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Abstract: Satellite and unmanned aerial vehicle (UAV) remote sensing can be used to estimate
soil properties; however, little is known regarding the effects of UAV and satellite remote sensing
data integration on the estimation of soil comprehensive attributes, or how to estimate quickly and
robustly. In this study, we tackled those gaps by employing UAV multispectral and Sentinel-2B data
to estimate soil salinity and chemical properties over a large agricultural farm (400 ha) covered by
different crops and harvest areas at the coastal saline-alkali land of the Yellow River Delta of China in
2019. Spatial information of soil salinity, organic matter, available/total nitrogen content, and pH at
0–10 cm and 10–20 cm layers were obtained via ground sampling (n = 195) and two-dimensional
spatial interpolation, aiming to overlap the soil information with remote sensing information. The
exploratory factor analysis was conducted to generate latent variables, which represented the salinity
and chemical characteristics of the soil. A machine learning algorithm (random forest) was applied
to estimate soil attributes. Our results indicated that the integration of UAV texture and Sentinel-2B
spectral data as random forest model inputs improved the accuracy of latent soil variable estimation.
The remote sensing-based information from cropland (crop-based) had a higher accuracy compared
to estimations performed on bare soil (soil-based). Therefore, the crop-based approach, along with
the integration of UAV texture and Sentinel-2B data, is recommended for the quick assessment of soil
comprehensive attributes.

Keywords: unmanned aerial vehicle; satellite; remote sensing; soil quality; multispectral; Sentinel-2B

1. Introduction

Optimizing agricultural management practices, such as efficient and sustainable ir-
rigation and fertilization, are effective ways to improve soil quality across vast coastal
saline-alkali regions [1–3]. Among fertilization, organic and nitrogen fertilizers are com-
monly used to enhance soil quality. The organic fertilizers/amendments have notable
capabilities in improving soil structure and water holding capacity since the organic car-
bon from amendments works as a bonder to bind silt and clay particles together for the

Remote Sens. 2021, 13, 4716. https://doi.org/10.3390/rs13224716 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2635-0688
https://orcid.org/0000-0003-2603-8034
https://orcid.org/0000-0002-7424-5030
https://orcid.org/0000-0002-6436-2479
https://doi.org/10.3390/rs13224716
https://doi.org/10.3390/rs13224716
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13224716
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13224716?type=check_update&version=1


Remote Sens. 2021, 13, 4716 2 of 19

micro-aggregate formation [4,5]. However, the salinity adversely impacts the soil organic
carbon content [6,7]. The absorption of potassium, phosphorus, and other necessary ele-
ments from crops is reduced by the Sodium (Na+) competition [8]. Appropriate nitrogen
fertilizer improves the leaf area extension, leaf life prolongment, and increasing of the
chlorophyll content, thus facilitating the photosynthetic process of vegetation and increas-
ing biomass accumulation [9]. Generally, nitrogen acts as a limiting nutrient factor in
coastal regions [10], because a high salt content usually causes a large volume of NO−3 -N
concentration leachate [11], restricting the nitrification process and root uptake, and in-
creasing NH3 volatilization [12]. Nevertheless, excessive nitrogen application accelerates
environmental pollution and soil salinization through the release of a higher quantity of
base cations to soil solution [1]. Under such circumstances, it is fundamental to diagnose
the spatial variance of soil properties across saline-alkali soils. Besides, in the field of mod-
ern precision agriculture, quick assessment of comprehensive soil attributes is important
for agronomic management over a large farm, thus, the development of latent soil variables
that consider both the fertility and salinity levels of soil is key to achieving this goal [13].

Traditional ground investigations of soil quality are time and labor-intensive in large-
scale impact assessments, while currently, remote sensing imagery and derivative products
are feasible in providing rapid non-destructive estimations [14,15]. Satellite remote sens-
ing is characterized by the large-area coverage, while the airborne system such as the
unmanned aerial vehicle (UAV) has advantages of flexibility and high spatial resolutions.
In recent years, the integration of UAV and satellite remote sensing has been applied to
the detection/estimation of soil attributes [16,17]. Generally, these studies often calibrated
soil attribute estimation models by developing the regression relationships between the
soil attributes and UAV remote sensing indicators and then applying these UAV-based cali-
brated models to the satellite data to improve estimation accuracy at a large extension [18].
It should be noted that remote sensing-based regression models are sensor dependent since
different sensors have distinct spectral channels, thus leading to distinctive information [19].
The UAV-based calibration of models could yield uncertainties when they are transferred to
satellite-based applications [18]; therefore, it is important to find an alternative to integrate
UAV and satellite imageries for soil attribute detection.

Remotely sensed information can be divided into several types according to their dif-
ferent detection approaches and spectral channels—e.g., optical, thermal, and microwave
remote sensing [20,21]. Among these approaches, optical remote sensing has been widely
applied in the detection of soil salinity and fertility [22], owing to its abundant informa-
tion. In the field of optical remote sensing, analyzing the soil reflectance is a direct way
to investigate soil features, and this soil-based approach is often based on hyperspectral
remote sensing, focusing more on the selection of sensitive bands for soil attributes de-
tection. For instance, Weng et al. (2010) applied a spectral index derived from the EO-1
Hyperion data to identify sensitive bands for the estimation of soil salinity in the Yellow
River Delta [23]. More studies tended to investigate the relationships between vegetation
reflectance and soil properties—an indirect means for soil quality mapping (denoted as
crop-based approach), because most of the land surface is covered by vegetation instead
of bare soil, and vegetation growth and development is remarkably impacted by soil
properties [24,25]. For instance, the nitrogen deficiency resulted in acceleration of the leaf
senescence and a reduced photosynthesis rate [26]. The study of Zhu et al. (2021) analyzed
the ground-based hyperspectral reflectance of winter wheat to identify the crop growth
discrepancy caused by the different soil salinity levels across soil layers [27]; the study of
Song et al. (2016) integrated the Landsat thematic, spectral, and terrain images with digital
elevation models to map soil salinity and evaluated the influence of vegetation on soil
salinity estimation [28]. However, previous studies did not compare the performance of
the soil-based and crop-based approaches in capturing soil fertility and salinity estimation.

The studies that integrated UAV and satellite remote sensing for soil quality detection
mainly used spectral/vegetation indices (VIs) that are calculated using band reflectance
following certain mathematical rules [29,30]. However, texture information should be
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highlighted as another promising advantage of UAV data, which is an informative indicator
of the architecture of objects and has therefore been applied in crop growth monitoring
with satisfying accuracy [31]. On the other side, commonly used UAV multispectral
sensors usually have 3–6 bands, less than some satellite sensors such as Sentinel-2 (13
bands). To merge the advantages of high spatial resolution of UAV images and abundant
spectral information of satellite images, the integration of UAV texture and satellite spectral
information for soil fertility and salinity estimation should be investigated whilst this issue
remains to be elucidated.

This study aimed to find an effective and quick approach to map and monitor the
soil fertility and salinity using UAV multispectral and Sentinel-2B satellite remote sensing
data. Research questions are: (1) whether the estimation accuracy of soil latent variables
using crop remote sensing data is a better representative of soil attributes compared to
estimations performed on the bare soil; and (2) if the integration of Sentinel-2 spectral and
UAV texture variables improves the accuracy of the soil latent variable estimation.

2. Materials and Methods
2.1. Description of the Study Area and Experimental Sites

The study area (118.90–118.93◦ E, 37.67–37.68◦ N) is located at the Yellow River Delta
Research Centre of the Institute of Geographical Sciences and Natural Resources Research,
Chinese Academy of Sciences, south of the Yellow River and close to the Bohai Sea (~10 km)
(Figure 1), and is characterized by a temperate monsoon climate with an average annual
air temperature of 12.5 ◦C and rainfall of 555.9 mm. Concentrated precipitation falls in
summer, accounting for 65.6% of the annual precipitation, and 3.7% of precipitation is in
winter. During the growing season of maize and sorghum (May–September) in 2019, the
average air temperature was 24.7 ◦C, and the total precipitation was 472.6 mm, accounting
for 85.1% of the annual total precipitation (Figure 1d). The terrain is flat, and this region
was formed by the sediment of the Yellow River and is developing rapidly. Since the Yellow
River Delta (YRD) suffers the seawater encroachment and relative high evapotranspiration
of temperate monsoon climate, this region has a high proportion of coastal saline-alkali land
(~50%) [32–34], which adversely impacts the cropland use efficiency of the region [35,36].

The area of the experimental site is about 400 ha, and the length and width of each
strip plot are around 1.2 km and 50 m, respectively. Ditches are distributed between each
plot for irrigation and flood discharge. The Yellow River water was used for irrigation.
This experimental site is a typical coastal saline-alkaline land, which was reclaimed in
2017. The soil salinity level is severe and exhibits remarkable variations, and, consequently,
significant vegetation variations in space. Severe salinity, along with leaching due to
heavy rainfalls and irrigation, limits crop access to nitrogen, so nitrogen acted as the most
critical yield-limiting nutrient for the study region. Several crops are cultivated at the
experimental site, including maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench),
soybeans (Glycine max (Linn.) Merr.), oats (Avena sativa L.), and oilseed rape (Brassica napus
L.). Maize and sorghum were selected as study crops based on the planting area size to
compare with bare soil. The sowing dates of maize and sorghum were 17 May and 22 May
in 2019, respectively. The agronomic management was uniform throughout the whole
experimental site.
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Figure 1. (a) Location of the study area; (b) distribution of the 195 soil sampling points; (c) crop 
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2019 (data was downloaded from http://sd.cma.gov.cn/gslb/dysqxj/qxfw/nyqx/index_3.html, ac-
cessed on 30 June 2021). 

2.2. Overview of the Workflow in This Study 
The workflow of this study includes four steps (Figure 2): 

(a) Generating remote sensing indicators, including UAV texture/spectral and Sentinel-
2B spectral indicators, and investigating the difference between UAV and Sentinel-
2B similar bands (Sections 2.3.1–2.3.3);  

(b) Conducting the exploratory factor analysis to generate soil latent variables that could 
effectively reflect the variance of soil fertility and salinity (Section 2.4); 

(c) Conducting the Pearson correlation filtering to remove highly correlated remote 
sensing indicators when the |r| values are over 0.95 (Section 2.5.1);  

Figure 1. (a) Location of the study area; (b) distribution of the 195 soil sampling points; (c) crop distribution of the
experimental site; and (d) precipitation and air temperature of the study area in 2019 (data was downloaded from
http://sd.cma.gov.cn/gslb/dysqxj/qxfw/nyqx/index_3.html, accessed on 30 June 2021).

http://sd.cma.gov.cn/gslb/dysqxj/qxfw/nyqx/index_3.html
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2.2. Overview of the Workflow in This Study

The workflow of this study includes four steps (Figure 2):

(a) Generating remote sensing indicators, including UAV texture/spectral and Sentinel-
2B spectral indicators, and investigating the difference between UAV and Sentinel-2B
similar bands (Sections 2.3.1–2.3.3);

(b) Conducting the exploratory factor analysis to generate soil latent variables that could
effectively reflect the variance of soil fertility and salinity (Section 2.4);

(c) Conducting the Pearson correlation filtering to remove highly correlated remote
sensing indicators when the |r| values are over 0.95 (Section 2.5.1);

(d) Dividing the study area into three regions covered by the bare soil, maize, and
sorghum, then conducting the Spearman correlation analysis to identify informative
remote sensing indicators for the soil variable estimation (Section 2.5.2);

(e) Running the random forest model to estimate soil variables using remote sensing
indicators, comparing the performance of single- (UAV versus Sentinel-2B) and multi-
source remote sensing data, investigating whether the integration of spectral and
texture data could lead to a better estimation (research question 2), and comparing the
soil variable estimation accuracy of places with different coverage—bare soil, maize,
and sorghum (research question 1) (Section 2.5.3).

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 19 
 

 

(d) Dividing the study area into three regions covered by the bare soil, maize, and sor-
ghum, then conducting the Spearman correlation analysis to identify informative re-
mote sensing indicators for the soil variable estimation (Section 2.5.2);  

(e) Running the random forest model to estimate soil variables using remote sensing 
indicators, comparing the performance of single- (UAV versus Sentinel-2B) and 
multi-source remote sensing data, investigating whether the integration of spectral 
and texture data could lead to a better estimation (research question 2), and compar-
ing the soil variable estimation accuracy of places with different coverage—bare soil, 
maize, and sorghum (research question 1) (Section 2.5.3). 

 
Figure 2. Brief workflow of this study: (a) generation of remote sensing indicators; (b) generation of 
soil latent variables; (c) filtering highly correlated remote sensing indicators; (d) diving into bare 
soil, sorghum, and maize regions; and (e) estimating soil variables of three regions using the random 
forest approach. 

2.3. Acquisition and Processing of Remote Sensing Data 
2.3.1. Acquisition and Pre-Processing of UAV Remote Sensing Data 

UAV flight missions were executed on 17 August 2019. An eBee wing-fixed UAV 
platform (SenseFly, S.A., Lausanne, Switzerland) equipped with a multiSPEC-4C multi-
spectral camera (SenseFly, S.A., Lausanne, Switzerland) was employed to collect images. 
The multiSPEC-4C has four separate channels centered at 550 nm (green), 660 nm (red), 
735 nm (red edge), and 790 nm (the near-infrared (NIR) band), with bandwidths of 40 nm, 
40 nm, 10 nm, and 40 nm, respectively (Figure 3). As the experimental site was large, three 
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Figure 2. Brief workflow of this study: (a) generation of remote sensing indicators; (b) generation
of soil latent variables; (c) filtering highly correlated remote sensing indicators; (d) diving into bare
soil, sorghum, and maize regions; and (e) estimating soil variables of three regions using the random
forest approach.

2.3. Acquisition and Processing of Remote Sensing Data
2.3.1. Acquisition and Pre-Processing of UAV Remote Sensing Data

UAV flight missions were executed on 17 August 2019. An eBee wing-fixed UAV
platform (SenseFly, S.A., Lausanne, Switzerland) equipped with a multiSPEC-4C multi-
spectral camera (SenseFly, S.A., Lausanne, Switzerland) was employed to collect images.



Remote Sens. 2021, 13, 4716 6 of 19

The multiSPEC-4C has four separate channels centered at 550 nm (green), 660 nm (red),
735 nm (red edge), and 790 nm (the near-infrared (NIR) band), with bandwidths of 40 nm,
40 nm, 10 nm, and 40 nm, respectively (Figure 3). As the experimental site was large, three
UAV flight missions were conducted between 10:00–14:00 with a clear sky and low wind;
the shooting time lasted 1.5 h. The flight heights for three missions were 150 m, with spatial
resolution around 0.20 m. The reflectance of spectral panels was photographed before each
flight for the next radiation calibration. UAV images were captured with the camera point-
ing in the nadir (0◦) direction. UAV flight was controlled using the proprietary eMotion
3 software (Pix4D, S.A., Lausanne, Switzerland). The Pix4D Mapper (Pix4D, S.A., Lausanne,
Switzerland) was used for radiation calibration and generation of UAV orthography.
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Figure 3. Central wavelengths and bandwidths of Sentinel-2B and multiSPEC-4C sensors.

2.3.2. Acquisition and Preprocessing of Sentinel-2 Data

The Sentinel-2B L1C product from 17 August 2019 was downloaded from the website
https://earthexplorer.usgs.gov/ (accessed on 12 July 2021), which has been geometrically
calibrated. The Sen2Cor was used for the radiation calibration of L1C products to generate
the L2A products. The L2A products with a ground spatial resolution of 20 m were used
for further analysis. Sentinel-2B sensor has 13 bands, 10 of which were selected for this
study while considering the spatial resolution and central wavelength, including bands 2,
3, 4, 5, 6, 7, 8, 8a, 11, and 12, denoted as blue, green, red, red edge1 (RE1), RE2, RE3, NIR,
RE4, Short-wave infrared (SWIR1), and SWIR2, respectively (Figure 3).

2.3.3. Generation and Extraction of Remote Sensing Indicators

As the UAV images have a high spatial resolution, these data were used to calculate
the canopy texture using the grey level co-occurrence matrix (GLCM) [31] via the r.texture
tool of the QGIS open-source software. In total, 13 texture variables were calculated; the
first-order statistics in the spatial domain calculated 7 variables—sum average (sa), entropy
(ent), difference entropy (de), sum entropy (se), variance (var), difference variance (dv), and
sum variance (sv); and the second-order statistics calculated 6 variables—angular second
moment (asm), inverse difference moment (idm), contrast (con), correlation (cor), informa-
tion measures of correlation (moc), and maximal correlation coefficient (mcc). Since the
UAV images have four bands, 13 × 4 (UAV bands) = 52 texture variables were generated.

Spectral variables included the reflectance of bands and VIs. Both UAV and L2A band
reflectance remained, while the calculation of VIs (Table 1, using Python 3.7) was based on
the L2A data because the Sentinel-2B sensor has more spectral bands (visible-NIR-SWIR)
than the UAV multiSPEC-4C camera (only four bands).

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Table 1. Vegetation indices were used in this study.

Forms 1 Names of Vegetation Indices Formulas 2 References

(b1 − b2)/(b1 + b2)
Normalized Difference Vegetation index NDVI = (NIR − R)/(NIR + R) [37]

Red edge NDVI NDREij 1 = (REi − REj)/(REi + REj) [38]
Green NDVI GNDVI = (NIR − G)/(NIR + G) [39]

b1/b2

Simple Ratio SR = NIR/G [39]
Red edge reflectance ratio PRij = REi/REj [37]

Ratio vegetation index RVI = NIR/R [38]

b1 − b2
Reflectance difference RD = NIR − R

[37]Red edge reflectance difference REDi = REi − B

(b1 − b2)/b3

Plant senescence reflectance index PSRIi = (R − B)/REi
[40]Chlorophyll index green CIG = (REi − G)/G

Red Edge Relative Indices RERIi = (REi − R)/NIR

Hybrid

Transformed Chlorophyll Absorption in
Reflectance Index TCARI = 3[(RE1 − R) − 0.2(RE1 – G)(RE1/R)]

[41]
Optimized soil adjusted vegetation index OSAVI = 1.16(NIR − R)/(NIR + R + 0.16)

Enhanced Vegetation Index EVI = 2.5 ((NIR−R)/(NIR + 6R − 7.5B + 1)) [42]
Improved chlorophyll absorption

ratio index MCARI = (RE1 − R) − 0.2(RE1 − G)(RE1/R) [39]

Red-edge vegetation stress index RVSI = [(RE1 + RE3)/2] − RE2 [43]
Modified simple ratio MSR = (NIR/R− 1)/

√
NIR/R− 1 [38]

Modified simple ratio Red-edge MSRRE = (NIR/RE1 − 1)/
√

NIR/RE1 − 1 [44]
1 bi represents the reflectance of band i. 2 B, G, R, RE1, RE2, RE3, NIR, and RE4 are the reflectance of Sentinel-2B bands 2, 3, 4, 5, 6, 7, 8, and
8a, respectively.

2.4. Collection and Processing of Soil Data
2.4.1. Ground Measurements

Soil sampling was conducted along the strip field and evenly distributed to cover the
study area on 15 August 2019 (two days before the UAV flight). In total, 195 sampling points
were collected. The location of each sample point was recorded by Android smartphone
MI 8 GPS (Xiaomi Technology Co., Ltd., Beijing, China). In this study, five soil attributes at
0–10 cm and 10–20 cm layers were measured, including the soil salinity content (g kg−1),
soil organic matter content (SOM, g kg−1), total nitrogen content (TN, g kg−1), available
nitrogen content (AN, mg kg−1), and pH. In order to match the soil and remote sensing data
in space, the inverse distance weighted (IDW) spatial interpolation, which has been widely
applied in soil interpolation [14], was conducted to obtain the spatial variations of soil
attributes (Figure 4). Considering the spatial resolutions of L2A products, a 20 m × 20 m
plot was set as a sample size. The mean values of all pixels within each plot were calculated
to represent the plot-level values using the QGIS. In total, the experimental site was divided
into 4797 plots; the numbers of bare soil, sorghum, and maize plots were 1182, 1219, and
811, respectively. The statistical characteristics of soil attributes and latent variables for
these three regions are shown in Figure 5. Soil attributes and variables are called soil
indicators hereafter.
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2.4.2. Explanatory Factor Analysis of Soil Attributes

Since crop growth was affected by comprehensive soil conditions, the explanatory
factor analysis [13] was conducted to reduce the number of variables using the psych
package in the R 3.6.3 software. The Parallel analysis showed that the number of variables
should be set to 2 (Figure S1). Then, the orthogonal rotation was used to extract variables.
As shown in Table 2, the first and most important latent variable (Variable 1, calculated via
the PA1 results) explained 37% of the total variance; Variables 1 and 2 (calculated via the
PA2 results) collectively accounted for 68% of the total variance. Variable 1 had the largest
eigenvalue, with high loadings for SOM, AN, and TN (>0.5), so Variable 1 was termed the
fertility variable. Variable 2 was termed the salinity and sodicity variable because of the
high loadings for salinity and pH (>0.8). Further steps applied remote sensing information
to estimate Variables 1 and 2.

2.5. Screening of UAV Variables and Modeling for Soil Latent Variable Estimation
2.5.1. Filtering Highly Correlated Remote Sensing Indicators

In order to mitigate multi-collinearity issue, the Pearson correlation analysis was
carried out for filtering highly correlated remote sensing variables (|r| > 0.95, p < 0.01,
n = 4797) by executing the findCorrelation functions in the caret package of R [20]. After
filtering, 17 spectral (i.e., UAV-g, UAV-r, UAV-e, UAV-nir, RE1, RE2, NIR, SWIR1, SWIR2,
PR42, PR43, PR32, ratio vegetation index (RVI), red-edge reflectance difference 1 (RED1),
red edge relative indices 1 (RERI1), RERI2, and transformed chlorophyll absorption in
reflectance index (TCARI)) and 14 texture (i.e., g-con, g-cor, g-de, g-dv, g-idm, g-mcc, g-sa,
g-sv, r-cor, r-de, r-dv, r-se, r-sv, and r-var.) variables remained. The g, r, e, and nir represent
the green, red, red edge, and the near-infrared bands-based UAV variables, respectively.
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Table 2. Results of the explanatory factor analysis for soil attributes.

PA1 2 PA2 h2 3 u2 4

Soil attributes 1

salinity 0–10 cm −0.26 −0.87 0.83 0.17
salinity 10–20 cm −0.18 −0.89 0.82 0.18

SOM 0–10 cm 0.81 0.08 0.67 0.33
SOM 10–20 cm 0.82 −0.07 0.67 0.33

TN 0–10 cm 0.85 0.15 0.75 0.25
TN 10–20 cm 0.84 0.13 0.72 0.28
AN 0–10 cm 0.56 0.34 0.44 0.56

AN 10–20 cm 0.71 0.21 0.54 0.46
pH 0–10 cm 0.09 0.84 0.71 0.29

pH 10–20 cm 0.00 0.80 0.64 0.36

Cumulative variation 0.37 0.68
Proportion explained 0.54 0.46

1 SOM, soil organic matter content, g kg−1; TN, soil total nitrogen content, g kg−1; AN, soil available nitrogen
content mg kg−1. 2 PA is the correlation coefficient between observed attributes and variables. 3 h2 is the common
variable variance, i.e., the degree of methodological explanation of each variable by variables. 4 u2 = 1−h2 denotes
the proportion of variance that cannot be explained by variables.

2.5.2. Spearman Correlation Analysis

The Spearman’s rank correlation coefficient (denoted as ρ) [45] was used to quantify
the correlation between soil indicators and remote sensing indicators, where the correlation
between the variables can be described using a monotonic function. The range of ρ values
is between +1 and −1, denoting positive and negative relationships, respectively, and
higher values of |ρ| represent the strong correlations. This process aimed to identify vital
remote sensing indicators for soil variable estimation, executed in R 3.6.3.

2.5.3. Modeling and Accuracy Assessment

In this study, a typical machine-learning method, random forest, was used for model-
ing via the randomForest R package. The random forest model includes two key parameters,
mtry and ntree. The mtry was set to 3 (default value), and the optimal ntree values were
determined by the minimum error. A three-fold cross-validation approach was used for
model calibration and validation. Model estimation accuracy was evaluated using the
coefficient of determination (R2), root mean square error (RMSE), and mean absolute
percentage error (MAPE, %) as:

R2 = {[
n

∑
i=1

(
Mi −M

)(
Ei − E

)
]/[

√
n

∑
i=1

(
Mi −M

)2
√

n

∑
i=1

(
Ei − E

)2
] }

2

(1)

RMSE =

√
n

∑
i=1

(Mi − Ei)
2/n (2)

MAPE = (
n

∑
i=1
|Mi − Ei|)/Mi (3)

where i is the sequence number of the sample, Mi is the calculated soil latent variable values,
Ei is the estimated soil variable values, M represents the average value of the calculated
soil latent variable array, and E represents the average value of the estimated soil latent
variable array.

3. Results
3.1. Relationships between UAV and Sentinel-2B Reflectance

The reflectance of UAV and Sentinel-2B bands with a similar central wavelength,
i.e., UAV green versus Sentinel 02, UAV red versus Sentinel 03, UAV red edge versus
Sentinel 05, and UAV nir versus Sentinel 06 bands, is compared in Figure 6. The one-to-
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one reflectance at the plot level exhibits a significantly positive linear correlation with
rall values of 0.77–0.94 (n = 3212, p < 0.001), suggesting that the average values of all
UAV pixels within each plot can appropriately represent the plot-level Sentinel-2B-based
information of ground objects. However, these relationships differ for distinct bands; the
rall value of red bands is 0.94, higher than other bands; and the rall values of red edge bands
is 0.77. This result indicates that the transfer of UAV-calibrate models might introduce
uncertainties in satellite-based applications. Besides, the coverage of ground does not
affect the relationships between the reflectance of similar UAV and Sentinel-2B bands
significantly, as the r values of soil, maize, and sorghum plots are comparable.
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3.2. Relationships between Remote Sensing Indicators and Soil Indicators

The relationships between remote sensing indicators and soil indicators were different at
different plots (Figure 7), and the sorghum region exhibited the highest |ρ| values, remarkably
higher than the maize and bare soil regions. In particular, at the bare soil (nsoil = 1182), UAV
variables with the high |ρ| values were g-sa (ρPA1 = −0.22, ρPA2 = −0.18, p < 0.001), g-sv
(ρPA1 = −0.20, ρPA2 = −0.15, p < 0.001), and UAV-g (ρPA1 = −0.23, ρPA2 = −0.21, p < 0.001).
At maize plots (nmaize = 811), the highest |ρ| values were seen for g-dv (ρPA1 = −0.31,
ρPA2 = −0.28) and g-idm (ρPA1, ρPA2 = −0.22). As for Sentinel-2B variables, at the bare soil,
SWIR1 (ρPA1 = 0.27, ρPA2 = 0.34) and SWIR2 (ρPA1 = 0.16, ρPA2 = 0.22, p < 0.001) had the
highest |ρ| values, while at maize plots, the RERI1 had the highest values (ρPA1 = 0.68,
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ρPA2 = 0.57, p < 0.001). Regarding sorghum plots, most UAV and Sentinel-2B variables
indicated high |ρ| values, suggesting that many remote sensing indicators of sorghum
plots were highly correlated with ground-based soil indicators. The UAV and Sentinel-2B
variables with the top five |ρ| values are listed in Table 3, and these variables are used for
the following estimation of soil attributes.
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Table 3. Remote sensing indicators used for soil variable estimation.

Regions Soil Variables UAV Indicators Sentinel-2B Indicators

Bare soil
Variable 1 UAV-g, g-sa, g-sv, UAV-e, r-var RERI1, RE1, RED1, SWIR2, SWIR1
Variable 2 UAV-g, g-sa, UAV-e, g-sv, r-dv RVI, PR43, RED1, SWIR2, SWIR1

Sorghum Variable 1 UAV-r, r-sv, UAV-e, UAV-nir, UAV-g SWIR2, RE2, RVI, RERI2, TCARI
Variable 2 UAV-r, r-sv, UAV-e, UAV-nir, g-mcc RERI2, TCARI, RERI1, RE2, RVI

Maize Variable 1 g-dv, g-idm, g-de, g-mcc, g-con NIR, PR32, PR42, TCARI, RERI1
Variable 2 g-dv, g-idm, g-con, g-mcc, g-de NIR, PR32, RERI1, TCARI, RED1

Compared to the |ρ| values of soil indicators, overall, fertility-related indicators,
such as Variable1, AN, and TN, showed higher |ρ| values than the salinity and sodicity
indicators (i.e., salinity, pH, and Variable 2). This suggests that the estimation accuracy
of soil nutrition indicators might be higher than the estimation of salinity and sodicity
indicators. When comparing soil attributes and latent variables, their |ρ| values were
comparable at the bare soil region, while the soil variables exhibited slightly higher |ρ|
values at the maize region and the highest at the sorghum region. This result indicated that
the estimation of soil latent variables based on remote sensing might be more accurate than
the estimation of a single soil attribute.

3.3. Estimation of Soil Variables Using Remote Sensing Indicators

Processing remote sensing data without classification of the land use indicated that the
R2 and MAPE values of Variable 1 estimation were 0.44–0.63 and 9.62–12.22%, respectively,
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while those two of Variable 2 estimation were 0.51–0.65 and 27.79–33.46%, respectively
(Table 4 and Figure 8). These results revealed that the estimation accuracy of soil latent
fertility variable using remote sensing data was more accurate than the estimation of
salinity and sodicity variable, which is consistent with the Spearman correlation analysis.

Table 4. Estimation accuracy assessment of soil latent variables using different remote sensing indicators.

Soil Latent
Variables

Regions
R2 RMSE MAPE (%)

UAV L2A 1 Inte. 2 UAV L2A Inte. UAV L2A Inte.

Variable 1

Bare soil 0.38 0.45 0.57 12.21 11.48 10.13 15.91 15.12 12.93
Sorghum 0.37 0.54 0.54 6.97 5.95 5.99 9.09 7.03 7.12

Maize 0.12 0.48 0.49 9.18 7.04 7.01 11.55 8.58 8.59
All 0.44 0.56 0.63 9.72 8.62 7.98 12.22 10.39 9.62

Variable 2

Bare soil 0.40 0.51 0.64 7.15 6.45 5.57 41.81 37.85 33.86
Sorghum 0.01 0.11 0.13 7.27 6.61 6.55 39.39 34.75 33.76

Maize 0.09 0.35 0.37 4.61 3.88 3.80 12.50 10.33 10.08
All 0.51 0.60 0.65 6.65 5.97 5.60 33.46 29.69 27.79

1 L2A = Sentinel-2B L2A data. 2 Inte. = Integration of Sentinel-2B L2A and UAV remote sensing indicators.
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Figure 8. Scatters between calculated and estimated soil Variable 1 (fertility indicator) using: (a) UAV; (b) Sentinel-2B; and
(c) the integration of UAV and Sentinel-2B data. Scatters between calculated and estimated soil Variable 2 (salinity and
sodicity indicator) using: (d) UAV; (e) Sentinel-2B; and (f) the integration of UAV and Sentinel-2B data.

When dividing into different land covers, regarding the Variable 1 estimation, the R2,
RMSE, and MAPE values of the bare soil were 0.38–0.57, 10.13–12.21, and 12.93–15.91%,
respectively; the three values of the maize were 0.12–0.49, 7.01–9.18, and 8.58–11.55%,
respectively; and at the sorghum region, they were 0.37–0.54, 5.95–6.97, and 7.03–9.09%,
respectively (Table 4). In terms of the Variable 2 estimation, the R2, RMSE, and MAPE
values of soil plots were around 0.50, 6.50, and 37%, respectively (Table 4). The three values
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were 0.10, 6.50, and 35% of sorghum region, and 0.30, 4.0, and 10% of maize plots. The
abovementioned results revealed that the type of land cover could affect the accuracy of
soil attribute estimations. The accuracy of soil Variable 1 estimation was in the order of
sorghum > maize > soil, while the maize region exhibited the highest estimation accuracy
of Variable 2, and those of sorghum and bare soil region were comparable. Overall, it could
be concluded that the estimation of soil variables using crop-covered regions exhibited
better accuracy than the bare soil region.

Comparing the estimation accuracy of different remote sensing datasets, for single-
source data, the Sentinel-2B outperformed the UAV data for both variable estimations.
Furthermore, the integration of Sentinel-2B data into UAV-based observations remarkably
improved the accuracy of estimations for soil variables compared to only UAV estimations,
particularly for maize plots. However, the availability and quality of the satellites and
timing overlap between UAV campaigns and satellite-based information can limit the
potential of integrations.

4. Discussion

In the current study, we used UAV multispectral and Sentinel-2B sensing information
for the estimation of soil fertility and salinity over a large agricultural farm consisting of
croplands and fallow lands. Our findings revealed that the reflectance of UAV multiSPEC-
4C and Sentinel-2B in similar central wavelengths exhibited strong linear relationships
while differing for distinct bands. The estimation accuracy of latent soil variables using
remote sensing data for croplands was higher compared to the harvested lands; the inte-
gration of UAV texture and Sentinel-2B spectral data improved the estimation accuracy of
latent soil variables.

4.1. Factors Affecting the Relationships between UAV and Sentinel-2B Reflectance

The Pearson correlation analysis showed that the UAV and Sentinel-2B reflectance
yielded a significant correlation, meaning both sources of information can detect the
variations in soil attributes. It should be noted that this relationship was stronger for
green and red bands compared to the red edge band. Remote sensing reflectance is sensor-
dependent [19]. The channel design of UAV multiSPEC-4C and Sentinel-2B multispectral
sensors differed in central wavelength and bandwidth. As shown in Figure 3, the overlap
of UAV red edge and Sentinel RE2 bands was less than the other three bands, so the
reflectance of these two bands exhibited the lowest correlations. Further, the bandwidth of
the RE channel was very narrow (10 nm), so the signal of this band was not strong enough
and therefore might be more easily affected by environmental conditions [46]. Another
argument could be that the reflectance at the red edge and NIR ranges usually changed
rapidly [30], so the slight difference in central wavelengths and bandwidths could cause an
obvious discrepancy in reflectance.

The comparable reflectance of UAV and Sentinel-2B bands revealed that the average
of all UAV remote sensing pixels within a plot could effectively represent the plot level
information captured by satellite remote sensing when their sensors have a similar specifi-
cation, which is an important prerequisite for the combination of UAV and satellite remote
sensing, particularly in the ‘UAV-calibrated and satellite-validated’ approach. Otherwise,
the difference between UAV and satellite reflectance might cause many uncertainties and
biases on the performance of estimation. Other factors, such as the difference in spatial
resolution of these two data sources, as well as the spatial heterogeneity of observed ob-
jects, would affect the relationships between UAV and satellite bands. Future studies could
further investigate these mentioned issues.

4.2. Factors Affecting the Performance of Soil- and Crop-Based Remote Sensing Approaches

The results of this study showed that the land cover affected the accuracy of estimating
soil attributes, and, overall, the crop-based approach exhibited higher accuracy than the soil-
based approach. This can be explained by the fact that crops played a ‘signal amplification’
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role in soil attributes, and it is easier to capture crop features than soil features under
satellite and aerial observations. Nonetheless, the soil-based way is not affected by crop
phenology, and our study also demonstrated that this approach is feasible for soil latent
variable estimation.

This study estimated the latent soil variables instead of a single soil attribute. Previous
studies have successfully conducted the estimation of single soil attributes (e.g., salinity
and SOM) via remote sensing [47]. However, it should be noted that most of them were
conducted using hyperspectral sensors with ultrahigh spectral (~2 nm) and spatial res-
olutions (mm level) [27,48]. The satellite and aerial images can obtain a large coverage,
but a low degree of spectral and detailed spatial information tends to limit interpretation
for the qualitative determination of soil attributes [49]. On the other side, the spatial
variance of fertility and salinity in this region remained largely uncertain. Remotely sensed
information of soil and crops is affected by multiple soil attributes. Different soil attributes
might lead to similar remotely sensed information, but it is difficult to identify based on
the limited spatial and spectral resolutions. In such a context, the estimation of soil latent
variables and comprehensive indicators is more effective. Finally, such detection of soil
latent variables could be a quick approach for targeting soil comprehensive conditions at
the field scale, which is vastly helpful for agronomic management. Besides, crop nitrogen
content can be linearly explained by soil nitrogen levels due to the role of nitrogen in leaf
area expansion [50], which could partially explain that the estimation accuracy of ‘fertility’
(Variable 1), which was higher than the ‘salinity and sodicity’ (Variable 2).

Comparing two crop plots of sorghum and maize for soil variables estimation revealed
that the sorghum plots yielded higher accuracy in the Variable 1 estimation, while this was
the case for maize with Variable 2 estimation. However, it is challenging to disentangle the
main driver of the difference between crops since maize and sorghum were cultivated in
places with distinct soil conditions. Future studies should conduct controlled experiments
to further investigate this phenomenon. Furthermore, although more remote sensing
indicators in the sorghum plots had higher |ρ| values than those in the maize plots, the
estimation accuracy in sorghum and maize regions was comparable. We inferred this
could be owing to the different phenological phases at the time of the observations and the
differences in the response of maize and sorghum canopies to different levels of salinity
and soil nutrients. Although the sowing dates of maize and sorghum were close, their
growth rates were different; maize was at the late grain filling stage, while sorghum was at
the early grain filling stage during the observation campaign. The color of maize leaves
at the terminal growth stage may be less representative of the nutritional condition of the
soil, which was not the case for sorghum in this experiment. Therefore, single remote
sensing indicators might not be sufficient to characterize the representative status of maize
at the late grain-filling stage. The integration of texture and spectral variables provided
abundant information of crops so that the soil variable estimation of maize plots could
achieve satisfying accuracy.

In addition, it is commonly recognized that 95% of all roots are in the upper 2 m
soil layer. Roots play a fundamental role in nutrient and water uptake for supporting
crop growth [51]. The proportion of crop root biomass significantly differed for distinct
regions. Generally, the distribution of crop roots is affected by potential evapotranspiration,
precipitation, and the length of the warm season; and deeper rooting depths were mainly
found in arid ecosystems [52]. As earlier mentioned, this study was conducted at a
coastal saline land with a shallow groundwater table and flat terrain [34], close to the
Bohai Sea (~10 km). Maize and sorghum were planted during May and October when
maritime climate with abundant rainfall and warm temperature is prevalent. In addition,
soil properties, such as texture, bulk density, fertility, and agronomic management (e.g.,
fertilizer placement and tillage) influence crop root traits [53]. The study area is formed by
the Yellow River sediment, which has a short time of reclamation (≤2 years). The long-term
upward salt return from seawater leads to the severe saline of this region, thus causing
soil consolidation and hindering the penetration of crop roots [54]. Under the effects of
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the above comprehensive factors, the root distribution at the experimental site should
be shallow. The study of Wang et al. (2018) also proved that maize cultivated close to
the experimental site (with less saline) exhibited around 70% root biomass at a 0–20 cm
layer [53]. Some studies have demonstrated that nitrogen fertilizer significantly affected
root traits only in the top 30 cm of the soil layer [54]. Under this circumstance, the 0–20 cm
soil layer dominantly affected crop growth, and the soil characteristics can be translated
into remotely sensed reflectance from crop surface; thus, the comparison of soil-based and
crop-based approaches in this study is adequate. On the other hand, we would like to
highlight that optical remote sensing is not suitable to penetrate the soil profile, so deeper
soil variable estimation might not be appropriate for the soil-based method.

4.3. Factors Affecting the Performance of Distinct Remote Sensing Data Source

The Sentinel-2B dataset included spectral variables, while the UAV dataset mainly
contained texture variables. Even though the spatial resolution of UAV images (0.20
m) was significantly higher than the Sentinel-2B products (20 m), the Sentinel-2B data
provided more spectral information, particularly in the red-NIR range, which is sensitive
to crop features [30,44,55]. Besides, spectral information might be more informative than
texture variables because spectral variables are affected by both biochemical and structural
features of crops, while texture variables are likely mainly influenced by crop structure.
The higher |ρ| values of spectral variables can also support this explanation. Therefore,
the Sentinel-2B data outperformed the UAV data for soil variable estimation. This study
did not calculate VIs using UAV data, nor did it compare the performance of UAV and
Sentinel-2B spectral information regarding soil variable estimation. We focused more on
the integration of UAV and satellite data to make use of the complete advantages of UAV
high spatial resolution and Sentinel-2B abundant spectral information to improve soil
salinity and fertility estimation accuracy.

5. Conclusions

This study used UAV multispectral and Sentinel-2B data for the estimation of soil
latent variables considering salinity and fertility over large agricultural land consisting
of cropland (maize and sorghum) and harvest area (bare soil). Our results revealed that
the integration of UAV texture and Sentinel-2B spectral data improved the estimation
accuracy of latent soil variables. The remote sensing data covered by crops resulted in
higher accuracy compared to estimations performed on the bare soil. Thus, the crop-based
approach, along with the integration of UAV texture and Sentinel-2B data, is recommended
for the quick assessment of soil comprehensive attributes. This study contributes to the
multi-source remote sensing-based detection of soil comprehensive salinity and fertility
conditions, vastly helpful for the field-scale agronomic management.
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