but also the spatial pattern of feature contri-
butions. The following findings can be inferred:

• Topography is the primary feature influencing the pre-
diction ability of decision tree models, regardless of their 
complexity. Therefore, providing more accurate topo-
graphic information with higher spatial resolution could 
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significantly improve predictions in these family of ML 
models.

• Ridge regression models primarily rely on soil information 
due to their linear nature, which cannot capture non- linear 
relationships and depends heavily on variables that are 
highly correlated with the target variable.

• Providing a comprehensive set of environmental features 
can improve prediction accuracy in challenging areas with 
heterogeneous data for NNs.

• Environmental features affect SOC modelling differently 
across various ML models. Each model's unique character-
istics determine which features are important.
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