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A B S T R A C T

Optimizing the spatial allocation of urban construction land (UCL) from the national perspective and promoting 
its moderate concentration are imperative prerequisites for synergistically accomplishing economic growth and 
carbon emission reduction goals. However, how the concentration of spatial allocation of urban construction 
land (CSA) across cities influences carbon emission intensity (CEI) remains unclear. To bridge this knowledge 
gap, we investigated the impact of CSA on CEI in 282 cities in China by using multi-source panel data (e.g., urban 
carbon emissions data, construction land area data, and socio-economic data) from 2005 to 2020 and applying 
econometric models: fixed effect model, mediating effect model, and spatial Durbin model. The results revealed 
that CSA exhibited a significant and robust U-shaped effect on CEI. During the study period, the proportion of 
cities crossing the inflection point slightly decreased from 57.80 % in 2005 to 55.67 % in 2020, and their spatial 
distribution pattern remained relatively stable. It is predicted that this proportion will drop to 53.90 % in 2030, 
and the average CEI of these cities will decrease by 67.93 % from 2005 to 2030. In this scenario, China’s carbon 
emission reduction target for 2030 can be attained in the sampled cities. The heterogeneity analysis showed that 
the impact of CSA on CEI followed a U-shaped pattern in both the developed and developing regions, as well as in 
the eastern, central and western regions. Additionally, the analysis revealed a similar pattern in both the 
resource- and non-resource-based cities. Conversely, this impact was significantly positive in the northeastern 
region. The mediating effect analysis suggested that CSA indirectly influenced CEI through economic agglom-
eration (EA), technological innovation (TI), and industrial structure upgrading (ISU). The spatial spillover effect 
analysis demonstrated that CSA exerted a U-shaped effect on CEI in neighboring regions through the spatial 
spillover effect. The geographical extent of this effect depends on the geographical distance between cities and 
their gross domestic product per capita. These findings provide reference values for the spatial allocation and 
scale control of UCL, and carbon reduction in countries whose UCL allocation and land planning are primarily 
controlled by the government.

1. Introduction

Comprising less than 1 % of the world’s land area but generating 
nearly 76 % of global carbon emissions, urban areas have become the 

primary focus of global carbon reduction efforts (Hutyra et al., 2011; 
Sullivan, 2010). Land-use change generates carbon emissions directly 
through land-use change processes and indirectly by influencing human 
activities (Peng et al., 2022; Xiao et al., 2024). After fossil fuel burning, 
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land-use change has constituted the second largest source of carbon 
discharge (Houghton et al., 1983; Stuiver, 1978), accounting for 
approximately 26.1 % of global carbon emissions from 1870 to 2015 (Le 
Quéré et al., 2018). Among the various land use types, construction land 
has become the most important source of carbon emissions owing to its 
accumulation of large amounts of material and high energy consump-
tion (Zeng et al., 2016). As the world’s largest CO2 emitter, China 
contributed 30.7 % of global carbon emissions in 2020 (Wang et al., 
2022a), resulting in its carbon emission reduction becoming a global 
concern (Gregg et al., 2008; Liu et al., 2022). In 2020, the Chinese 
government proposed its carbon reduction goals, which aim to reach 
peak carbon emissions by 2030 and achieve carbon neutrality by 2060. 
However, it is challenging for China to achieve these targets during its 
current development stages of industrialization and urbanization (Li 
et al., 2021).

Urban construction land (UCL) is a fundamental factor resource for 
industrialization and urbanization and a spatial carrier of human social 
and economic activities (Avagyan, 2018; Li et al., 2023a). Since the 
utilization and spatial layout of UCL can reflect the spatial configuration 
of various production and living activities (Li et al., 2023b; Wang et al., 
2021), the allocation of UCL exerts a profound impact on carbon emis-
sions (Lu and Guldmann, 2012; Wang et al., 2021). Reasonable UCL 
allocation through scientific land use planning plays a vital role in global 
low-carbon economic transformation and green development during 
urbanization (Anguelovski et al., 2016; Gao et al., 2023; Hu et al., 
2023a; Liu et al., 2018a). In China, the spatial allocation of new UCL has 
been a main task of land use planning, which involves a top-down, 
administrative indicator decomposition (Liu et al., 2018b; Wang et al., 
2020). The spatial allocation of UCL is generally guided by two funda-
mental strategies: concentration and dispersion. These strategies sub-
stantially influence urban economic development and carbon emissions 
by influencing UCL expansion and the spatial agglomeration of re-
sources and production factors (Yang et al., 2020a). In view of this, 
determining the allocation strategy most conducive to addressing the 
dilemma between economic growth and carbon reduction has become 
an urgent requirement for China to realize its carbon reduction goals.

Numerous scholars have investigated the impact of UCL allocation 
on carbon emissions (Liu et al., 2023; Zhou et al., 2022). Existing 
literature primarily focuses on three aspects. (1) Existing research has 
extensively explored how UCL scale influences carbon emissions. 
However, a consistent conclusion has not been reached. Some studies 
have confirmed that UCL growth significantly contributes to carbon 
emission reduction (Zhang and Xu, 2017). Conversely, other scholars 
argue that the UCL area is the main catalyst of increased carbon emis-
sions (Li et al., 2022; Peng et al., 2022). Moreover, the UCL scale has 
exhibited a U-shaped effect on carbon emissions in some studies (Li 
et al., 2018). (2) Research has explored the impact of land misallocation, 
which refers to the supply distortion of urban industrial and commercial 
land, on carbon emissions and efficiency. These studies suggest that land 
misallocation significantly increases carbon emissions (Bai et al., 2020; 
Han and Huang, 2022; Zhang and Xu, 2017) and decreases efficiency 
(Zhou et al., 2022). (3) Several scholars have used the proportion of the 
first city to measure the concentration of spatial allocation of UCL (CSA) 
in 23 provincial-level regions of China, and explored its impact on car-
bon emission intensity (CEI) (Zhong et al., 2023). They discovered a 
significant U-shaped effect of UCL concentration on CEI. However, there 
is little evidence of the relationship between CSA and CEI at the urban 
level and the underlying mechanisms.

In this study, we define the CSA at the urban level as the phenome-
non where, after the government’s spatial allocation of UCL across cities, 
UCL is relatively concentrated in certain cities. Useful explorations have 
been conducted in the existing literature for the spatial allocation of UCL 
and carbon emissions; however, several research gaps can be identified. 
First, although the existing literature has explored the relationship be-
tween CSA and CEI in China’s provincial-level regions, the CSA was 
measured by the concentration of UCL in the largest city within the 

specific province. Therefore, the findings of this literature are not 
applicable to the urban level and could not provide effective policy 
implications for the central and local government to decompose new 
UCL indicator among cities when compiling land planning. Second, 
prior research has defined CEI as carbon emissions per unit of UCL area, 
whereas CEI, expressed as carbon emissions per unit of gross domestic 
product (GDP), is a crucial metric for guiding carbon reduction efforts in 
China (e.g., the Paris Agreement and the 14th Five-Year Plan of China). 
Thus, testing the impact of CSA on carbon emissions per unit of GDP is 
vital in offering a stronger practical guidance for carbon reduction in 
China. Third, there are various intricate underlying mechanisms by 
which CSA affects carbon emissions that have not been systematically 
revealed. In this context, it is difficult for governments to deliver 
comprehensive, reasonable, and targeted carbon reduction policies 
based on the spatial allocation of UCL. Fourth, although there is evi-
dence of significant spatial spillover effects on carbon emissions (Yu 
et al., 2020), profound analyses of the spatial spillover effect of CSA on 
the CEI have not received attention in previous studies, potentially 
leading to biased regression coefficient estimations.

Considering these research deficiencies, this study aims to address 
three research questions to satisfy the urgent requirement for carbon 
emission reduction. (1) Does CSA affect CEI at the urban level? (2) What 
are the transmission mechanisms underlying the relationship between 
CSA and CEI? (3) How CSA influences the CEI in neighboring regions 
through the spatial spillover effect? This study’s possible innovations 
and main contributions are as follows.

First, it explores the effect of CSA on CEI and its heterogeneity at the 
urban level. Unlike the existing literature that use the proportion of the 
first city to measure CSA in provincial-level regions and explore its in-
fluence on carbon emission per unit of UCL, this study innovatively 
defines CSA from the perspective of spatial allocation of land resource 
across cities and investigates its impact on carbon emission per unit of 
GDP in prefecture-level cities. Such research ideas can enrich the rele-
vant theory on the carbon reduction effects of resource allocation and 
resource agglomeration, and provide strong practical guidance for the 
central and local government to optimize the spatial allocation of UCL to 
reduce CEI.

Second, the intrinsic mechanisms through which CSA affects CEI are 
investigated. The mediating effect model is employed to analyze the 
transmission mechanism underlying the relationship between CSA and 
CEI. A scientific analysis of such intrinsic mechanisms can fill the 
knowledge gap on the effect of CSA on CEI. Moreover, by providing a 
more systematic understanding of their relationship, this study can help 
policymakers to incorporate the spatial allocation of UCL and mediating 
factors into a unified system when developing and implementing the 
relevant policies to more effectively promote carbon reduction.

Third, the spatial spillover effect of CSA on CEI is examined. By using 
the spatial Durbin model, this study can effectively address the spatial 
spillover problem, reveal the effect of CSA on the CEI in neighboring 
cities, and provide reliable conclusions and important decision-making 
references for promoting collaborative regional carbon reduction. In 
summary, through the aforementioned efforts, this paper bridges the 
gap in existing studies and provides an important and accurate decision- 
making basis for the relevant authorities.

2. Theoretical analysis and research hypotheses

Fig. 1 reveals the mechanism of how CSA affects CEI, which involves 
direct, mediating, and spatial spillover effects. We first uncovered the 
fundamental mechanism of CSA influencing CEI through direct effect 
analysis. Then, based on the classic theoretical analysis framework for 
the relationship between environment and economy proposed by 
Grossman and Krueger (1995), we investigated the transmission mech-
anism underlying the relationship between CSA and CEI by selecting 
three mediating variables—economic agglomeration (EA), technolog-
ical innovation (TI), and industrial structure upgrading (ISU)—from 
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three dimensions: scale effect, technological effect, and structural effect. 
Last, we explored how CSA affects the CEI of neighboring cities through 
spatial spillover effect analysis.

2.1. Direct effects of CSA on CEI

In classical economics, labor, capital, and land are recognized as the 
three traditional production factors that are important sources of wealth 
creation (Smith, 2003). In cities, UCL serves as the primary spatial 
carrier of other production factors. Given a constant UCL area nation-
wide, an increase in CAS in specific cities implies that more UCL is 
concentrated in these cities, resulting in UCL agglomeration. This will 
further attract the inflow of talent and investment, and facilitate the 
agglomeration of production factors and economic activities in these 
cities (Zheng, 2023). CSA facilitates the formation of a compact regional 
spatial structure, thereby reducing carbon emissions resulting from 
disorderly and inefficient UCL expansion (Poumanyvong and Kaneko, 
2010). The agglomeration economics theory states that the spatial 
agglomeration of economic activities and various production factors, 
can promote urban productivity promotion and economic growth 
through scale economy, technology spillover, and competition effects 
(Giuliano et al., 2019; Rosenthal and Strange, 2004). Consequently, CSA 
and subsequent production factor agglomeration may help to boost 
productivity and decrease CEI. Specifically, by forming economies of 

scale, CSA and accompanying production factor agglomeration could 
help to reduce the inputs of various resources and energy, thereby 
improving resource utilization efficiency and energy efficiency, and 
reducing costs, ultimately decreasing CEI (Yan and Huang, 2022; Feng 
et al., 2022). The technology spillover and competition effects are 
manifested in that CSA and accompanying production factor agglom-
eration can generate the spillover of production technology and low- 
carbon technology, and intensify competition among enterprises by 
promoting the spatial agglomeration of enterprises, which may help to 
enhance productivity, decrease energy consumption, and thus reduce 
CEI (Fujita et al., 1999; Liu and Zhang, 2021; Zhong et al., 2023). 
Moreover, according to the externality theory, carbon emission repre-
sents a typical case of external diseconomy (Zhou et al., 2019a). With the 
enhancement of CSA and subsequent enterprises agglomeration, the 
connection among enterprises is becoming closer. This makes it easier 
for governments to regulate the implementation of environmental reg-
ulations and internalize the externalities of carbon emissions through 
market mechanisms and policy measures, thereby encouraging enter-
prises to reduce their carbon emissions (Coase, 1960; Keohane, 2009; 
Ren et al., 2020).

However, excessive CSA and the resultant excessive population 
agglomeration may cause a series of urban diseases and even urban 
public crisis events, such as traffic congestion and soaring land and 
housing prices, that may directly increase traffic carbon emissions, 

Fig. 1. Theoretical mechanism analysis.
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hinder economic growth, and indirectly increase CEI (Fan et al., 2024; Li 
et al., 2018; Li et al., 2020). This dynamic occurs through diminishing 
the carbon reduction efficacy of CSA owing to reductions in the profit 
margins of enterprises and, subsequently, a city’s attractiveness for 
talent and new investments. Additionally, the optimal scale theory of 
industrial agglomeration states that excessive agglomeration can 
diminish returns to scale and even produce a crowding effect (Hoover, 
1948). In this context, excessive CSA and production factor agglomer-
ation may lead to rapid population growth and expanded production 
scale; this increases material input and energy consumption and causes 
scale diseconomies, thereby decreasing productivity and energy effi-
ciency and ultimately increasing CEI (Liu et al., 2022; Martin Andersson, 
2009). When the negative externalities of CSA offset and even surpass its 
positive externalities, a further increase in CSA subsequently increases 
the CEI. Therefore, H1 was formulated as follows:

H1. CSA exerts a “U”-shaped effect on CEI.

2.2. Effects of mediating factors of CSA on CEI

2.2.1. Mediating effects of EA
According to the agglomeration economics theory, a moderate CSA 

and accompanying UCL expansion can promote the spatial concentra-
tion of capital, population, enterprises, and public services by providing 
more space for social and economic activities, thus fostering EA (Porter, 
2000). The increase in EA can help to generate economies of scale and 
improve economic efficiency by sharing resources (e.g., infrastructure, 
labor markets, and information) and increasing returns to scale 
(Giuliano et al., 2019; Yu et al., 2022; Zeng and Zhao, 2009). This, in 
turn, will further promote the spatial concentration of production fac-
tors and economic activities, thereby reinforcing EA (Glaeser and Kahn, 
2010). However, excessive CSA and subsequent UCL expansion may 
produce various urban diseases and a crowding effect, such as traffic 
congestion, environmental pollution, and inadequate infrastructure, 
which may restrain economic growth and productivity enhancement, 
force existing talent and enterprises to leave, and obstruct the inflow of 
external population and capital; this thereby restrains EA and may even 
cause economic activities to spatially disperse (Zheng, 2023). EA has 
both positive and negative CEI externalities. Theoretically, EA generates 
positive externalities through producing scale (Fujita et al., 1999; 
Krugman, 1992), knowledge spillover (Fujita, 1989), and competition 
effects (Dixit and Stiglitz, 1997), which can increase the efficiency of 
resources and energy (Zhang et al., 2012a), save production and trans-
action costs (Wang et al., 2022b), and improve production and low- 
carbon technologies. Thus, EA contributes to a reduction in carbon 
emissions and CEI. However, the rising EA involves a rapid expansion in 
production scale and infrastructure investment, leading to a substantial 
increase in energy consumption and carbon emission, thereby 
enhancing CEI (Wang et al., 2022b; Yan et al., 2022a). Accordingly, this 
study proposes hypothesis H2a as follows:

H2a. CSA affects CEI through EA.

2.2.2. Mediating effects of TI
According to the agglomeration economics theory, in the initial 

stage, an increase in CSA and the geographic concentration of popula-
tion and economic activities can stimulate TI by promoting human 
capital accumulation, knowledge diffusion, technology spillover, coop-
eration, and competition among enterprises (Lai et al., 2014). Further-
more, according to the knowledge spillover theory, the spatial 
agglomeration of enterprises can accelerate the diffusion speed of TI, 
and promote the collaborative innovation among enterprises (Acs et al., 
2009). However, after CSA exceeds a certain level, it may increase land 
rent, housing prices, and production factor costs, decrease profit mar-
gins, and increase enterprise supply chain risk; this generates centrifugal 
forces that produce a crowding effect, thereby decreasing urban inno-
vation vitality (Combes et al., 2019; Yao et al., 2023; Zheng, 2023). 
Furthermore, according to the free rider theory, excessive knowledge 

spillover may lead to the “free-rider” phenomenon, suppressing the 
enthusiasm for enterprise-level innovation and subsequently decreasing 
urban innovation capacity (Ma and Li, 2014). TI plays a vital role in 
improving energy efficiency (Dubey et al., 2019), optimizing energy 
consumption structure (ECS) (Gerlagh and Van Der Zwaan, 2004) and 
decreasing fossil fuel consumption (Zhang et al., 2012b), thereby 
significantly reducing CEI (Huang et al., 2018). However, technological 
advancements may produce an energy rebound effect, wherein an in-
crease in energy efficiency and expansion in economic scale are facili-
tated by technological improvements that may, in turn, increase energy 
consumption and carbon emissions (Chen et al., 2020; Jevons, 1865). 
Consequently, we propose hypothesis H2b:

H2b. CSA influences CEI through TI.

2.2.3. Mediating effects of ISU
Theoretically, a reasonable CSA can promote the flow and reconfi-

guration of production factors, such as capital, labor, and technology, 
among regions. In new regional economics, the interregional flow of 
production factors can bring more employment opportunities and a new 
economic growth point to the region, promoting ISU in this region 
(Hoover and Giarratani, 1975). Hence, CSA could promote ISU. 
Furthermore, CSA, along with the subsequent growth and agglomera-
tion of population, increases the demand for tertiary industry and pro-
vides it with essential talent support, which will boost the development 
of tertiary industry, thereby optimizing the industrial structure (Yan and 
Huang, 2022). Nevertheless, according to the path dependence theory, 
excessive CSA and production factor agglomeration may lead to indus-
trial homogenization due to excessive competition between enterprises 
and an industry’s “lock-in effect”. Under these circumstances, an in-
crease in CSA may squeeze out original advantageous industries in the 
locality and obstruct the entry of new industries, thereby restraining ISU 
and creating an increasingly singular industrial structure (Ma and Li, 
2014). Tertiary industries are generally more efficient, energy-saving, 
and environmentally friendly (Hu et al., 2023b). Industrial structure 
advancement, represented by an increase in the share of tertiary in-
dustry in GDP, significantly increases energy efficiency (Chuai and Feng, 
2019), and has been recognized as a critical pathway for reducing car-
bon emissions and CEI (Yu et al., 2018). Based on this analysis, we 
propose hypothesis H2c:

H2c. CSA affects CEI through ISU.

2.3. Spatial spillover effects of CSA on CEI

The first law of geography states that due to information exchange 
and resource sharing among regions, various spatial factors in socio-
economic activities generally have significant spatial spillover effects 
(Sui, 2004; Zhang et al., 2020). As regional integration has continued to 
improve in recent years, interregional economies have become more 
closely linked, and interregional interactions have become increasingly 
prominent in China (Zhang et al., 2022). Under the special land man-
agement and UCL administrative allocation system in China, UCL supply 
has been closely related to urban economic growth and carbon emissions 
(Deng et al., 2008; Hu et al., 2023c; Jin et al., 2020), and the spatial 
allocation of UCL across cities strongly influences adjustments in 
resource allocation and guides the flow of production factors among 
regions (Yang et al., 2020a). Therefore, CSA may have a prominent 
impact on economic growth, production factor agglomeration, and 
carbon emissions within an individual city as well as in neighboring 
cities.

According to spatial economics, both CSA and CEI may exhibit strong 
spatial correlation due to the radiation effect and competition effect in 
regional development (Song et al., 2020; Zhang et al., 2020). Specif-
ically, a moderate CSA and subsequent production factor agglomeration 
can stimulate economic development, production factor agglomeration 
and technological progress in neighboring cities through industrial di-
vision, mutual imitation, knowledge dissemination, and technology 
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spillover across regions (Liu and Zhang, 2021). In this context, CSA can 
boost productivity and energy efficiency in adjacent cities, thereby 
decreasing CEI in these cities. However, after CSA exceeds a certain 
level, the soaring land rent and increasing environmental protection 
pressure will stimulate labor emigration and industry, particularly high- 
consumption and high-emission industry transfer to cities nearby 
(Zheng, 2023). These may push up the land rent, hinder the industrial 
structure optimization, and cause a crowding effect in neighboring cit-
ies, which will harm economic development and low-carbon trans-
formation in this region (He and Zheng, 2011). Furthermore, the 
intensified competition between cites may impede inter-regional coop-
eration and technical exchange and transfer, thereby hindering regional 
economic development and carbon reduction. Therefore, excessive CSA 
may enhance the CEI in neighboring regions. Consequently, hypothesis 
H3 is proposed:

H3. CSA influences the CEI in neighboring regions through a spatial 
spillover effect.

3. Methods and data

3.1. Model specification

3.1.1. Benchmark regression model
Based on theoretical analysis, we established the following bench-

mark regression models to explore the nonlinear relationships between 
CSA and CEI: 

lnCEIit = β0 + β1lnCSAit + β2ln2CSAit +ϕ0lnXit + μi +ωt + εit (1) 

U =
- β1

2 ∗ β2
(2) 

where lnCEIit is the natural logarithm of CEI of city i in year t; lnCSAit and 
ln2CSAit represent the natural logarithms of CSA of city i in year t and its 
quadratic term, respectively; β0 is a constant term; Xit refers to the 
control variables; β1, β2, and ϕ0 denote the correlation coefficients; μi 
and ωt stand for the city and time fixed effects, respectively; εit indicates 
a random disturbance; and U is the inflection point of the quadratic 
curve.

3.1.2. Nonlinear mediating effect model
Following our theoretical analysis and referring to Yang et al. 

(2020b), we established the following two-step nonlinear mediating 
effect model: 

lnMit = λ0 + λ1lnCSAit + λ2ln2CSAit +ϕ1lnXit + μi +ωt + εit (3) 

lnCEIit = α0 + α1lnCSAit + α2ln2CSAit +α3lnMit +ϕ1lnXit + μi +ωt + εit

(4) 

where Mit represents a set of mediating variables; Xit stands for the 
control variables; λ0 and α0 refer to the constant term; and λ1, λ2, ϕ1, and 
α1–α3 are the correlation coefficients.

3.1.3. Spatial econometric model
According to the first law of geography, CEI may exhibit spatial 

correlation. Thus, the spatial effect model was employed to explore the 
spatial spillover effect of CSA on CEI. The spatial error model (SEM), 
spatial autoregressive model (SAR), and spatial Durbin model (SDM) are 
the three most commonly used spatial panel models. When applying the 
spatial lag terms of both explanatory and explained variables, the SDM is 
more general than the other two models (Elhorst, 2014). The general 
spatial econometric model is as follows: 

lnCEIit = α+ ρWlnCEIit + β3lnCSAit + β4ln2CSAit +ϕ1Xit + β5WlnCSAit

+ β6Wln2CSAit +ϕ2WlnXit + μi +ωt + εit

(5) 

where α is a constant term; Wij represents the spatial weight matrix of 
asymmetric economic geographical distance; p and ϕ2 denote the spatial 
lag coefficients of the explained and control variables, respectively; β3 
and β4 refer to the coefficients of the independent variable and its 
quadratic term, respectively; β5 and β6 are the spatial lag coefficients of 
the explanatory variable and its quadratic term, respectively; and Xit and 
ϕ1 represent the control variables and their coefficients, respectively.

3.2. Variable descriptions

3.2.1. Dependent variable
In this study, CEI is the dependent variable represented by carbon 

emissions per unit of GDP (Eq. (6)). This measure aligns with China’s 
carbon reduction goals and has been widely used in relevant studies 
(Zhou et al., 2019b). A decrease in CEI indicates progress in low-carbon 
development in a specific region (Chen et al., 2023). Total carbon 
emissions data were collected from the China City Greenhouse Gas 
Working Group (CCG). Equation (6) is as follows: 

CEIit =
CEit

GDPit
(6) 

where CEIit, CEit, and GDPit represent CEI, total carbon emissions, and 
GDP in year t for city i, respectively.

3.2.2. Independent variable
Under China’s land use planning and land management system, the 

government carries out the spatial allocation and scale control of UCL 
across cities. In this study, CSA essentially reveals the degree of 
inequality in status and imbalance in scale among cities in terms of UCL 
allocation. The higher CSA, the more UCL concentrated on a certain land 
area and the higher UCL dominance of a city. Location entropy is an 
effective measure of the relative concentration of resources and factors 
across different regions, which can reflect the dominance of these re-
sources and factors in a specific region within a higher-level region 
(Zheng and Lin, 2018). It possesses the advantage of better eliminating 
the endogenous influence stemming from different regional scales, and 
more accurately outlining the distribution of the concentration of re-
sources and factors (Yuan et al., 2020). The bigger this indicator, the 
more concentrated the spatial allocation of UCL in certain cities. It is 
calculated as follows: 

CSA eit =
(Cit/Ct)

(Sit/St)
(7) 

where CSA_eit is the CSA in year t for city i, which is measured by the 
location entropy; Cit, and Sit represent the UCL area, and total land area 
in year t for city i, respectively; and Ct and St refer to the area of UCL and 
total land respectively, in year t for all the cities in China.

3.2.3. Control variables
Six control variables were introduced into the models to control for 

potential effects. 

(1) Economic level (EL) is represented by GDP per capita (Wang 
et al., 2016). According to the environmental Kuznets curve 
theory, in the initial stage of industrialization, the increasing EL is 
usually accompanied by the rapid expansion of production scale, 
which leads to a surge in energy consumption, and thus enhances 
CEI (Wang et al., 2016; Zhu et al., 2014). However, with eco-
nomic growth, cities with higher EL may have more advanced 
production and low-carbon technologies as well as stronger 
environmental awareness and environmental governance capac-
ity, thereby enabling EL to decrease CEI (Li et al., 2017). 
Consequently, the effect of EL on CEI needs further examination.

(2) Urbanization level (UL) is characterized by the share of the urban 
population in the total population (Yan et al., 2022b). As more 
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highly educated people inflow into cities, UL may promote the 
increase in the consciousness of environmental governance, 
thereby promoting the reduction in CEI (Zhang et al., 2020). With 
the increase in UL, numerous rural residents are transferring to 
the urban area. According to the spatial agglomeration theory, 
this transfer may stimulate the improvement of urban infra-
structure and public service, which promotes EA in cities, thus 
increasing energy and production efficiency through the scale 
effect and ultimately reducing CEI (Zhang et al., 2020). However, 
this transfer may spark a surge in urban sprawl and population 
growth, which will lead to a boost in the production and con-
sumption of various products, thereby increasing energy con-
sumption and ultimately enhancing CEI (Song et al., 2020). 
Therefore, the total effect of UL on CEI is uncertain.

(3) Opening-up level (OP) is calculated as the ratio of the total import 
and export volume to GDP (Wang et al., 2023). OP generally fa-
cilitates trade diffusion, which may stimulate the scale expansion 
of production and energy consumption, thereby increasing CEI 
(Xiao et al., 2019). However, according to the new trade theory, 
trade openness can stimulate local technical progress through 
technology transfer or technology spillover, thus reducing CEI 
(Melitz, 2003; Wang and Wang, 2021). Therefore, the effect of OP 
on CEI remains ambiguous.

(4) Energy consumption structure (ECS) is defined as the proportion 
of coal in total energy consumption (Xiao et al., 2019). ECS has a 
fundamental influence on CEI (Zhou et al., 2019b). Fossil fuels 
produce more carbon emissions than other energy sources, and 
the ratio of fossil fuels to the total energy consumption generally 
increases CEI (Xu et al., 2021). Therefore, ECS enhances CEI.

(5) Technology support (TS) is calculated by dividing the amount of 
science and technology expenditures by the total fiscal expendi-
tures (Shao et al., 2019). According to the technical innovation 
theory, governmental TS can stimulate technological advance-
ment, which may help to improve energy efficiency, thereby 
curbing CEI (Fan et al., 2022). However, this effect will be valid 
only when TS is devoted to promoting green development and 
carbon emission reduction instead of improving productivity (Yu 
et al., 2020). Therefore, the influence of TS on CEI is uncertain.

(6) Foreign direct investment (FDI) is measured by the ratio of 
foreign direct investment to GDP (Yang et al., 2020b). According 
to the pollution haven hypothesis, FDI may increase regional CEI 
by transferring energy-intensive and high-polluting industries to 
the host country (Shao et al., 2019; Yan and Huang, 2022). 
However, the pollution haven hypothesis states that the inflow of 
environmentally friendly technologies and productions can help 
to decrease the pollution in the host country (Albornoz et al., 
2009; Shao et al., 2019). Therefore, FDI can also diminish CEI 
through technology and environmental spillovers (Shao, 2018). 
Consequently, the effect of FDI on CEI remains ambiguous.

3.2.4. Mediating variables
According to the theoretical analysis, prior literature and empirical 

detection, three derived variables, EA, TI, and ISU, were selected to test 
their mediating effects on the impact of CSA on CEI (Grossman and 
Krueger, 1995). We used the GDP generated per unit area of the UCL as a 
measure of EA (Yu et al., 2022). TI represents the number of technical 
patent applications (Liu and Zhang, 2021). Additionally, the proportion 
of the added value of tertiary industry in GDP was employed to indicate 
ISU (Liu et al., 2018c).

To minimize the effect of heteroscedasticity and sample dispersion, 
all variables used in this study were converted into a natural logarithmic 
form before performing the regression analysis. The value of CSA was 
increased 100 times before being logarithmized to avoid a biased eval-
uation caused by negative natural logarithms.

3.3. Data

Panel data from 282 Chinese cities from 2005 to 2020 were used for 
the empirical analysis in this study. The cities were divided into eastern, 
central, western, and northeastern regions, according to their 
geographic locations (Fig. 2). Urban carbon emissions data were derived 
from the CCG (https://wxccg.cityghg.com). Other statistical data for 
this study were collected from the China Urban Statistical Yearbook 
(2006–2021) and China Urban Construction Statistical Yearbook 
(2005–2020). All currency values were deflated to those at 2005 con-
stant prices.

4. Empirical analysis results

4.1. Baseline regression results

Table 1 presents the regression results. The Hausman test, reported 
in columns (1) and (2), indicates the appropriateness of the fixed-effects 
model. Columns (1) and (2), with and without the control variables, 
respectively, investigate the nonlinear relationship between CSA and 
CEI. The regression results in columns (1) and (2) show that the co-
efficients of lnCSA_e and ln2CSA_e were significantly negative and posi-
tive, respectively, demonstrating the U-shaped effect of CSA on CEI. 
Therefore, H1 was validated. Moreover, the inflection point of the U- 
shaped curve ranged between 5.246 and 5.291, which is within the 
sample range. Specifically, when CSA is below 1.898, an increase in CSA 
contributes to a reduction in CEI. Notably, in 2005, CSA in 57.80 % of 
the sample cities crossed the inflection point, whereas this proportion 
slightly decreased to 55.67 % in 2020. Moreover, based on the varying 
trend of CSA during the study period, we predicted the CSA of the 
sample cities for 2035. The prediction results show that the proportion 
of cities crossing the inflection point will drop to 54.26 % in 2035. As 
shown in Fig. 3, the cities crossing the turning point were mainly located 
in the eastern, central, and northeastern regions in 2005, 2020 and 
2035, and the spatial distribution pattern of these cities remained rela-
tively stable during this period.

For the control variables, the coefficients of lnEL, lnUR and lnTS were 
all negative at the 1 % level, demonstrating that the economic growth, 
urbanization advancement, and technological support from the gov-
ernment can significantly stimulate CEI reduction. By contrast, the co-
efficients of lnOP, lnECS, and lnFDI were all significantly positive, 
showing that the increases in the level of openness, the proportion of 
coal in total energy consumption, and the ratio of foreign direct in-
vestment to GDP increased CEI.

4.2. Robustness test results

4.2.1. Robustness tests for addressing the omitted variable issue and 
endogenous problem

In many literature, the instrumental variables approach was selected 
as an ideal approach to tackle the omitted variable issue and endogenous 
problem. However, it was difficult to find a suitable instrumental vari-
able in our study. Therefore, referring to the existing literature (Bu et al., 
2022; Cao et al., 2022), the sensitivity analysis for the omitted variable 
issue and robustness test for mitigating the endogenous problem were 
used as alternatives to the instrumental variable approach to address the 
omitted variable issue and endogenous problem, respectively.

First, the impact threshold of a confounding variable (ITCV) analysis 
was used as a sensitivity analysis to evaluate how high the correlation 
between the explanatory variable and dependent variable had to be to 
alter the benchmark regression results (Busenbark et al., 2022; Cao 
et al., 2022; Frank, 2000). The estimated results of the ITCV analysis are 
reported in Table 2. Considering the impact thresholds used in the 
existing literature (Cao et al., 2022; Hill et al., 2019), the results of 
lnCSA_e and its quadratic term and the six control variables were satis-
factory and demonstrated that the effect of CSA on CEI was unlikely to 
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be driven by a correlated omitted variable. Consequently, the results in 
the baseline regression are robust.

Second, referring to Bu et al. (2022), Pu and Fei (2022), and Zheng 
et al. (2023), we treated the dependent variable and six control variables 
with a one-period lag to mitigate the endogenous problem caused by 
potential reverse causality. The regression results are shown in columns 
(1) and (2) in Table 3. We found that CSA maintained a U-shaped effect 
on CEI, which further verified that the basic regression findings are 
robust.

4.2.2. Replacing the regression model for robustness testing
To validate the robustness of the estimation results, this study 

explored the impact of CSA on CEI using the Tobit model (columns (3) 
and (4) in Table 3). The estimation coefficients and significance of 
lnCSA_e and its quadratic term were consistent with the baseline model, 
which demonstrated a U-shaped effect of CSA on CEI and verified that 
the benchmark regression findings are robust.

4.2.3. Replacing the dependent variable for robustness testing
Considering that the CEI varied significantly owing to the different 

data sources and accounting methods of urban carbon emissions, we 
replaced the carbon emissions data with the dependent variable to 
examine the robustness of the findings in the benchmark regression. 
Alternative data sources and methods for measuring carbon emissions 
are presented in Appendix A2. The coefficients of lnCSA_e and its 
quadratic term (columns (5) and (6) in Table 3) were significantly 
negative and positive, respectively, indicating that the basic regression 
results were robust.

4.2.4. Replacing the independent variable for robustness testing
Concentration ratio is an effective method to measure the absolute 

concentration of resources and factors across different regions. To verify 
the robustness of baseline regression results, we further employed the 
concentration ratio to measure CSA and replaced the independent var-
iable in the baseline regression with it. This new variable was tagged 
CSA_r. Referring to Wang (2024), Zheng and Lin (2018) and Deng et al. 
(2020), this study used each city’s share of the national total UCL to 
describe CSA_r. Columns (7) and (8) in Table 3 show that the coefficients 
of CSA_r and its quadratic term were significantly negative and positive, 
respectively. This demonstrates the robustness of the previous regres-
sion results.

4.2.5. Robustness test for distinguishing between low-carbon and non-low- 
carbon pilot cities

Considering that the effect of CSA on CEI may be influenced by low- 
carbon city pilot programs, a dummy variable (set to 1 if the city was 
incorporated into the pilot; otherwise 0) was added to the benchmark 
regression model (Jia et al., 2021; Yan and Huang, 2022). The list of 

Fig. 2. Location and regional classification of the sample cities.

Table 1 
Estimation results of the direct effects of CSA on CEI.

Variable (1) (2)

lnCSA_e − 1.217*** − 0.640***
(− 9.57) (− 5.96)

ln2CSA_e 0.115*** 0.061***
(10.72) (6.68)

lnEL  − 0.004***
 (− 6.72)

lnUR  − 0.383***
 (− 12.55)

lnOP  0.103***
 (10.03)

lnECS  1.322***
 (22.02)

lnTS  − 0.173***
 (− 26.62)

lnFDI  0.012***
 (7.83)

Hausman test 33.60*** 144.48***
N 4512 4512
R2 0.036 0.329

Notes: The data in parentheses is the t-statistic value adjusted for robust stan-
dard error. ***, **, and * indicate significance at the 1 %, 5 %, and 10 % levels, 
respectively.
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low-carbon pilot cities is shown in Appendix A3. Columns (9) and (10) in 
Table 3 show the estimation results. The results indicate that the rela-
tionship between CSA and CEI followed a U-shaped pattern after 
considering the influence of low-carbon city pilot programs, which 
verifies the robustness of the benchmark regression results.

4.3. Heterogeneity analysis results

4.3.1. Economic development heterogeneity analysis
Considering the differences in production factor agglomeration, 

human resources, technological development, and environmental 
awareness among cities with different levels of economic development 
(Li et al., 2017; Wang et al., 2016), CSA may have heterogeneous effects 
on CEI across cities. Therefore, based on the average GDP per capita 

during 2005–2020, cities were classified as developing regions if their 
GDP per capita was in the bottom 50 %; the remaining cities were 
categorized as developed regions. The regression results for the devel-
oped and developing regions are presented in Table 4. Column (2) il-
lustrates that the coefficients for lnCSA_e and ln2CSA_e in the developed 
region are − 0.651 and 0.059, respectively (p < 0.01 for both). Column 
(4) shows that the coefficients for lnCSA_e and ln2CSA_e in the devel-
oping region are − 0.595 and 0.059, respectively (p < 0.05 for both). 
These findings reveal that the relationship between CSA and CEI follows 
a U-shaped pattern in both the developed and developing regions. The 
absolute values of the coefficients of lnCSA_e and ln2CSA_e in the 
developed region are greater than those in the developing region, sug-
gesting that CSA had a stronger effect on the CEI in the developed re-
gion, regardless of whether it exceeded the turning point. Additionally, 

Fig. 3. Spatial distribution of cities crossing the turning point in 2005, 2020, and 2035.

Table 2 
Impact Threshold for a Confounding Variable (ITCV).

Variable lnCSA_e ln2CSA_e lnEL lnUR lnOP lnECS lnTS lnFDI

% Bias threshold 69.78 % 67.48 % 69.61 % 84.37 % 80.49 % 89.45 % 92.47 % 68.42 %
ITCV 0.074 0.067 0.073 0.170 0.131 0.261 0.363 0.069
Square root of ITCV 0.272 0.258 0.271 0.412 0.362 0.511 0.603 0.263
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the inflection points in the developed and developing regions were 
5.517 and 5.042, respectively, indicating that the inflection point in the 
developed region occurred later than that in the developing region. This 
result reveals that the enhancement of economic development level 
could help to delay the turning point to a certain extent, thereby 
allowing for a fuller leveraging of CSA’s carbon reduction effect.

4.3.2. Regional heterogeneity analysis
Considering the heterogeneity of the natural environment, socio- 

economic development, and national policy support across regions, 
the relationship between CSA and CEI may also vary across regions. 
Therefore, the sample cities were classified into eastern, central, west-
ern, and northeastern regions based on their geographic location (Xie 
et al., 2022). As shown in columns (2), (4), and (6) of Table 5, the co-
efficients of lnCSA_e for the eastern, central, and western regions were all 
significantly negative, while those of ln2CSA_e for these regions were 
significantly positive. This suggests a U-shaped relationship between 
CSA and CEI in these regions. Moreover, the regression results show that 
the inflection point of the U-shaped curve was the largest in the eastern 
region (5.904), followed by the central region (5.604) and the western 

region (4.994). However, in the northeastern region, CSA significantly 
increased CEI throughout the study period. The main reason for this may 
be that in this region, the industrial structure has long been dominated 
by the secondary industry, and the enterprises are mainly concentrated 
on resource-intensive industries. The enhancement of CSA may promote 
the spatial agglomeration of resource-intensive industries in this region, 
thereby increasing CEI.

4.3.3. Heterogeneity analysis of resource- and non-resource-based cities
The heterogeneity in industrial structure, development model, and 

development status between resource-dependent and non-resource- 
dependent cities may lead to a significant difference in the impact of 
CSA on the CEI in these two areas. To explore this heterogeneity, the 282 
cities in the sample were grouped into resource- and non-resource-based 
cities according to the National Sustainable Development Plan for 
Resource-Based Cities (2013–2020). The results of the heterogeneity 
analysis between the two groups are presented in Table 6. As shown in 
column (2), the coefficients of lnCSA_e and ln2CSA_e in resource-based 
cities are − 0.292 (p < 0.10) and 0.036 (p < 0.01), respectively. These 

Table 3 
Robustness test results.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

lnCSA_e 0.069*** − 0.599*** 0.045*** − 0.240** − 0.045** − 0.534***   0.046*** − 0.458***
 (4.08) (− 5.39) (3.11) (− 2.56) (− 2.55) (− 4.81)   (2.96) (− 4.50)
ln2CSA_e  0.057***  0.025***  0.042***    0.043***
  (6.09)  (3.07)  (4.46)    (5.01)
CSA_r       − 0.108*** − 0.142***  
       (− 7.11) (− 5.95)  
(CSA_r)2        0.002*  
        (1.86)  
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.320 0.327   0.326 0.330 0.210 0.211 0.397 0.401
N 4230 4230 4512 4512 4512 4512 4512 4512 4512 4512

Notes: The data in parentheses is the t-statistic value adjusted for robust standard error. ***, **, and * indicate significance at the 1 %, 5 %, and 10 % levels, 
respectively.

Table 4 
Regression results of economic development heterogeneity analysis.

Variable Developed region Developing region
(1) (2) (3) (4)

lnCSA_e 0.064** − 0.651***  0.003* − 0.595** 
 (2.53) (− 2.89)  (1.55) (− 4.71) 
ln2CSA_e  0.059***   0.059** 
  (3.19)   (5.44) 
Controls Yes Yes  Yes Yes 
R2 0.418 0.420  0.517 0.237 
N 2256 2256  2256 2256 

Notes: The data in parentheses is the t-statistic value adjusted for robust stan-
dard error. ***, **, and * indicate significance at the 1 %, 5 %, and 10 % levels, 
respectively.

Table 5 
Results of regional heterogeneity analysis.

Variable Eastern region Central region Western region Northeastern region

(1) (2) (3) (4) (5) (6) (7) (8)

lnCSA_e 0.015 − 0.307* 0.065** − 0.807*** − 0.038 − 0.889*** 0.235*** − 0.326
(0.79) (− 1.69) (2.44) (− 3.65) (− 0.77) (− 4.41) (5.01) (− 0.92)

ln2CSA_e  0.026*  0.072***  0.089***  0.048
 (1.78)  (3.97)  (4.35)  (1.60)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.487 0.488 0.596 0.601 0.270 0.281 0.385 0.388
N 1376 1376 1280 1280 1312 1312 544 544

Notes: The data in parentheses is the t-statistic value adjusted for robust standard error. ***, **, and * indicate significance at the 1 %, 5 %, and 10 % levels, 
respectively.

Table 6 
Regression results of heterogeneity analysis for resource- and non-resource- 
based cities.

Variable Resource-based cities Non-resource-based cities

(1) (2) (3) (4)

lnCSA_e 0.117*** − 0.292* 0.037** − 0.685***
(4.12) (− 1.95) (2.08) (− 4.78)

ln2CSA_e  0.036***  0.060***
 (2.78)  (5.08)

Controls Yes Yes Yes Yes
R2 0.331 0.335 0.463 0.469
N 1824 1824 2688 2688

Notes: The data in parentheses is the t-statistic value adjusted for robust stan-
dard error. ***, **, and * indicate significance at the 1 %, 5 %, and 10 % levels, 
respectively.
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findings indicate that CSA exhibited a U-shaped effect on CEI in 
resource-based cities. The regression results in column (4) show that the 
coefficients of lnCSA_e and ln2CSA_e for non-resource-based cities are 
− 0.685 and 0.060 respectively (p < 0.01 for both). This demonstrates a 
U-shaped relationship between CSA and CEI in non-resource-based cit-
ies. Moreover, the estimated results in columns (2) and (4) suggest that 
the effect size and turning point in non-resource-based cities were 
greater than those in resource-based cities. These results reveal that 
resource-dependent cities have smaller UCL carrying capacity due to 
their relatively single industrial structure and excessive reliance on 
resource extraction industries. Additionally, the reasonable control of 
CSA has a stronger effect on the CEI reduction in non-resource- 
dependent cities, as compared to resource-dependent cities.

4.4. Mediating effect analysis results

To understand the internal mechanism of how CSA affects CEI 
scientifically and comprehensively, a nonlinear mediating effect model 
was applied to examine the mediating effects of the three mediating 
variables (EA, TI, and ISU). The results are reported in Table 7. Specif-
ically, columns (1) and (2) summarize the mechanism analysis of EA. 
The mediating effect analysis of TI is presented in columns (3) and (4). 
Columns (5) and (6) present the regression results for the mediating 
effect test for ISU.

In columns (1), (3), and (5), all the regression coefficients of lnCSA_e 
are significantly positive, and those of ln2CSA_e are significantly nega-
tive. These results indicate that CSA had an inverted U-shaped effect on 
EA, TI, and ISU. The results in columns (2), (4), and (6) reveal that EA, 
TI, and ISU can generally restrain CEI, and the relationship between CSA 
and CEI remained valid after considering the influence of these medi-
ating variables on CEI. Accordingly, EA, TI, and ISU are partial medi-
ating variables between CSA and CEI. Thus, H2a, H2b, and H2c were 
confirmed.

4.5. Results of spatial spillover effect analysis

The SDM was adopted to examine the spatial spillover effect of CSA 
on the CEI (the model selection process is displayed in Appendix A4). As 
the coefficients of the SDM regression results cannot reflect the marginal 
impact of CSA, this influence is divided into direct effects and indirect 
effects (LeSage, 2009). The spatial spillover regression results for the 
linear and nonlinear relationships between CSA and CEI before and after 
adding the control variables are presented in Table 8. The spatial 
models’ results were consistent with those of the non-spatial models. In 
column (4), the regression results indicate that lnCSA_e has a negative 
direct effect on lnCEI, with a coefficient of − 0.249 at the 1 % significance 
level, while ln2CSA_e exhibits a positive direct effect with a coefficient of 

0.019 at the same significance level. The indirect effects of lnCSA_e and 
ln2CSA_e are also negative and positive respectively with estimated co-
efficients of − 2.414 and 0.191 at the significance level of 1 %. These 
suggest that CSA had a U-shaped effect on both the local CEI as well as 
that of surrounding cities through the spatial spillover effect. Further-
more, the indirect effects of CSA and its quadratic term were stronger 
than their direct effects, respectively. These results were validated 
through a series of robustness tests (Appendix A5). Therefore, H3 was 
verified.

Table 7 
Estimation results of the mediating effect analysis.

Variable (1) (2) (3) (4) (5) (6)

lnEA lnCEI lnTI lnCEI lnISU lnCEI

lnCSA_e 0.200* − 0.574*** 3.910*** − 0.304** 0.303*** − 0.510***
(1.79) (− 6.38) (8.77) (− 3.00) (5.73) (− 4.84)

ln2CSA_e − 0.053*** 0.035*** − 0.355*** 0.030*** − 0.027*** 0.049***
(− 5.64) (4.64) (− 9.43) (3.52) (− 6.15) (5.48)

lnEA  − 0.588**    
 (− 51.64)    

lnTI    − 0.086***  
   (− 24.79)  

lnISU      − 0.429***
     (− 14.05)

Controls Yes Yes Yes Yes Yes Yes
R2 0.276 0.530 0.268 0.414 0.136 0.359
N 4512 4512 4512 4512 4512 4512

Notes: The data in parentheses is the t-statistic value adjusted for robust standard error. ***, **, and * indicate significance at the 1 %, 5 %, and 10 % levels, 
respectively.

Table 8 
Regression results of the spatial spillover effect analysis.

Variables (1) (2) (3) (4)

lnCSA_e 0.025* 0.020* − 0.249*** − 0.151*
(1.86) (1.67) (− 2.85) (− 1.78)

ln2CSA_e   0.024*** 0.012*
  (3.22) (1.65)

W*lnCSA_e 0.052* 0.030 − 1.760*** − 1.320***
(1.65) (0.97) (− 7.35) (− 5.51)

W*ln2CSA_e   0.154*** 0.105***
  (7.64) (5.14)

p 0.775*** 0.758*** 0.736*** 0.447***
(68.97) (64.86) (58.85) (23.01)

Direct effect    
lnCSA_e 0.038** 0.029* − 0.556*** − 0.249***

(2.48) (1.86) (− 5.67) (− 2.80)
ln2CSA_e   0.051*** 0.019***

  (6.12) (2.59)

Indirect effect    
lnCSA_e 0.299** 0.191* − 6.960*** − 2.414***

(2.41) (1.65) (− 8.96) (− 6.16)
ln2CSA_e   0.616*** 0.191***

  (9.63) (5.73)

Total effect    
lnCSA_e 0.337** 0.219* − 7.515*** − 2.663***

(2.56) (1.78) (− 9.16) (− 6.39)
ln2CSA_e   0.666*** 0.211***

  (9.84) (5.90)
Controls No Yes No Yes
R2 0.187 0.168 0.316 0.535
N 4512 4512 4512 4512

Notes: The data in parentheses is the t-statistic value adjusted for robust stan-
dard error. ***, **, and * indicate significance at the 1 %, 5 %, and 10 % levels, 
respectively.
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5. Discussion

5.1. Boundary of carbon reduction effect of CSA on CEI

Under the “new normal” conditions of economic development and 
the goal of “double carbon” in China, it is critical to optimize the spatial 
allocation of UCL across cites to keep CSA within a reasonable range. In 
recent years, the central government has assigned new UCL to under-
developed cities to support their development and narrow the economic 
disparity between underdeveloped and developed cities. Some scholars 
have noted that this allocation strategy will lead to a spatial dispersion 
and efficiency loss in UCL, and that more new UCL should be assigned to 
developed cities with high CSA levels to increase the overall utilization 
efficiency and allocation efficiency of UCL (Li and Wang, 2015). 
Nevertheless, this study revealed that CSA across cites has a significant 
U-shaped effect on CEI, suggesting that CSA cannot increase without 
constraints and that it also has an optimal scale. These findings are 
similar to the conclusions of Zhong et al. (2023), who found that the 
spatial concentration of UCL has a U-shaped effect on carbon emissions 
per unit of construction land area in China’s provincial-level regions. 
Moreover, we found that 57.80 % and 55.67 % of the sample cities 
crossed the turning point in 2005 and 2020, respectively. According to 
the Action Plan for Carbon Dioxide Peaking Before 2030, China aims to 
reduce its CEI by 65.00 % from 2005 to 2030. Based on the varying trend 
of CSA and CEI during the study period of 2005 to 2020, we predicted 
the CSA and CEI of the sample cities in 2030. The prediction results 
indicate that the proportion of cities crossing the inflection point will 
decrease to 53.90 % in 2030, and the average CEI of the study area will 
decrease by 67.93 % in 2030 compared to 2005. Therefore, as long as 
the government ensures that CSA maintains its current trend of change 
and the proportion of cities crossing the inflection point does not exceed 
53.90 % in 2030, China’s urban carbon emission reduction target for 
2030 can be achieved.

5.2. CSA has heterogeneous effect on CEI

The heterogeneity analysis results reveal that CSA had heteroge-
neous effects on CEI across regions. Specifically, in terms of economic 
development heterogeneity, we observed a U-shaped relationship be-
tween CSA and CEI in both the developed and developing regions. 
However, the effect size and inflection point in the developed region 
were both greater than those in the developing region. Therefore, 
improving the economic development level is an effective way to fully 
leverage the carbon reduction effect of CSA and delay the inflection 
point. Regional heterogeneity analysis shows that CSA had a U-shaped 
effect on CEI in the eastern, central, and western regions. However, in 
the northeastern region, CSA significantly enhanced CEI over the study 
period, mainly because this region is overly dependent on the secondary 
industry, particularly heavy and resource-intensive industries. There-
fore, it is imperative for this region to optimize and upgrade its indus-
trial structure and eliminate outdated production capacity. Moreover, 
both resource- and non-resource-based cities demonstrated a U-shaped 
relationship between CSA and CEI. However, the magnitude and in-
flection point of this U-shaped effect were much greater in non-resource- 
dependent cities compared to resource-based cities. Therefore, reducing 
reliance on resource-intensive industries and promoting industrial 
transformation and advancement are beneficial for releasing CSA’s 
carbon reduction effect.

5.3. EA, TI, and ISU strongly mediate between CSA and CEI

The results of the mediating effect analysis showed that CSA affects 
CEI through EA, TI, and ISU. Specifically, EA significantly promoted the 
CEI reduction, which is consistent with the results of Chen et al. (2023). 
We found that CSA had an inverted U-shaped effect on EA, indicating 
that the positive effect of CSA on EA had a certain boundary. Excessive 

CSA blocked EA and even led to the spatial dispersion of economic ac-
tivities resulting from agglomeration diseconomies. In terms of TI, our 
study demonstrated its positive contribution to decreasing the CEI, 
which is in accordance with the conclusions drawn by Huang et al. 
(2018). The U-shaped relationship between CSA and TI indicates that a 
moderately centralized allocation of UCL can stimulate TI, whereas 
excessive CSA may impede the urban innovation environment and 
innovation vitality, thus hindering technological advancement. ISU 
significantly promoted a CEI reduction over the study period, similar to 
the findings of Wang et al. (2019). This study indicates that a moderate 
CSA can effectively upgrade industrial structure. This is mainly because 
CSA improvements will increase the demand for tertiary industry by 
stimulating the growth and agglomeration of population and promoting 
industrial structure optimization through knowledge sharing and tech-
nology spillover. However, excessive CSA significantly restrains ISU 
owing to competition for industry homogenization.

5.4. Local CSA influences the CEI in neighboring regions through the 
spatial spillover effect

The results of the spatial spillover effect analysis confirm the exis-
tence of a spatial spillover effect through which CSA exerts a U-shaped 
effect on the CEI of adjacent cities. The main reason for this phenome-
non may be that a moderate spatial concentration of UCL can indirectly 
promote human capital accumulation and the agglomeration of eco-
nomic activities in nearby cities through industrial specialization and 
diffusion, infrastructure sharing, and knowledge and technology spill-
over; this may therefore promote economic growth and CEI reduction in 
these areas (Garrone and Grilli, 2010; Yan et al., 2022b). However, 
when CSA exceeds a certain level, the local congestion effect caused by 
the over-concentration of UCL may generate a crowding effect in 
neighboring regions due to disordered competition and the shift of 
population and enterprises with high energy consumption and carbon 
emissions among neighboring cities, thereby increasing their CEI (Yuan 
et al., 2020).

5.5. Limitations and future research

This study has some limitations that should be addressed in future 
research. First, owing to the lack of sufficient and official statistics for 
some prefecture-level cities in China (e.g., Wenchang and Linzhi), our 
sample was limited to 282 prefecture-level cities. However, the sample 
cities in this study covered most prefecture-level cities in China (nearly 
95 %), which can comprehensively reflect the socio-economic devel-
opment and the relationship between CSA and CEI in Chinese cities (Hu 
et al., 2023c; Xie et al., 2022). If relevant data becomes available, more 
cities can be included in future research. Second, although there are 
complex and multiple relevant factors influencing CSA and CEI, we 
captured only the primary relevant factors. Additional influencing fac-
tors may be captured in future studies. Third, the mechanism analysis 
revealed that EA, TI, and ISU have partial mediating effects on the 
impact of CSA on CEI, indicating that the transmission channels of CSA 
that affect CEI are very complex. Therefore, several mediating variables 
were not covered in this study. Future research may consider additional 
intermediary variables to further explore the transmission mechanisms 
underlying the relationship between CSA and CEI. Furthermore, due to 
the lack of effective methods to measure the mediating effects of the 
mediating variables and their proportion of the total effect in the two- 
step nonlinear mediating effect model, this study did not calculate 
them. If a feasible method becomes available in the future, we will 
further evaluate the size of the mediating effects of EA, TI, and ISU on 
CEI to provide a clearer understanding of their contribution to the 
overall mechanism.

Fourth, this study did not investigate the marginal effects of CSA on 
CEI. The effect of CSA on CEI may vary with the levels of CSA, CEI, and 
economic development. Overlooking this heterogeneous characteristic 
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of the relationship between CSA and the CEI may lead to deviations in 
the estimation results and policy formation. Future studies could employ 
a quartile regression to analyze the marginal effects of CSA on the CEI at 
different points along the distribution. Fifth, this study only explored the 
overall heterogeneity among regions during the study period. The 
temporal variation in this heterogeneity and its policy implications need 
to be further explored in future research. Sixth, based on the data from 
Chinese cities, this study provided Chinese evidence for the relevant 
theoretical exploration and empirical study. Although the applicability 
of the findings for other countries requires further examination, this 
study could provide empirical support for the spatial allocation and 
scale control of UCL in countries such as Japan and Vietnam, where land 
planning is mainly controlled by the government. Additionally, this 
research has reference value for urban scale control and carbon reduc-
tion in other countries or regions.

6. Conclusions and policy implications

6.1. Conclusions

We systematically investigated the effect of CSA across cities on CEI 
and its intrinsic mechanism from the national perspective by using fixed 
and mediating effects and SDM models, based on panel data for 282 
Chinese cities from 2005 to 2020. This study ultimately drew four key 
conclusions. 

(1) CSA exerts a significant U-shaped effect on CEI, as confirmed by 
robustness tests. During the study period, the proportion of cities 
that crossed the inflection point presented a slight downward 
trend, from 57.80 % in 2005 to 55.67 % in 2020. Moreover, the 
spatial distribution pattern of these cities remained relatively 
stable. It is predicted that this proportion will decrease to 53.90 % 
in 2030, and the average CEI of these cities will decrease by 
67.93 % in 2030 compared to 2005. Under such circumstance, 
China’s target to reduce CEI by 65.00 % from 2005 to 2030 can be 
achieved in the sample cities. Therefore, the strategic adjustment 
of the spatial allocation strategy for UCL across cities to maintain 
CSA within a reasonable range is very important for China’s 
carbon emission reduction efforts.

(2) The relationship between CSA and CEI has a notable heteroge-
neity that varies based on the economic development level, 
geographical region, and dependence on resource-based in-
dustries. In the northeastern region, CSA had a significant posi-
tive effect on CEI, whereas it followed a U-shaped pattern in other 
regions. This effect was stronger in the developed and central 
regions and non-resource-based cities than in the developing and 
eastern and western regions as well as resource-based cities. 
Moreover, the turning point occurred later in the developed and 
eastern regions and non-resource-based cities than in the others. 
Consequently, overlooking the spatiotemporal heterogeneity of 
this effect may make it difficult to establish and implement tar-
geted policies to optimize UCL allocation and reduce CEI.

(3) EA, TI, and ISU were important partial mediating variables be-
tween CSA and CEI. In summary, CSA affects CEI indirectly 
through these mediating variables. This suggests that the trans-
mission mechanisms of CSA on CEI are relatively complicated, 
and a comprehensive understanding of these mechanisms is 
conducive to formulating more comprehensive policies.

(4) The spatial spillover effect analysis revealed that CSA has a U- 
shaped effect on CEI in both local and adjacent cities. Therefore, 
when allocating UCL and developing policies to reduce the CEI, it 
is important to consider spatial spillover effects. These findings 
provide further evidence of cross-city cooperation in CEI 
reduction.

6.2. Policy implications

(1) Given the U-shaped relationship between CSA and CEI in China, 
cities must grasp the “turning point” in the process of reducing 
CEI. Therefore, land management departments should scientifi-
cally evaluate and accurately predict the UCL demand of each 
city, and then optimize the spatial allocation strategies of UCL 
across cities to promote its moderate concentration and avoid the 
crowding effect produced by excessive CSA. As CSA and CEI 
continue to change, great attention needs to be paid to the dy-
namic adjustment of UCL allocation policy. As for cities whose 
CSA occurs before the turning point, they could improve infra-
structure and public service construction to attract the inflow of 
various production factors to maximize the carbon reduction ef-
fect of CSA and production factor agglomeration. As for cities 
whose CSA has already crossed the turning point, on the one 
hand, they should strictly control UCL expansion to avoid the 
further enhancement of CSA and take multiple measures to pro-
mote the development and application of low-carbon technolo-
gies; on the other hand, they should eliminate backward 
production capacity and transfer out low-end industries to make 
room for new industries to optimize industrial structure and 
accelerate low-carbon transformation.

(2) Since the effect of CSA on CEI is clearly heterogeneous, the 
government should tailor UCL allocation strategies and CSA 
management strategies for each city based on its development 
stage, economic development level, resource and environment 
carrying capacity. Considering that the turning point in the 
developing region occurred earlier than in the developed region, 
the developing region should both strictly control UCL expansion 
to keep CSA within a reasonable range, and accelerate sustainable 
and stable economic growth to delay the turning point in this 
region. As CSA significantly enhanced CEI in the northeastern 
region during the study period, the region should further promote 
the Northeast revitalization strategy, upgrade traditional in-
dustries, eliminate backward production capacity, strengthen the 
research and application of production technology and low- 
carbon technology, thereby improving the quality and effi-
ciency of economic growth. Since the magnitude and inflection 
point of the U-shaped effect were smaller in resource-based cities 
than those in non-resource-based cities, it is therefore imperative 
for resource-based cities to reduce their dependence on natural 
resource and resource extraction industries, achieve industrial 
transformation and upgrading, and advance low-carbon tech-
nology innovation.

(3) The mediating effect analysis showed that the potential mecha-
nisms by which CSA affects CEI are complex and diverse. 
Therefore, policymakers should integrate the spatial allocation of 
UCL across cities and its underlying mechanisms into a unified 
system and establish a comprehensive policy system. Moreover, 
our results demonstrated that EA, TI, and ISU can effectively 
reduce CEI, and CSA exerts an inverted U-shaped effect on these 
variables. Therefore, excessive CSA should be avoided to prevent 
its negative impact on mediating variables and CEI. Simulta-
neously, it is recommended to implement systematic and 
comprehensive measures to promote the moderate agglomera-
tion of economic activities, advancement of production and low- 
carbon technologies, and green upgrading of industries and 
products, thus accelerating the fulfillment of carbon reduction 
targets. Specifically, the department concerned should improve 
public infrastructure and public service capacity, and provide 
more preferential policies to attract the inflow of advanced and 
high-quality production factors as well as innovative and envi-
ronmentally friendly enterprises. It is suggested that more sup-
port and incentives be provided in areas such as funding, 
taxation, and land rent to encourage innovative enterprises to 
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accelerate green low-carbon innovations. Furthermore, it is 
necessary for the government to efficiently control land and 
housing prices to avoid the crowding-out effect of excessively 
high prices on innovative enterprises and talents.

(4) Considering the spatial spillover effect of CSA on CEI, it is crucial 
to establish a cross-regional collaboration mechanism for carbon 
emission reduction and ensure the coordinated implementation 
of cross-regional carbon reduction programs. Based on the 
contradiction between UCL supply and demand in various cities, 
the central government should expedite the market-based allo-
cation of UCL and explore the establishment of a nationwide 
interregional trading mechanism for a UCL quota. This would 
optimize the spatial allocation of UCL, guide the rational flow of 
production factors, and fully leverage the carbon reduction po-
tential of CSA, thereby contributing to the achievement of na-
tional carbon reduction targets. Moreover, an orderly industrial 
transfer, population migration, and the establishment of cross- 
city industrial parks are also effective in mitigating the negative 
effects of excessive CSA on carbon emission reduction.
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