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Abstract: Declining soil fertility is one of the major problems facing producers of field crops in
most dryland areas of Sub-Saharan Africa. In response to the declining soil fertility, extensive
participatory research has been undertaken by the World Agroforestry (ICRAF) and smallholder
farmers in Dodoma region, Tanzania. The research has, amongst others, led to the development of
Gliricidia agroforestry technology. The positive impact of Gliricidia intercropping on crop yields has
been established. However, information on farmers’ willingness and ability to adopt the Gliricidia
agroforestry technology on their farms is limited. This study predicts the adoption of Gliricidia
agroforestry and conventional mineral fertilizer use technology. Focus Group Discussions (FGDs)
were conducted with groups of farmers, purposively selected based on five sets of criteria: (i) at least
2 years of experience in either trying or using Gliricidia agroforestry technology, (ii) at least 1 year of
experience in either trying or using the mineral fertilizer technology (iii) at least 10 years of living
in the study villages, (iv) the age of 18 years and above, and (v) sex. The Adoption and Diffusion
Outcome Prediction Tool (ADOPT) was used to predict the peak adoption levels and the respective
time in years. A sensitivity analysis was conducted to assess the effect of change in adoption variables
on predicted peak adoption levels and time to peak adoption. The results revealed variations in peak
adoption levels with Gliricidia agroforestry technology exhibiting the highest peak of 67.6% in 12
years, and that the most influential variable to the peak adoption is the upfront cost of investing in
Gliricidia agroforestry and fertilizer technologies. However, in Gliricidia agroforestry technology
most production costs are incurred in the first year of project establishment but impact the long term
biophysical and economic benefits. Moreover, farmers practicing agroforestry technology accrue
environmental benefits, such as soil erosion control. Based on the results, it is plausible to argue that
Gliricidia agroforestry technology has a high adoption potential and its adoption is influenced by
investment costs. We recommend two actions to attract smallholder farmers investing in agroforestry
technologies. First, enhancing farmers’ access to inputs at affordable prices. Second, raising farmers’
awareness of the long-term environmental benefits of Gliricidia agroforestry technology.
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1. Introduction

Sustainable crop productivity in many dryland areas of Sub-Saharan Africa (SSA) is limited
by sharply declining soil fertility [1–4]. In Tanzania, the impact of declining soil fertility on crop
productivity is critical in the dryland areas, such as parts of the Dodoma region, where low soil fertility
has been often cited as one of the major on-farm production constraints [5]. The productivity of most
crops in the region is low, for example, maize yields, are reported to range from 1 to 1.5 tons/ha. This is
below farmer average estimated maize productivity potential of 4–4.5 tons/ha [6]. Consequently, low
crop productivity contributes to low farm income and a high level of food poverty line at 36% and up
to 51% based on expenditures [6]. Declining agricultural productivity in SSA is further exacerbated by
negative impacts of climate change, including shifting seasons and extended periods of drought [7,8].

The degradation of soil fertility is caused by two major inter-related factors. The first factor is
the breakdown of natural fallow soil fertility restoration methods due to an increase in the human
population and consequently reduced per capita land availability. The increasing population has
also contributed to the degradation of natural resources as the agricultural production continues to
encroach into forests and woodlands in response to declining productivity on farmlands. The second
factor is non- or sub-optimal use of mineral fertilizers by a large majority of smallholder farmers due
to high prices and limited availability. The situation became more critical following the failure of the
implementation of subsidy programs in many countries such as Tanzania and Zambia [9,10].

As a way to deal with soil fertility and climatic challenges and increase agricultural productivity,
researchers from the World Agroforestry (ICRAF) and small scale farmers involved in the production
of cereal food crops validated Gliricidia agroforestry technology in the dryland areas of Kongwa
and Chamwino districts in Dodoma region. Researchers’ Designed Farmers’ Managed (RDFM)
trials including Gliricidia agroforestry technology began in 2015 at research stations. Additionally,
smallholder farmers involved in managing trials at the research stations tested the technologies on their
farms under their design and management. Farmers were involved in the management of research
trials to demonstrate the real field situation and enhance their knowledge on the tested technologies
for subsequent adoption of the recommended practices [11,12].

The biophysical assessment results show the increased yields in Gliricidia intercropped trials. For
instance, it was established that, intercropping maize with Gliricidia and pigeon pea improved grain
yields by up to 33%, besides fodder and wood supply for improved livestock nutrition and household
energy [13]. However, the major question is, what proportion of farmers will be willing and able to
adopt Gliricidia agroforestry technology on their farms? A study conducted in Cameroon, Zambia,
and Kenya noted variations in the adoption potential of agroforestry technologies, ranging from
moderate to high [14]. However, it only employed qualitative approaches and did not specify the rates
corresponding to the moderate and high adoption potential ranges. Moreover, adoption of improved
agricultural technologies such as agroforestry is context and site-specific, as might be temporarily
and spatially affected by factors such as climate, soils, and availability of resources including land
and labor [5,15–17]. So far, the adoption prediction studies conducted in Tanzania and elsewhere
have focused on introduced chicken strains [18]; fertilizer micro-dosing and rain-water harvesting
technologies [5]; improved fodder crops [19] and improved crop varieties [20]. According to [21]
and [20], the adoption of technologies in the communities, among others, is influenced by the specific
characteristics of the technology such as the relative advantage and learnability. Efforts to predict
the adoption of agroforestry technologies including Gliricidia intercropping are scanty. Therefore,
it is plausible to extend assessment on predicting farmers’ likelihood to adopt the newly developed
Gliricidia agroforestry technology focusing on the agro-ecologies of the dryland areas. The prediction
of Gliricidia agroforestry technology adoption would increase the understanding of factors influencing
its adoption in the study communities [22–24].

The present study employed the Adoption and Diffusion Outcome Prediction Tool (ADOPT) to
predict the adoption of (i) Gliricidia agroforestry technology (ii) mineral fertilizer use, representing the
conventional soil fertility management technologies, and (iii) assess the effect of changes of the ADOPT
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population and technology factors on peak adoption level and time to peak adoption. The findings
of the study were aimed to inform policy and extension efforts in enhancing farmers’ adoption of
Gliricidia agroforestry and mineral fertilizer technologies, in appropriate combination, for increased
farm productivity and profitability.

2. Methodology

2.1. Theoretical Framework

Several diffusion of innovations’ theories have been used to study adoption of improved agricultural
technologies. Rogers [21] and Bass [25] provide useful approaches to assess adoption of technologies,
and describe the adoption process focusing on five groups of adopters: innovators (2.5% of people who are
ready to take risks by trying out innovations), early adopters (13.5% of people, referred as opinion leaders
who try new things with caution), early majority (34% of people who are careful but quick to change), late
majority (34% of people who adopt new ideas after the majority), and laggards (16% of people who are
traditional, conservative, and slow to change). According to [21], it takes time for innovation to diffuse
through society. Thus, efforts to enhance adoption should start by convincing innovators and early adopters
expecting other groups of adopters to join in the future. Rogers [21] theory was assumed to apply to the
study on adoption of Gliricidia agroforestry technology in dryland areas of Kongwa and Chamwino districts
in Dodoma region. Factors influencing the diffusion and adoption of agricultural improved technologies
such as the relative advantage and trialability are incorporated in ADOPT to predict the peak adoption level
and the corresponding time in years.

Bass [25], contends that adoption of innovations is the result of interactions between potential and
actual adopters. Bass [25] theory applies to this study, as the group involvement which determines the
degree of interactions between potential and actual adopters of Gliricidia agroforestry technology, is
integrated in adoption predictions. Additionally, previous studies on adoption predictions [18,26] used
Bass [25] theory to estimate probabilities of adopting new agricultural technologies among smallholder
farmers in Tanzania and elsewhere.

2.2. Nature of Technology Change

The adoption of improved agricultural technologies such as agroforestry is associated with two
major properties. The first property is the shift of production function as the output is increased with
adoption of the improved technologies, here referred as input (Figure 1) from OY1 to OY2 other factors
remaining the same [27]. Concerning adoption of Gliricidia agroforestry technology, a 33% increase in
grain yields was attained in the selected study sites as the result of improved soil fertility [13].Agriculture 2020, 10, x FOR PEER REVIEW 4 of 18 
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The second property is the increase in monetary discounted profits or the decrease in production
costs. A rational decision making producer will only adopt the technology that will maximize farm
productivity and profitability with the lowest possible cost combination of inputs [28].

Improved agricultural technologies such as agroforestry that increase farm productivity and
profitability can have three features at the farm level. These features are factor-saving [6],
factor-using [10], and output-increasing [13]. Gliricidia agroforestry technology is expected to
save up to 50% of mineral fertilizer purchasing costs (factor saving). The use of Grilicidia agroforestry
technology utilizes more labor in various managerial aspects such as preparation of seedbed, watering
of trees, transplanting, preparation of plot layouts, and pruning (factor using). However, the application
of this technology is expected to increase crop productivity as applied to the most improved agricultural
practices, and hence output-increasing [29].

2.3. Empirical Review

The adoption of agricultural technologies in the context of smallholder farmers has been well
studied in Tanzania and elsewhere. Several studies have been conducted including those on the
adoption of improved crop varieties [30–33]; fertilizer technologies [34,35]; conservation agriculture
technologies [36]; irrigation schemes [37] and agroforestry systems [14,38,39]. However, most of these
studies are qualitative and limited to ex-post evaluations, employing regression analyses. Among
others, a major shortcoming encountered by the ex-post evaluation approach, is the low contribution
of knowledge in the project designing and implementation phases.

Approaches used to predict adoption of technologies include surveys of producer intention [40–42],
expected profit [43–45], historical trend [46], and ADOPT [5,18–20]. The expected profit approach uses
farm-level financial data to predict adoption based on profitability. However, it ignores non-profit
factors such as risks and environmental costs and benefits influencing the adoption of new practices.
The historical trend approach predicts adoption through extrapolation. However, it requires the
presence of similar technology under consideration.

The ADOPT makes quantitative predictions and complements information from other qualitative
approaches and farm decision tools, including farm surveys as well as economic and biological
simulation models. [20] used ADOPT to predict adoption of the following practices in Australia: (a)
autosteer (GPS guidance in tractors), (b) growing insect-resistant (Bt) transgenic cotton, (c) growing a
new species of legume crop, (d) growing a new wheat variety, Mace, (e) using no-till cropping, and (f)
planting saltbush forage shrubs. The results showed variations in peak adoption levels ranging from
9% (saltbush) to 98% (autosteer) in 9–23 years, respectively. [5], employed ADOPT to simulate the
adoption of fertilizer micro-dosing and rainwater harvesting technologies using tied ridges. They
noted the high peak adoption levels of between 90% and 94% to be attained in 10.5–11.5 years for
fertilizer micro-dosing without and with tied ridges, respectively. [18] used ADOPT to simulate the peak
adoption levels of introduced chicken strains in Bahi, Ifakara, and Wanging’ombe districts, Tanzania.
They established the peak adoption levels ranging from 29% (Ifakara) to 38% (Wanging’ombe) in 7–9
years, respectively. [19] used ADOPT to simulate the peak adoption level of post-rice legume crop in
Southeast Asia. The results revealed the peak adoption of 54% in 6 years. Thus, this study uses the
ADOPT to predict the adoption of Gliricidia agroforestry and fertilizer technologies in the study sites.

2.4. Conceptual Framework

ADOPT employs adoption theories and literature to provide an operationalized conceptual
framework of factors influencing the adoption behavior of farmers in project communities [20].
The adoption of agricultural innovations is explained by economic drivers including profitability,
risk-related factors, social context, and extent of farmers’ engagement in testing technology under
consideration [5,16,47]. In the ADOPT tool version for smallholder farmers, factors influencing the
adoption of technologies in farming communities are categorized into two main groups: the relative
advantage of technology and the effectiveness of the process of learning about technology [21,48].
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Further, the relative advantage and learning factors are categorized into specific technology and
population characteristics of the targeted farming community. At some points, population and
technology variables may have linkages. For instance, the relative advantage of Gliricidia agroforestry
technology may depend on its environmental benefits (a characteristic of the technology). However,
the value of the environmental benefits of Gliricidia agroforestry technology depends on farmers’
attitudes towards various environmental benefits (a characteristic of the population). The relative
advantage and learning factors are combined with their corresponding technology and the population
characteristics to form four sets of issues (here referred as quadrants) that are considered for increased
adoption of improved agricultural technologies such as agroforestry (Figure 2). The two ‘learning’
quadrants on the left hand are (1) population-specific influences on the ability to learn about the
technology and (2) the learnability characteristics of the technology. Population-specific learning
factors at the top left quadrant are farmers’ access to advisory support, group involvement, relevant
existing knowledge and skills, and practice awareness. The technology-specific learning factors at
the bottom left quadrant are observability, trialability, and innovation complexity (see Table 1 for
descriptions). According to [49] the learning factors have no significant influence on the peak adoption
level. However, the learning factors significantly influence the time to peak adoption [50]. This
is because farmers take some time to learn about relevant information and experience before the
subsequent adoption of the technology [20].

At the right are the relative advantages for the population and of the technology. Their factors
are combined to determine the overall relative advantage of technology, which influences the peak
level of adoption [49]. However, some aspects of relative advantage may also influence the time
to peak adoption. For instance, when there is a high profit and environmental advantage, learning
of the relative advantage of the technology becomes easier and more rapid [29]. Figure 2 presents
the schematic conceptual framework of the organized ADOPT variables. Table 1 includes the range
of question responses for each variable and the corresponding numerical codes. The latter serve as
ADOPT inputs and feed into a series of equations to generate adoption predictions for the targeted
population of farmers in the project village communities. Relative advantage factors such as risks,
environmental benefits, and profit determine the proportion of the target population that is likely to
adopt the introduced technology. On the other hand, the learning factors such as awareness, group
involvement, and access to the extension services and advisory support influence the time lag before
adoption decisions are made [20].

2.5. Sampling and Data Collection

This study was conducted in three villages in Kongwa and Chamwino districts where dryland
agroforestry technologies were introduced under the framework of sustainable intensification (SI) and
Climate-Smart Agriculture (CSA) as part of the research activities of the Africa RISING, Trans-SEC
and Building Capacity for Resilient Food Security Projects in Tanzania (BCfRFS). The study villages
were Mlali and Laikala in Kongwa, and Ilolo in Chamwino districts. These villages were purposively
selected by the agroforestry project based on their diversity of food systems.

Smallholder cereal food producers were selected based on five sets of criteria. The first criterion
was the years of experience in either trying or using the technology. Farmers with at least 2 years of
experience were chosen from the agroforestry farmers’ list obtained from the ICRAF office, in Dar es
Salaam, Tanzania. The criterion of at least 2 years of experience was used because Gliricidia trees
take a minimum of 2 years to produce sufficient pruning biomass for observable environmental and
economic benefits [51]. Therefore, it is assumed that farmers with at least 2 years of experience in either
trying or using Gliricidia agroforestry technology can explain various aspects of the technology such as
its beneficial roles in mitigating climatic risks and increasing crop yields. The second criterion was the
participation in either trying or using the mineral fertilizer technology on their farms. These farmers
were selected from the list of agroforestry farmers containing description of farmers’ socio-economic
characteristics including age, gender, and the use of the mineral fertilizer technology. The third criterion
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was the years of living in the village. Farmers with at least 10 years of living in the study villages
were selected from the list of agroforestry farmers. Farmers who have lived in the village for at least
10 years are assumed to have learned about the behavior of people in the society, farming systems,
and existing institutions and structures such as farmers’ groups and cooperatives. Moreover, farmers
with at least 10 years of living in the study villages are assumed to have accessed information on
trends in production and markets of agricultural commodities. In the context of Tanzania communities,
significant changes in governance and leadership that influence changes in institutions and structures
occur after 10 years when the second phase of the general election takes place. The fourth and fifth
criteria were sex and age of farmers based on literature recommendations and empirical evidence
on the influence of gender and age in agroforestry technology adoption decisions from the previous
studies [52,53]. Similarly, the study on adoption prediction by [5], considered the representation of all
gender and age groups. Therefore, female and male, young people (18–35 years of age), and adults
(above 35 years of age) as classified in Tanzania age categories participated in the current study. This
composition ensured the collection of gender and age responsive opinions on ADOPT model variables
(Figure 2).

Focus group discussions were conducted with groups of selected farmers, as recommended and
used in related studies on adoption prediction [5,18–20]. The decision on the size of the group and
number of FGDs was based on the guidelines provided for standard FGD [54–56]. One FGD session
comprised of around 8–10 farmers. In total, 15 FGDs, five in each village were conducted. The FGDs
were conducted in venues convenient for farmers. These included schools, churches, and village offices.

The discussions were guided by a checklist developed to capture information on 22 ADOPT
variables, and were moderated by researchers who abided by the principles described in [56].
The Duration for one FGD interview was 3–4 h. The first 1.5–2 h, involved a detailed discussion,
as strongly recommended for active participation of FGD members especially elder people [56].
The remaining hours were used for participatory coding of FGD responses based on the information
provided by FGD participants. Similarly, [5] employed participatory approach to code FGD information
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Table 1. ADOPT inputs.

S/N Variables Question Asked
Measurement (Likert Scale:
Statement of Minimum and

Maximum Wording)

ADOPT Inputs/Mean
Scores

Agroforestry Fertilizer

1 Profit
orientation

What proportion of the target
population has maximizing

profit as a strong motivation?

Almost none (1), almost all (5)
have profit maximization

motive
4 4

2 Environmental
orientation

What proportion of the target
population has protecting the

natural environment as a
strong motivation?

Almost none (1), almost all (5)
have protection of

environment motive
3 3

3 Risk orientation

What proportion of the target
population has risk

minimization as a strong
motivation?

Almost none (1), almost all (5)
have risk minimization motive 2 2

4 Enterprise scale

On what proportion of the
target farms is there a major
enterprise that could benefit

from the practice?

Almost none (1), almost all (5)
of the target farms have major
enterprise that could benefit

3 3

5 Management
horizon

What proportion of the target
population has a long-term

(greater than 10 years)
management horizon for their

farm?

Almost none (1), almost all (5)
have long-term management

horizon for their farms
3 3

6
Short term
financial

constraints

What proportion of the target
population is under conditions
of severe short-term financial

constraints?

Almost all (1), almost none (5)
have severe short-term

financial constraints
2 2

7 Easiness in
trialing

How easily can the practice
(or significant components of
it) be trialed on a limited basis

before a decision is made to
adopt it on a larger scale?

Not triable at all (1), very
triable (5) 3 3

8 Innovation
complexity

Does the complexity of the
practice allow the effects of its

use to be easily evaluated
when it is used?

Very difficult (1), not at all
difficult (5) to evaluate the

effects of its use
4 4

9 Observability

To what extent would the
practice be observable to

farmers who are yet to adopt
it when it is used in their

district?

Not observable at all (1), very
easily observable (5) 4 4

10 Advisory
support

What proportion of the target
population uses paid advisors

capable of providing advice
relevant to the practice?

Almost none (1), almost all (5)
use a relevant advisor 3 3

11 Group
involvement

What proportion of the target
population participates in
farmer-based groups that

discuss farming?

Almost none (1), almost all (5)
are involved in a group that

discusses farming
2 2

12
Relevant

existing skills
and knowledge

What proportion of the
community will need to

develop substantial new skills
and knowledge to use the

practice?

Almost all (1), almost none (5)
need new skills and

knowledge
3 3

13

Awareness on
the use/trialing

of the
innovation in

the district

What proportion of the
community would be aware of

the use or trialing of the
practice in their district?

It has never been used (1),
almost all (5) are aware that it

has been used/tried
2 1
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Table 1. Cont.

S/N Variables Question Asked
Measurement (Likert Scale:
Statement of Minimum and

Maximum Wording)

ADOPT Inputs/Mean
Scores

Agroforestry Fertilizer

14
Relative

upfront cost of
innovation

What is the size of the up-front
cost of the investment relative
to the potential annual benefit

from using the practice?

Very large (1), no (5) initial
investment required 3 4

15 Reversibility of
the innovation

To what extent is the adoption
of the practice able to be

reversed?

Not reversible (1), very easily
revised (5) 3 4

16
Profit benefits

in the years
that it is used

To what extent is the use of the
practice likely to affect the

profitability of the farm
business in the years that it is

used?

Large profit disadvantage (-3),
very large profit advantage

(+4)
3 4

17 Profit benefit in
future

To what extent is the use of the
practice likely to have

additional effects on the future
profitability of the farm

business?

Large profit disadvantage (-3),
very large profit advantage

(+4)
4 3

18
Time for

profit/benefits
to be realized

How long after the practice is
first adopted would it take for
effects on future profitability

to be realized?

More than 10 years (16),
immediately (1) 2 1

19 Environmental
impact

To what extent would the use
of the practice have net

environmental benefits or
costs?

Large environmental
disadvantage (-3), very large

environmental advantage (+4)
4 2

20

Time for
environmental

impact to be
realized

How long after the practice is
first adopted would it take for
the expected environmental

benefits or costs to be realized?

More than 10 years (16),
immediately (1) 2 1

21 Risks exposure

To what extent would the use
of the practice affect the net

exposure of the farm business
to risk?

Large increase (-3), very large
reduction in risk 3 1

22 Ease and
convenience

To what extent would the use
of the practice affect the ease

and convenience of the
management of the farm in

the years that it is used?

Large decrease (-3), a very
large increase in easy and

convenience (+4)
2 3

Data Coding and Entry

Focus group discussion information on each ADOPT variable was coded using either five or
eight-point Likert scales. The corresponding mean scores were computed to generate ADOPT inputs
for Gliricidia agroforestry and fertilizer use technologies (Table 1). Similarly, previous studies on
adoption prediction used FGDs coded information to generate average scores which were used as
inputs for ADOPT [5,18–20].

2.6. Data Analysis

First, the adoption and diffusion outcome prediction tool was used to predict peak adoption levels
and time to peak adoption [20]. Data on the mean scores of ADOPT variables (Table 1), were fed into a
series of equations (Table 2), with specific parameters’ weights (Table 3) to predict the peak adoption
level and time. The relative advantage variables such as the profit benefits in years used and profit
benefit in future, were computed to predict the peak adoption levels. On the other hand, the learning
variables like trialability and networks were computed to predict the time to peak adoption.
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Table 2. Equations in the ADOPT model.

Peak Adoption

Profit advantage = (Profit benefit in years used + Profit benefit in future × (1 + Discount
rate)−Years to Future Profit Benefit)/2

Environmental benefit = web × Environmental benefit × (1+Discount rate)-Years to environmental benefit

Discount rate = 0.02 if Almost all have a long-term management horizon; 0.04 if A majority have a long term
management horizon; 0.06 if About half have a long term management horizon; 0.08 if A Minority have a long-term
management horizon; 0.1 if Almost none have a long-term management horizon.

Relative advantage = [(1 + wp × Profit orientation) × Profit advantage + (1 + wr × Risk orientation) × Risk + Ease
and convenience + (1 + we × Environmental orientation) × Environmental advantage] × (1 + wes × Enterprise scale)
+ wic × (Investment cost – Max investment cost)

Peak adoption = Pmin +(Pmax- Pmin)/(1+EXP(cc – Relative advantage × cp))

Time to Peak Adoption

Trialability of Practice = (Trialing ease + Practice complexity)/2

Networks = Min (wgi × Group involvement + Advisory support, 7)

Learning of Relative Advantage = Trialability of practice + Farmer networks skills + wRA × Relative advantage

Awareness Score = Amin+ Practice awareness + Observability − Ao × Practice awareness × Observability

Farmer networks and skills = Fa + Fb × Relevant existing skills and knowledge + Fc × Networks + Fd × Relevant
existing skills and knowledge × Networks

Time to peak adoption = MAX(Tmax − Learning of Relative Advantage × Lm + IF(UpfrontCosts ≥ 4, 0, Tmin −

UpfrontCosts) + (Cmax − ShortTermConstraints) × ShortTermConstraints − AwarenessScore, 3)

Table 3. Parameters’ weights in ADOPT.

wp Profit Orientation Weight (0.4) Cmax
Maximum Time Added Due to

Short-Term Constraints (4)

wr Risk orientation weight (0.2) wia Practice awareness weight (“0”)

we Environmental weight (0.4) wo Observability weight (“0”)

wic Investment cost weight (0.33) Amin
Minimum level for awareness score

(−1.25)

wes Enterprise scale weight (0.4) Ao

Weight on interaction between
practice awareness and

observability (0.15)

wre Risk effect weight (0.6) web Environmental benefits weight (0.6)

Tmax Maximum time to adoption (50) wRA

Rescales RA score to have equal
influence on learning as do

Trialability and Farmer Networks
and Skills

Tmin Minimum time to adoption (3) wgi* Group involvement weight (0.7)

Pmin Minimum adoption rate (1) cc Peak adoption curve parameter (3)

Pmax Maximum adoption rate (98) cp Peak adoption curve parameter (0.3)

Fa
Intercept term for Farmer
networks and skills (-0.63) Fb

Weight on existing skills and
knowledge (1.13)

Fc Weight on networks (0.63) Fd
Weight on interaction between

networks and skills (−0.13)

Lm
Scalar of Learning of Relative

Advantage Score (3.0)

Secondly, ADOPT conducted the sensitivity analysis to assess the effect of changes in scores of
variables on step changes in adoption indicators: step-up and/or step-down responses of peak adoption
level (percentage) and time to peak adoption (years). For the peak adoption level, the step up and
step down responses are the respective increase and decrease in proportion of potential adopters of
the technology. The vice versa is true for time to peak adoption: the increase in the predicted time to
peak adoption presents the step down response, other factors remaining the same. Likewise, previous
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studies on adoption prediction [5,18–20], conducted the sensitivity analyses to assess the effect of
changes in scores of perception of ADOPT variables on step changes in peak adoption levels and the
corresponding time, other variables remaining the same.

In this paper, results are presented using the Sigmoid (S)-curve based on the diffusion of innovations
theory recommendations [21]. Moreover, in consonance with the diffusion of innovation theory, [57–59],
argue that the S curve provides a good approximation of characteristics of cumulative adoption of the
improved technologies. Similarly, the earlier studies on adoption predictions, [5,18–20], used the S
curves to present the simulated ADOPT outcomes. In this study, the S curves were generated based on
predicted values of peak adoption level and time to peak adoption, and starts from 2015, when the
on-farm trials began.

3. Results and Discussion

3.1. Adoption and Diffusion Model Results

Results show that Gliricidia agroforestry technology has the peak adoption of 67.6%. On the
other hand, the fertilizer use technology has the peak adoption of 34%. Moreover, results show more
rapid adoption of Gliricidia agroforestry than fertilizer technology (Figure 3). Partly, the predicted
higher peak adoption of Gliricidia agroforestry technology can be explained by farmers’ attraction
to the perceived relatively larger environmental benefits, future profit advantage, and the important
role of Gliricidia trees in farm household strategies to reduce risk in agriculture (Table 1). Focus
group discussion participants mentioned three major environmental benefits of Gliricidia agroforestry
technology to their community. In descending order of importance, the environmental benefits
reported by FGD participants are soil fertility improvement, rainfall facilitation, and soil erosion control.
The adoption of Gliricidia agroforestry technology might be accelerated by the ongoing Government
tree-planting campaigns in various communities including the study villages.

The relatively lower predicted peak adoption of the mineral fertilizer use in cereal production
can be explained by the perceived higher risk exposure, smaller environmental benefits, and profit
advantage (Table 1). Farmers use less or no mineral fertilizer due to the high probability of encountering
huge losses in case of crop failure during drought. This agrees with Ellis’s [60] concept that farmers
applying large quantity of fertilizers are at risk of experiencing substantial profit loss during dry
seasons, also referred as bad years. On the other hand, FGD participants reported that farms under
agroforestry technology are not likely to be severely affected by drought. For instance, farmers reported
to save up to 75% of crop yields from the effects of drought which occurred in the study sites in 2017.
This can be associated with agroforestry systems ability to act as buffer against increased climatic
variability [61–63].

Risk and economic factors have been pointed out by previous studies [5,9,14–16,39] as among
factors contributing to low adoption of most agricultural innovations such as fertilizer use and
agroforestry in SSA countries including Tanzania. However, [39,64], noted low use of fertilizer due to
a lack of knowledge on use.
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3.2. Sensitivity Analysis Results

Figure 4 presents the results of the sensitivity analysis of the changes in scores of perception of ADOPT
model variables listed in Table 1. It shows that the adoption peak of Gliricidia agroforestry technology is
highly sensitive to the upfront cost of agroforestry project establishment (14), environmental impact (19),
risk exposure (21), and profit (16) (Figure 4). A unit decrease in score of perception towards a very large
initial investment cost can step down the adoption peak level by 16.7%.
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Previous studies by [5,9,65], observed the effect of the upfront cost on farmers’ decision to adopt
improved agricultural technologies such as agroforestry. According to these studies, the relative
higher upfront cost for the establishment of the agroforestry project was attributed by the additional
cost of planting materials and labor requirements in establishing tree nursery, transplanting, pruning
of agroforestry trees, and application of pruning biomass into the soil. Also, [5,65,66] established
the influence of capital requirement and profitability on the adoption rate of new agricultural
improved technologies.

Further, results show that time to peak adoption is sensitive to major five factors. In descending
order of magnitude, these factors are easiness in trying the technology (7), the complexity of the
technology (8), short term financial constraints (6), existing skills and knowledge about the practice
(12), and relative upfront costs of the practice (14; Figure 5). The results show that a unit increase in
score of farmers’ perceptions of easiness in trying the technology towards the very easy trialability, can
reduce the predicted time to peak adoption level by 1.5 years and vice versa. Likewise, earlier adoption
prediction studies by [5,18] observed the sensitiveness of trialability, short term financial constraints,
and farmers’ knowledge and skills on the time to peak adoption. According to [67], short-term loans
play important roles in improving the livelihood of farmers, and in this case, could be the start-up
capital for the establishment of the agroforestry project.
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3.3. Conclusions and Recommendations

This paper predicted the adoption potential of Gliricidia agroforestry and the mineral fertilizer
use technologies to inform policy and extension efforts on enhancing adoption of these technologies
which works on complementarity.

The ADOPT results reveal that Gliricidia agroforestry has a relatively higher likelihood of being
adopted than the mineral fertilizer use technology under current farming conditions. The higher
adoption potential of Gliricidia agroforestry technology can be attributed to the perceived larger
environmental benefits and profit advantage due to diverse products in addition such as crop yields
and woodfuel. The environmental advantage of Gliricidia agroforestry based technology includes its
roles in mitigating climate risks in agriculture, such as soil erosion control.

Moreover, this paper investigated the sensitivity of the ADOPT tool variables on the predicted
adoption indicators of the peak level and time to peak adoption. The top five influential variables to
the peak adoption level are upfront cost, reversibility, profit, environmental benefits, and risk.

Based on the results, it is concluded that Gliricidia agroforestry technology has high adoption
potential and its adoption is influenced by the investment costs. We recommend two steps to enhance
the adoption of Gliricidia agroforestry based technology. First, enhancing farmers’ access to inputs,
including tree seedlings, at affordable prices to lower the initial costs of investing in the agroforestry
project. Second, increasing farmers’ awareness of non-cash benefits such as soil erosion control besides
the financial profit accrued after 1 year of agroforest project establishment. Increased awareness of
non-cash benefits will attract cash-oriented smallholder farmers to invest in agroforestry projects.
Awareness can be raised through the use of appropriate extension services, such as conducting farmer
field schools and mobilizing farmers into groups.
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