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A B S T R A C T

Citizen science is an effective approach for collecting extensive data scalable for deep learning, although data 
quality is debatable. However, few studies have determined the factors associated with data collection that affect 
model performance and potential sampling bias. This study aims to identify the factors that significantly influ-
ence the performance of a deep learning object detection model in agricultural prediction tasks. To do so, we 
analyzed errors in a You Only Look Once (YOLO v8) model trained for counting the number of coffee cherries in 
mobile pictures. The model was trained with 436 images taken in Colombia and Peru collected by local farmers 
as a citizen science approach. We analyzed the prediction errors of the model using 637 additional pictures. We 
then applied a linear mixed model (LMM) and a decision tree machine learning model to regress the model’s 
error against predictor variables related to the following categories: photographer influence, geographic location, 
mobile phone characteristics, picture characteristics, and coffee varieties. Our results show the strong influence 
of photographer identity and adherence (whether the image collection protocol was followed or not) on model 
prediction error. Following the protocol can increase model performance from an R2 of 0.48 to 0.73. Addi-
tionally, model performance varied significantly depending on photographer identity, with R2 ranging from 0.45 
to 0.93. In contrast, factors such as mobile phone characteristics (e.g., frontal camera resolution, flash type, and 
screen size), using the screen behind the branch to obscure other cherries, coffee varieties, and geographic 
location did not significantly affect prediction error. These findings demonstrate that data quality in citizen 
science–based data collection for enhancing model prediction can be achieved through straightforward and 
comprehensive protocols, customized volunteer training, and regular feedback from experts. Such measures 
collectively support the robust application of deep learning models in agriculture. Furthermore, this study 
demonstrated that any mobile device with a camera can contribute to citizen science initiatives, underscoring the 
potential and scalability of this approach in agricultural research.

1. Introduction

Collecting a large number and covering good-quality images to train 
a deep learning algorithm is a common challenge in computer vision 
tasks. Capturing RGB images using smartphone cameras is one of the 
most promising approaches regarding logistic cost and scalability for 
large-scale data collection in natural science (Ryan et al., 2018). In 
particular, a citizen science–based data collection approach can be 
effective in countries with emerging and developing economies (Baig 
and Straquadine, 2014; Ryan et al., 2018), as investigators do not need 
to purchase measurement devices. There are more than five billion 

unique mobile subscribers, equivalent to 76 % of the world’s population 
(GSMA Intelligence, 2024). Therefore, a mobile phone–based data 
collection approach makes it possible to cooperate with a large number 
of local citizens for scalable image data collection and to cover a wide 
range of conditions (Barbedo, 2018; GSMA Intelligence, 2024; Rivera- 
Palacio et al., 2024; Ryo et al., 2023).

In agriculture, for example, nearly 60 %–70 % of the variation in the 
crop yields of rice and coffee can be predicted using the combination of a 
smartphone camera and deep neural networks across countries (Rivera- 
Palacio et al., 2024; Tanaka et al., 2023). This citizen science approach 
of local contributors can drastically scale up the extent and speed of data 
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collection while maintaining high model performance. Another advan-
tage of this approach is its suitability for crop types that cannot be 
monitored from a vertical point of view using unmanned aerial vehicles, 
aircraft, and satellites (e.g., cherries under leaves and tree canopies in 
agroforestry settings).

On the other hand, a critical downside of a citizen science approach 
is uncertainty in the quality of the dataset collected by various con-
tributors. Operators can cause differences in the way they hold the 
camera, frame the region of interest, and maintain hand steadiness, even 
when they follow a uniform protocol to capture images (Barbedo, 2018). 
Cameras have a variety of parameters that can be manually or auto-
matically set to produce images (Barbedo, 2022). The background 
screen behind the target objects can also affect model performance. 
However, few studies have investigated the relative influence of these 
factors on model performance.

This study aims to identify and quantify the factors that significantly 
influence the performance of the object detection algorithm in agricul-
ture prediction tasks using image data collected through citizen science. 
More specifically, we analyze the sources of the error of the developed 
deep learning model, YOLO v8, that identifies and counts the number of 
coffee cherries on a tree branch in a picture in our previous study Rivera- 
Palacio, et al (2024). The previous study achieved high performance, 
attaining an R2 of 0.72 at an unprecedented geographic scale by training 
an object detection model YOLO v8 in collaboration with farmers in 
Peru and Colombia. We assume that the identification process is subject 
to the combined influence of various factors about the contributors’ 
conditions, including mobile phone characteristics, geographic location, 
coffee varieties, photographer influence, and picture characteristics. 
Furthermore, the inexperience of farmers in capturing images alongside 
the complex agroforestry coffee landscape adds additional layers of 
challenge to the process.

2. Materials and methods

2.1. Data and protocol for taking pictures

As the full details of the method are listed in the work of Rivera- 
Palacio, et al. (2024), we provide the essential details here to satisfy the 
reproducibility requirements of this study.

From March to November 2022, images of coffee cherries on tree 
branches were collected in the departments of Cauca and Quindio, in 
southwest Colombia (Genova, Cajibio, El Tambo, Morales, Piendamo, 
and Popayan; 2◦–4◦N, 75◦–77◦W), and in the northern and central parts 
of the coffee districts in Peru (Chinchaque, Chirinos, Cañariz, Lalaquiz, 
Pongoa, and San José Lourdes; latitude-longitude of 5◦–6◦S, 6◦–7◦W). In 
October 2022, samples were collected in the municipality of Cajibio, 
Cauca Department, to test angles for taking pictures at the branch. The 
total database consists of 8,904 mobile pictures of coffee trees collected 
by 977 farmers with 53 survey personnel (hereafter, enumerators) that 
were used in a previous study by Rivera-Palacio et al. (2024). Fig. 1
shows an example of the collected images. For this study, we selected a 
random sample from the dataset, consisting of 13 enumerators, referred 
to as photographers, and 49 randomly pictures per enumerator (637 
pictures in total). The protocol for taking pictures of coffee branches 
followed the approach outlined by Rivera-Palacio et al. (2024). Each 
enumerator selected three branches per tree and took one photo per 
branch. Each photo was taken during daylight to capture as many 
cherries as possible and not capture cherries from other branches or 
trees. Sometimes, a screen was used to conceal other branches in the 
background.

2.2. Object detection model

We used an object detection model developed by Rivera-Palacio et al. 
(2024) to detect coffee cherries. This model employs the You Only Look 
Once version 8 (YOLO v8), which was provided by Ultralytics in 2023 

Fig. 1. Representative images of coffee cherries taken based on a citizen science approach. A) a picture taken of the front of the branch; B) a picture taken from above 
the branch; C) a picture with a white screen and shadows due to sunlight; D) a picture with a white screen behind the branch; E) a picture without a screen, with other 
branches behind; F) a picture of large leaves that hide the cherries; G) external objects in the pictures, such as a red nail, which resembles a cherry; H) a screen with 
different colors behind the branch. Additional examples of pictures coffee cherries can be found in Fig. A1 of Appendix 1.
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(Jocher et al., 2023) model, originally trained with the Common Objects 
in Context (COCO) dataset (Lin et al., 2014), underwent further fine- 
tuning with 436 smartphone images of coffee branches (each image 
showed up to 120 coffee cherries). The dataset consisted of the following 
objects in the 436 images: 35,247 green coffee cherries, 342 red coffee 
cherries, and 105 black coffee cherries. To enhance the dataset’s quality, 
data augmentation techniques, including brightness adjustment and 
geometric transformation, were applied to the images. The dataset was 
divided into training (80 %, n = 346), validation (10 %, n = 43), and test 
(10 %, n = 43) sets, where n is the number of mobile pictures. For a 
comprehensive outline of the performance metrics and hyperparameters 
used, see Rivera-Palacio et al. (2024). The model was used in this study 
to detect coffee cherries on an additional 637 randomly selected 
smartphone images of coffee branches from 13 enumerators. De-
scriptions of these pictures are shown in Table A1 of Appendix 1. The 
development process took place on a Windows 10 platform using Python 
3.7.0 and PyTorch 1.7, running on 4 GPU Nodes (in particular, two 
Nvidia Tesla V100 GPUs).

We set up to scenarios to preliminarily evaluate the performance of 
YOLO v8 in detecting coffee cherries in mobile phone images. In the first 
scenario, we compared the total number of coffee cherries detected by 
YOLO v8 with the total number visually counted in each mobile phone 
image, achieving an R2 of 0.80. In the second scenario, we compared the 
manual count of coffee cherries per branch, as recorded by field enu-
merators, against the total detected by YOLO v8, which dropped 
significantly, yielding an R2 of 0.65 (Fig. 2). Ideally, the results of the 
first and second scenarios should be equal; however, a difference in R2 of 
0.15 was observed. In the the first scenario suggested that YOLO v8 
demonstrated good accuracy in detecting cherries in mobile images. 
However, its performance was less accurate in the second scenario, that 
is, when compared to the actual number of cherries per branch based on 
a manual count. This preliminary finding indicates that detection ac-
curacy is influenced not only by the characteristics of YOLO v8 but also 
by other factors. Therefore, we define the YOLO v8 error as e(j) per each 
mobile picture j (the red line vertical in Fig. 2): 

e(j) = yj − ŷj (1) 

Where e(j) is the error for the jth picture, yj = the total of coffee 

cherries detected per YOLO v8 ŷj = the number of coffee cherries 
manually counted on a branch, and j = 1,….…637 is the index for a 
mobile picture.

2.3. Factors explaining model prediction error

To investigate the sources of error e(j), for each image, we assigned 
several attributes that can affect the quality of the image. These attri-
butes are divided into five categories (Fig. 3): photographer influence, 
mobile phone characteristics, features of mobile pictures, geographic 
location, and coffee varieties. Table A1 in Appendix 1 describes these 
variables in detail.

2.4. Statistical analysis

2.4.1. Analyzing variable associations among explanatory variables
We used Pearson correlation (r) to evaluate whether there was a 

linear relationship between the quantitative variables (Table A1 in 
Appendix 1). r measures the linearity between two continuous variables 
and utilizes the covariance matrix of the data to assess the strength of the 
relationship between two vectors (Sedgwick, 2012). Variables that were 
highly correlated were discarded for the LMM approach.

Principal Components Analysis (PCA) is a technique that transforms 
the data into a smaller set for easier interpretation and reveals hidden 
patterns through orthogonal (uncorrelated) components that retain the 
maximum possible variance from the original dataset (Dunteman, 
1984). We applied PCA to analyze and identify the intrinsic relation-
ships between quantitative variables that are not easily perceived 
through pairwise correlation analysis.

Multiple correspondence analysis (MCA) is an unsupervised learning 
technique used to reduce dimensionality and visualize patterns in 
multidimensional categorical data (Murtagh, 2007). We applied MCA to 
evaluate the associations between all qualitative variables (Table A1 in 

Fig. 2. Evaluating of the performance of the cherry detection model YOLO v8 
against the number of cherries manually counted on the branch.

Fig. 3. Categories of variables that affect image data quality and the perfor-
mance of YOLO v8. These factors can significantly affect the quality of the 
image data and thereby the task of object (cherry) detection with the trained 
deep learning model (YOLO v8).
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Appendix 1).
MCA and PCA identify intrinsic patterns between variables that are 

not observable through correlation analysis. This suggests that the LMM 
results, particularly with respect to important variables, may be influ-
enced by confounding factors that affect the outcomes.

2.4.2. Analyzing model error sources
We used LMM to identify the factors explaining the variability in e(j). 

LMM allows to analice non-independent, multilevel/hierarchical, lon-
gitudinal or correlated data (Carnero-Alcázar et al., 2022). LMM is 
particularly suited for our study because the data were organized hier-
archically and exhibited non-independence. The data structure is hier-
archical because we analyzed mobile pictures taken by various 
independent photographers. Mobile pictures taken by the same 
photographer are not independent of each other, as these pictures are 
assumed to be more similar to one another than to those taken by other 
photographers.

LMMs are linear in terms of their parameters, and the covariates or 
independent variables may use both random and fixed effects (Pinheiro 
and Bates, 2000). The fixed effects are constant parameters associated 
with the entire population. Random effects are parameters exclusive to 
some individuals’ random responses and are normally distributed 
(Pinheiro and Bates, 2000). The photographer is considered a random 
effect because each photographer influences the pictures differently due 
to factors such as personal style, level of digital literacy, smartphone 
features, or environmental conditions.

The general model structure is formulated in matrix notation as 
follows: 

y = Xβ+Zb+ e (2) 

Where y is a vector. The response variable in our case is e(j). β is the 
vector of fixed effects. X is the matrix used to describe fixed effects 
related to observations to β. Z is the matrix related to random effects b, 
and e is the experimental error. The column “Type of variable for LMM” 
in Table A1 in Appendix 1 lists the fixed effects and random effects used 
LMM. The photographer identification number (Photographer) was 
designated as the random variable, assuming that the factor could 
randomly modulate the intercepts of the fixed variables. The intercept 
refers to the baseline level of the dependent variable e(j), when all fixed 
and random predictor variables are set to zero. We set p < 0.05 to be 
statistically significant.

We reported the results of LMM using p-value and effect size. Effect 
size refers to the magnitude of the difference between groups (Sullivan 
and Feinn, 2012). We used the index eta-squared η2 that describes the 
proportion of variance explained by group membership (Albers and 
Lakens, 2018) and is defined as follows: 

η2 =
σB

2

σT
2 =

SSB

SST
(3) 

Where σ2
B is the variance between the samples, σ2

T es la variance of within 
and between samples. SSB is the sum of squares between samples and 
SST is the sum total of the sum of squares of between and within squares.

The indicators of LMM performance were ConditionalR2, which takes 
into account both the fixed and random effects, and MarginalR2, which 
considers only the variance of the fixed effects.

Moreover, we anticipated some strong interaction effects between 
photographer identity and the other variables. To explore such inter-
action effects, we utilized a decision tree machine learning model. This 
model was also used to explain e(j) using all the variables in Table A1 of 
Appendix 1, including photographer identification number. The spe-
cific decision tree model employed was a conditional inference tree, 
which falls under the non-parametric class of decision trees (Hothorn 
et al., 2016).

The conditional inference tree uses a recursive algorithm in which 
data are divided using an algorithm that creates subsets based on 

statistically significant variables and values (Hothorn et al., 2016). Each 
node represents a point where the algorithm splits the data. The algo-
rithm continues splitting the data until the null hypothesis of indepen-
dence between the response and any of the variables can no longer be 
rejected (Hothorn et al., 2016). This tree model is robust, unbiased, and 
easy to interpret. Consequently, this method helped us understand the 
interactions between mixed categorical and numerical data in mobile 
pictures, where relations are nonlinear and unclear.

We used R v4.4.1 for data analysis. The statistical methods were 
implemented using the partykit v1.2–20 library for the ctree algorithm 
(Hothorn et al., 2016), lmerTest v3.1–3 for the LMM, FactoMineR v2.11 
for PCA and MCA, and corrplot v0.95 for the Pearson correlation.

3. Results

3.1. The relationship between explanatory variables

The dimensions of image height and image width showed a strong 
relationship (r = − 0.74), similar to the relationship between x-axis and 
y-axis resolution (r = 1), and the relationship between screen width and 
x-axis and y-axis resolution (r = − 0.95) (Fig. 4). Image height, as well as 
x-axis and y-axis resolution, were discarded from the LMM to avoid 
multicollinearity in further analysis.

We applied the PCA technique to the quantitative variables 
(Table A1 in Appendix 1). The first five orthogonal and uncorrelated 
factors together explained 89.7 % of the total variance. The first 
component (dimension 1) explained 32.8 % (eigenvalue = 1.7) (x-axis in 
Fig. 5) and was primarily influenced by camera resolution (29.01 %) 
(Table 1). The second principal component (dimension 2) explained 
17.5 % of the total variance (eigenvalue = 1.0) (y-axis in Fig. 5). The 
moment of inertia, representing the sum of variances in dimensions 1 
and 2, was 47.2 %. Dimension 2 was strongly correlated with longitude 
(78.33 %). The third principal component was primarily associated with 
latitude (91.8 %), while the fourth principal component was influenced 
by image width (51.85 %). The fifth component was primarily influ-
enced by screen width (51.5 %) (Table 1).

We applied MCA to evaluate all qualitative variables (Table A1 in 
Appendix 1). The first five orthogonal and uncorrelated factors together 
explained 49.7 % of the total variance. The variance explained by the 
first principal component (dimension 1) was 13.9 % (eigenvalue =
0.26), while the second principal component (dimension 2) explained 
10 % (eigenvalue = 0.19). The moment inertia was 23.9 %.

Fig. 6 presents the results of the MCA algorithm in a two-dimensional 
plot (x- and y- representing dimensions 1 and 2, respectively). For the 
first component (dimension 1), the key category was the absence of a 
screen behind the branch to avoid hiding other cherries (Nonscreen: 
18.37 %). The second component (dimension 2) was mainly associated 
with position in front of the branch (front: 17.61 %). Table A2 in Ap-
pendix 1 presents the key categories associated with each of the first 
five principal components. The third principal component was linked to 
the Colombia variety (Variety:VColombia: 16.12 %). The fourth 
component corresponded to the position in the lower part of the tree 
(LowerTree: 19.39 %). The fifth component was characterized by the 
other varieties (Variety:Others 37.16 %).

The MCA revealed associations between the categories of variables. 
The use of a non-screen behind the branch (“NonScreen”, indicated in 
red on the x-axis) and the presence of the entire branch along with 
cherries from other branches (“EntireBranch þ O”) were observed, 
regardless of the variety. The variety Colombia (“V.Colombia”) was 
associated with a random position of the camera (“Random”). Other 
varieties (“V.Other”), which refers to varieties other than Supremo, 
Variedad Colombia, or Castillo, were correlated with the camera being 
positioned above (“Above”) and with images displaying only a portion 
of the branch (“PortionBranch”).
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3.2. Factors influencing model performance

The distribution of e(j). exhibits a bell-shaped curve, indicating a 
normal distribution, with the majority of values concentrated near the 
mean of − 0.45. The data span a range from − 39 to 51 (Fig. 7). There is a 
slight tendency for values to be more concentrated in the negative range, 
which suggests that YOLO v8 tends to detect fewer cherries than the 
actual number of cherries present.

The LMM model showed ConditionalR2 of 0.23 and MarginalR2 of 
0.08, indicating the strong influence of photographer identity. Table 2

Fig. 4. Pearson coefficients (r) of all variable qualitative variables in Table A1 of Appendix 1.

Fig. 5. Two-dimensional PCA plot of the first and second factors and the cor-
relation between variables.

Table 1 
The contribution of each variable to each first five dimensions in PCA after 
removing the variables resolution in x, resolution in y and image height.

Variables Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

ImageWidth 22.17 0.42 3.86 51.85 2.63
ScreenWidth 23.52 4.23 0.15 10.37 56.73
ScreenHight 23.93 7.32 0.01 23.99 20.48
latitude 0.91 4.69 91.8 0.93 0.08
longitude 0.46 78.33 4.17 11.15 1.61
Camera Resolution 29.01 5.02 0.02 1.7 18.48

Fig. 6. Two-dimensional MCA plot of the first and second factors and the 
correlation between categorical variables.
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presents the fixed coefficients from the LMM, revealing that the protocol 
for taking pictures played an important role in prediction accuracy 
(Instructions: NonFollowProtocol, p = 0.00). The relative height of the 
branch (LocationBranch: UpperTree: p = 0.05) and the presence of other 
branches in the picture different from the entire main branch (‘Features: 
EntireBranch_OtherBranches’, p = 0) were also identified as important 
features for explaining the variability in e(j). The conditional means, 
which represent the deviations of the intercepts for each level of the 
random effect relative to the overall intercept, demonstrate significant 
variability in e(j) across photographers (Table 3).

As with the p-values, the effect sizes η2 also showed that differences 
in instructions explain the largest portion of the variance (Instructions: 
η2 = 0.03), followed by the features of mobile pictures (Features: η2 =

0.02).

The influence of the photographer was also confirmed with the 
conditional inference tree (Fig. 8). The tree partitions the data based on 
the photographer. The group on the left side of the tree consists of five 
photographs and is further split by instructions, resulting in two groups: 
those who followed the instructions (n = 208, e(y) = 2.9) and those who 
did not (n = 37, e(y) = 8.2). In both cases, the median e(j). is greater 
than zero, indicating that their pictures, when used in YOLO v8, tend to 
result in the model counting more cherries than the actual number of 
cherries based on a manual count—an effect of overestimation.

The group on the right side is further split by photographer, resulting 
in two subgroups of photographers: one group composed of three pho-
tographers (n = 147, e(j) = − 1.2) and another group composed of five 
photographers (n = 245, e(j) = − 4.2). In both cases, the median of e(j)
is less than zero, suggesting that images from these photographers, when 
processed by YOLO v8, tend to result in underestimation, with the model 
detecting fewer cherries than are actually present. Overall, over-
estimation occurs more frequently (67 %) than underestimation (33 %).

3.3. Post hoc analysis of key factors

We analyzed the impact of the photographer on model performance 

Fig. 7. Distribution of e(j). The minimum value and maximum values of e(j) are 
− 39 and 51, respectively, with a median of − 1 and a mean of − 0.45.

Table 2 
Results of the linear mixed model (LMM) for fixed effects. The fixed variables are fully described in Table A1 of Appendix 1. The random effect is the person who took 
the picture (photographer). Alpha (significance level) = 0.05. The variables with p < 0.05 are emphasized in bold. The description column names are sourced from the 
lm4e library (Bates, 2014) in R. Estimate is the estimated effect of each fixed-effect variable on the target variable, holding other variables constant. Std. Error refers to 
the standard error of the estimate. df denotes the degrees of freedom for the fixed effects. t value: The ratio of the estimate to the standard error used to evaluate the 
statistical significance of fixed effects. Pr(>|t|) is the p-value associated with each t-statistic, indicating the probability that the observed effect occurred by chance.

Name Estimate Std. Error df t value Pr(>|t|)

(Intercept) − 2.20 1.81 79.89 − 1.22 0.23
Variety: OTHERS − 1.16 1.52 616.40 − 0.76 0.45
Variety: SUPREMO 0.03 1.52 616.32 0.02 0.99
Variety: VCOLOMBIA − 0.09 3.26 613.14 − 0.03 0.98
BehindBranch: Screen − 1.14 0.93 479.68 − 1.22 0.22
LocationBranch: MiddleTree − 0.31 0.75 608.03 − 0.41 0.68
LocationBranch: UpperTree 1.53 0.78 608.59 1.97 0.05
Instructions: NonFollowProtocol 4.61 1.12 610.53 4.12 0.00
longitude − 0.30 0.32 614.57 − 0.96 0.34
latitude 0.20 0.32 615.89 0.62 0.53
ImageWidth − 0.51 0.42 447.35 − 1.22 0.22
AnglePicture: Front 0.86 0.70 617.00 1.22 0.22
AnglePicture: Random 1.19 1.32 616.36 0.90 0.37
Flash: NonFlash − 0.15 1.28 599.77 − 0.12 0.91
ScreenWidth 0.46 1.01 9.47 0.46 0.66
ScreenHight 0.26 1.03 8.63 0.26 0.80
CameraResolution 0.16 0.99 10.33 0.16 0.88
Features: EntireBranch_OtherBranches 3.04 0.96 616.13 3.17 0.00
Features: PortionBranch 1.04 0.94 613.76 1.11 0.27
Features: PortionBranch_OtherBranches 1.01 0.97 616.56 1.04 0.30

Table 3 
Results of conditional means for random effects (photog-
rapher). These are deviations of the intercepts for each 
level of the random effect relative to the overall effect.

photographer conditional mean

1.00 5.35
10.00 − 0.43
11.00 − 1.90
12.00 − 3.62
13.00 0.08
2.00 − 1.33
3.00 − 1.52
4.00 0.07
5.00 4.82
6.00 − 2.55
7.00 2.03
8.00 − 2.12
9.00 1.13
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by categorizing the pictures they took according to the Instructions 
variable (Table A1 in Appendix 1). These pictures were evaluated based 
on whether they followed the instructions to capture as many cherries as 
possible, capture them during daylight, and not capture cherries from 
other branches or trees. Consequently, we divided the dataset into two 
groups: pictures adhering to the protocol (“FollowProtocol”) and pic-
tures not adhering to the protocol (“NonFollowProtocol”).

The performance of each photographer was evaluated along with 
their contributions to model accuracy. These results varied substan-
tially, with R2 values ranging from 0.45 to 0.93, and the number of 
detected cherries is densely below 25 coffee cherries per image. Statis-
tical analysis confirmed differences in error prediction among photog-
raphers (Fig. 9).

We compared the performance of YOLO v8 obtained from the mobile 
pictures that followed the protocol for taking pictures (88 %, n = 564) to 
those from mobile pictures that did not follow the protocols (12 %, n =
73). The comparison revealed a significant difference (R2 of 0.48 and R2 

of 0.73) (Fig. 10).

4. Discussion

The results from the LMM and conditional inference tree reveal that 
variables associated with photographer influence were key predictors of 
e(j). Specifically, whether the photographer followed the instructions for 
taking pictures (which included capturing as many cherries from the 
branch as possible during daylight) and whether the image contained 
cherries from other branches were significant factors. The MCA also 
revealed that not using a screen was associated with the presence of 
more cherries from other trees or branches and that the camera position 
was linked to the tree variety. This suggests that, in addition to the in-
fluence of the photographer, there are also tree variety–specific char-
acteristics that affected the outcome. These differences between coffee 
trees may be attributed to management practices, vegetative stage, or 

topography, depending on the tree’s location. For example, pictures of 
coffee trees located on hills are more difficult to take than pictures of 
coffee trees on flat ground.

The errors associated with the influence of the photographer and 
adherence to protocol emphasize the need for proper training and 
quality control measures for data collection (Ebitu et al., 2021; Lovell 
et al., 2009; Torney et al., 2019). The post hoc analysis suggests that 
following the protocol can improve the predictive performance from 48 
% to 73 % (an increase of 25 %), and photographer identity can vary 
between 45 % and 93 %. This suggests that the design of a simple and 
easy protocol for data collection, coupled with appropriate training, can 
enhance deep learning performance in citizen science–based data 
collection.

Therefore, investigating how to enhance and secure the quality and 
quantity of data is critical for any citizen science–based study. Despite 
the high potential to generate enormous data and impressive scientific 
discoveries, there are active debates as to whether relying on a citizen 
science–based approach is valid to inform policy due to unreliable data 
(Hunter et al., 2013; Kosmala et al., 2016). This skepticism has led sci-
entists to investigate bias and data quality in citizen science projects. 
Kosmala et al. (2016) found that data collected by unpaid volunteers 
were of the same quality as those produced by professionals. Swanson 
et al. (2016) found that collaboration between volunteers for classifi-
cation objects can improved the performance model from 88.6 % to 
97.9 %.

Adequate training, feedback, and customization of protocols 
regarding volunteers’ skills facilitate high-quality data collection. 
Relevant training sessions must meet the needs of volunteers, and pro-
tocols must be customized to these needs (Hunter et al., 2013; Kosmala 
et al., 2016; Sullivan et al., 2014). We found that short sessions of 
around one hour using the local language appropriate for the agronomy 
of coffee plants, regular feedback on current data collection, and the use 
of social media channels such as WhatsApp or YouTube were highly 

Fig. 8. Conditional inference tree examining model error using the same variables as LMM. “Photographer” refers to the person who took the picture, while “In-
structions” indicates whether the picture follows the given directions.
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effective at encouraging the adoption of the protocols. We found farmers 
to maintain a high ability to use their cell phones’ cameras, which 
allowed for more fluent and quick explanation.

One study has suggested that the rewards increased the interest of 
the volunteers in the project and boosted the volume of data collected 
(Sullivan et al., 2014). These rewards can help with the retention of 
volunteers, creating a core group of participants with advanced-level 
experience and resulting in more reliable data (Cooper et al., 2007). 
Additionally, these rewards are not necessary for funding. Sullivan et al. 
(2014) designed a plan that included rewards based on accessing priv-
ileged information about bird species. While we did not use rewards in 
our research, we explained the future benefits of high-precision pro-
duction, which leads to lower-risk economic agriculture (Benami et al., 
2021).

We further argue for other factors that did not reveal statistically 
significant relationships. We did not find a significant correlation be-
tween the two positions of the camera, upper and front of the branch; 
therefore, prediction errors warrant further investigation. In addition, 

the use of a screen behind the branch did not significantly influence the 
prediction errors related to overestimation. The results of the condi-
tional inference tree showed that using a screen was not a crucial factor 
in preventing overestimation. However, while screens can improve the 
detection of coffee cherries in mobile pictures, they increase the 
complexity of the protocol. Taking a picture of only one branch is 
difficult without physically preventing other branches from being 
captured in the image. Similar devices, in addition to mobiles, are used 
in other crops to improve the quality of mobile pictures. For example, 
rectangular markers are used to delimit areas of interest in the detection 
of the Kohlrabi crop (Hernández-Hernández et al., 2017), platforms are 
utilized to hold the cellphones for phenotyping the seeds (Zhihong et al., 
2016), and portable white backgrounds are employed to monitor foliar 
damage in soybean plants (Machado et al., 2016). Therefore, although 
this approach may improve model performance, it drastically increases 
the complexity of the protocol, which can render it impractical in many 
places.

Interestingly, geographic locations, including latitude, longitude, 

Fig. 9. Evaluation of the model performance of each photographer. Each graph represents the performance of YOLO v8 for each photographer. The lowest R2 value 
was 0.45, while the highest was 0.93.
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and altitude, were not found to be key factors explaining the identified 
error. This finding aligns with the work Rivera-Palacio et al. (2024), 
suggesting that this method can be extended to other regions despite 
local differences in environment and management conditions. Addi-
tionally, this approach can help to address more specific extension 
programs through citizen science (Ryan et al., 2018). However, the focus 
of this study is on the Arabica species, which typically reaches an 
average height of around 2.5 m (Wintgens, 2004). For other species, the 
protocol may need adjustments to account for differences in height and 
branch architecture. Furthermore, ensuring high-level expert supervi-
sion in the field contributes to achieving sustained data quality (Lovell 
et al., 2009).

The use of mobile phones wielded citizen science and artificial in-
telligence learning tools for data collection across large geographic 
scales has become increasingly widespread in multiple fields of envi-
ronmental science, such as sustainable agriculture (Ebitu et al., 2021; 
Rivera-Palacio et al., 2024; Ryan et al., 2018; Sauermann et al., 2020), in 
biology for monitoring biodiversity in flora and fauna species (Lee and 
Nel, 2020; Lovell et al., 2009; Sullivan et al., 2014) and in epidemiology 
for the monitoring, detection, and management of coronavirus diseases 
(Katapally, 2020). Given the increasing internet connectivity and the 
availability of low-cost smartphones, this trend seems likely to continue.

Our results did not show a strong relationship between smartphone 
features and e(j). However, this finding is inconclusive due to two key 
factors. First, this work’s small sample size and the lack of consideration 
of smartphone features when selecting photographers may have intro-
duced bias into the results. Second, photographers were confounded 
with smartphone characteristics, as each photographer had a unique 
smartphone. Thus, the variables related to photographers were implic-
itly constrained by the smartphone characteristics. Similarly, the effects 
of sunlight and the photographer’s individual skill were correlated 
because each enumerator took pictures at the same hour. Due to the 
study design, it was impossible to decorrelate various factors. Therefore, 
future studies should implement a more rigorous design to disentangle 
these effects.

There are two considerations regarding the AI model approach. First, 
the dataset was unbalanced in the categories of cherries; the number of 
green cherries greatly exceeded the number of other classes, such as red 
cherries. However, this class imbalance is unlikely to affect our results, 
as our interest lies in the total number of coffee cherries and not in their 
classification. Nonetheless, this imbalance could lead to overfitting. The 
second consideration is that only one detection model was used. It would 
have been ideal to compare several models and analyze their error 
structures to achieve greater levels of generalization. Nevertheless, 
Mengsuwan et al. (2024) demonstrated that YOLO v8 achieves high 

accuracy that is comparable to those of the state-of-the-art foundation 
models.

This study focused solely on coffee cherries, which cannot be 
generalized to various crop types. Coffee cherries have a particular size; 
they are relatively small and have specific shapes. These findings could 
be extended to images of other fruits with similar characteristics, such as 
cocoa or apples.

5. Conclusions

This paper highlighted the external factors that affected the predic-
tion of a coffee cherry detection model based on the YOLO v8 algorithm 
using mobile pictures taken by farmers. Factors exogenous to the model 
were categorized into five main groups: photographer influence, mobile 
picture features, smartphone features, localization, and coffee varieties. 
Our analysis revealed correlations between these factors and their 
impact on the prediction error e(j). The results from the LMM and the 
conditional inference tree indicated that each photographer’s unique 
influence played a crucial role in prediction error. Depending on the 
photographer’s identity, the model’s predictive performance varied, 
with R2 values ranging from 0.45 to 0.93. Moreover, adherence to 
protocols resulted in R2 values ranging from 0.48 to 0.73. Furthermore, 
correlation analysis using MCA revealed that factors such as the use of a 
screen and camera position were related to coffee varieties. In addition, 
PCA and Pearson correlation revealed associations between mobile 
phone features, such as screen width and resolution (x and y). Mobile 
phone features were not statistically important; since each farmer used a 
unique smartphone, its influence was intrinsically linked to the 
photographer.

These insights underscore the potential of integrating citizen science 
with smartphone-based image collection, which holds great promise for 
advancing coffee yield prediction. Ensuring data quality and consis-
tency, providing a simple protocol and proper training to citizen scien-
tists, and providing feedback to individual photographers remain 
important considerations.
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Appendix 1 

Table A1 
The description of each variable.

Categorie Variable Description Type Values Variables 
for LMM

Number 
Mobile 
Pictures

features of mobile 
pictures

BehindBranch_ If the picture of a branch was 
taken in front of a screen 
sheet to hide the other non- 
targeted objects, such as 
other branches and scenery

categorical “Screen” = the picture 
used a screen for 
hiding other cherries.

​ ​

“NonScreen” = No screen 
used.

Fixed Effect “Screen” = 348 ​ ​ ​ ​

“NonScreen” = 289 ​ ​ ​ ​ ​ ​
​ Flash_ If the flash was used when 

the picture was taken.
categorical “NonFlash” = Flash 

did not fire.
​ ​

“Flash”=Flash fired. Fixed Effect “NonFlash” = 588 ​ ​ ​ ​
“Flash” = 49 ​ ​ ​ ​ ​ ​
​ AnglePicture_ The position of the camera in 

relation to the branch, from 
the front or from above.

categorical “Front”= the picture 
was taken in front of 
the branch.

​ ​

“Random” = The picture 
does not have a 
properly defined 
position.

​ ​ ​ ​ ​ ​

“Above” = The picture 
was taken from above 
the branch.

Fixed Effect “Front” = 351 ​ ​ ​ ​

“Random” = 49 ​ ​ ​ ​ ​ ​
“Above” = 237 ​ ​ ​ ​ ​ ​
​ Features_ Describe the branch in the 

picture, noting whether it is 
completely or partially 
visible. Also, indicate if the 
picture includes branches 
from other trees or from the 
same tree.

categorical “EntireBranch” = the 
image capturing the 
entire branch.

​ ​

“EntireBranch_ ​ ​ ​ ​ ​ ​
OtherBranches“ ​ ​ ​ ​ ​ ​
= The image includes the 

entire branch and 
branches from other 
trees or the same tree.

​ ​ ​ ​ ​ ​

“PartialBranch” = The 
image only partially 
includes the branch.

​ ​ ​ ​ ​ ​

“PortionBranch_ ​ ​ ​ ​ ​ ​

(continued on next page)
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Table A1 (continued )

Categorie Variable Description Type Values Variables 
for LMM 

Number 
Mobile 
Pictures

OtherBranches“ ​ ​ ​ ​ ​ ​
= The image includes a 

partial branch and 
other branches.

Fixed Effect “EntireBranch” = 220 ​ ​ ​ ​

“EntireBranch_ ​ ​ ​ ​ ​ ​
OtherBranches“ ​ ​ ​ ​ ​ ​
= 170 ​ ​ ​ ​ ​ ​
“PartialBranch” = 112 ​ ​ ​ ​ ​ ​
“PortionBranch_ ​ ​ ​ ​ ​ ​
OtherBranches“ = 135 ​ ​ ​ ​ ​ ​
​ LocationBranch_ ​ ​ ​ ​ ​
​ The location of the branch in the 

tree. In the upper, middle or 
lower part of the tree.

categorical “LowerTree”=the 
branch is located in 
the upper part of the 
tree.

​ ​ ​

“MiddleTree”=the branch 
is located in the middle 
part of the tree.

​ ​ ​ ​ ​ ​

“UpperTree” = the branch 
is located in the lower 
part of the tree.

Fixed Effect “LowerTree” = = 193 ​ ​ ​ ​

“MiddleTree”= 237 ​ ​ ​ ​ ​ ​
“UpperTree” = 207 ​ ​ ​ ​ ​ ​
Features smartphone ImageWidth The length of width picture numeric Min = 209px Max =

1024px.
Fixed 
Effect

637

​ ImageHeight The length of height picture numeric Min = 460px ​ ​
Max = 1024px ​ ​ ​ ​ ​ ​
​ ​ 637 ​ ​ ​ ​
​ XResolution Resolution in x numeric Min = 1 pixels per 

inch.
​ ​

Max = 72 pixels per inch. ​ 637 ​ ​ ​ ​
​ YResolution Resolution in y numeric Min = 1 pixels per 

inch,
​ ​

Max = 72 pixels per inch ​ 637 ​ ​ ​ ​
​ ScreenWidth The width of the mobile 

screen
numeric Min = 7.0 ​ ​

Mean = 7.619 ​ ​ ​ ​ ​ ​
Max = 10.1 Fixed Effect 637 ​ ​ ​ ​
​ ScreenHeight The height of the mobile 

screen
numeric Min = 14.34 ​ ​

Mean = 15.89 ​ ​ ​ ​ ​ ​
Max = 16.96 Fixed Effect 637 ​ ​ ​ ​
​ ResolutionFrontCamerainMP_ Resolution of the frontal 

camera
numeric Min = 5 Megapixels 

(MP)
​ ​

Max = 64 MP Fixed Effect 637 ​ ​ ​ ​
geographic location Longitude The longitude where the 

picture was taken
numeric Max = 34.6 ​ ​

Min = -76.90 Fixed Effect 637 ​ ​ ​ ​
​ Latitude The latitude where the 

picture was taken
numeric Max = 36.85 ​ ​

Min = 2.37 Fixed Effect 637 ​ ​ ​ ​
photographer Influence Photographer The photographer 

identification number
categorical Thirteen 

photographers
Random 
Effect

49 picture per 
photographer

​ Instruction_ The image follows the 
instructions given in the 
protocol for taking a picture.

categorical “FollowProtocol”= the 
picture meets with 
instructions of the 
protocol.

​ ​

“NonFollowProtocol” =
the picture doesn’t 
follow the instructions.

Fixed Effect “FollowProtocol”= 581 ​ ​ ​ ​

“NonFollowProtocol” =
56

​ ​ ​ ​ ​ ​

Coffee varieties Variety The name of coffee variety categorical “Variety Colombia”, 
“Castillo”, “Supremo”, 
“Ophther varieties”

Fixed 
Effect

“Variety 
Colombia” =
6

“Castillo” = 572 ​ ​ ​ ​ ​ ​
“Supremo” = 29 ​ ​ ​ ​ ​ ​
“other varieties” = 30 ​ ​ ​ ​ ​ ​
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Fig. A1. A) a picture of an entire coffee branch, B) a picture of an entire coffee branch along with other branches, C) a picture of a partial coffee branch along with 
other branches, D) a picture of a portion of a branch, E) a picture taken with flash, F) a picture taken without flash, G) a picture not following the protocols, H) a 
picture adhering to the protocols, I) a picture taken from above the branch, J) a picture taken without a defined position (randomly), K) a picture taken at the lower 
part of the tree, L) a picture taken in the middle part of the tree, M) a picture taken at the upper part of the tree, N) a picture of the Castillo variety, and O) a picture of 
the Supremo variety.

Table A2 
The contribution of each variable to the first five dimensions in MCA.

variable Dim 1 Dim 2 Dim 3 Dim 4 Dim 5

Variety: Castillo 0.2 0.95 0 0.15 1.3
Variety: Others 0.09 11.29 9.37 0.83 37.16
Variety: Supremo 2.53 0.02 1.18 1.3 0.76
Variety: V.Colombia 2.32 5.57 16.12 18.12 0.33
NonScreen 18.37 0.24 0 0.01 2.95
Screen 15.26 0.2 0 0.01 2.45
LowerTree 0.02 1.42 0.53 19.39 0.77
MiddleTree 0.81 0.43 15.28 14.69 0.44
UpperTree 0.68 3.44 12.1 0.02 2.44
FollowProtocol 0.76 0.37 1.06 0.21 0.19
NonFollowProtocol 7.89 3.89 11.02 2.23 1.93
above 1.26 15.25 0.28 11.38 3.57
front 0.18 17.61 0 2.5 0.81
Random 12.93 7 1.25 10.14 3.04
Flash 5.18 9.43 0 10.99 0.7
NonFlash 0.43 0.79 0 0.92 0.06
EntireBranch 12.26 8.99 3.1 0.01 1.74
EntireBranch_OtherBranches 11.51 0.26 10.02 0.72 11.67
PortionBranch 2.68 12.87 10.73 4.9 6.96
PortionBranch_OtherBranches 4.65 0 7.93 1.47 20.74
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Data availability

The data is freely available and can be downloaded https://github. 
com/j-river1/FactorsDeepLearningCitizenScience website.
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