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Abstract: Nitrate is a crucial element for crop growth, and its optimal application is essential for
maximizing agricultural yield. In Iranian agriculture, there is a substantial gap between recommended
nitrate usage and what farmers actually apply. In this study, our primary objective is to determine
the most effective utilization of nitrate for crop cultivation. Simultaneously, we aim to analyze the
factors that contribute to the disparity between optimal and current nitrate application practices.
Furthermore, our research explores the impact of these differences on regional variations in crop
yields. This is achieved using a quadratic yield response function model based on unbalanced panel
data spanning the years 2000 to 2016, which includes a total of 14 crop activities and encompasses
31 administrative regions. The results show that rice exhibits the highest nitrogen usage, while
rain-fed wheat demonstrates the lowest utilization at the optimal point. Depending on whether
random- or fixed-effects estimation is found to be the most suitable specification, average yields
corresponding to the optimal level of nitrogen use are calculated by region, or the average across all
regions. In Iran, the top-performing regions for cereals like rain-fed wheat and irrigated barley can
achieve yields of 1.33 and 3 t/ha, respectively. These yields represent a 31% and a 9% increase from
the levels observed in 2016. The outcomes derived from the estimated yield response function will
be integrated into comprehensive agricultural, economic, and environmental optimization models.
These integrated models will facilitate the assessment of various fertilizer policies on fertilizer use,
land allocation, farm-household incomes, and environmental externalities, such as nitrate leaching
and nitrate balance. This study holds substantial scientific promise, given its exploration of the
policy implications surrounding fertilizer usage, making it crucial not only for Iran, but also for many
developing nations grappling with inefficient and unsustainable agricultural practices. It represents
the first of its kind in the literature, providing estimations of optimal nitrogen use and crop yield
points across all regions in Iran. This is achieved through advanced visualization using GIS maps.

Keywords: optimal crop yield; nitrogen fertilizer; quadratic yield response function; Iran

1. Introduction

For four decades, addressing the food supply for a growing population has been a
top priority for the Islamic Republic of Iran. The agricultural sector, contributing 12.4% to
the GDP, plays a vital role by supplying 87% of the food, utilizing 10% of the land, and
employing 19% of the labor force [1]. In Iran, crops dominate the agricultural landscape,
contributing 50% of the sector’s value added in the past decade, involving approximately
3 million active production units. Crop production’s value and added value were EUR
34.6 billion and EUR 17.3 billion, respectively, with growth rates of 4% and 5%. The total
cultivated area is about 30 million hectares, comprising 70% irrigated land and 30% rain-
fed land, with 20 million hectares dedicated to annual crops and 10 million hectares to
permanent crops [2]. However, the Iranian agricultural sector grapples with challenges like
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scarce resources, low productivity, limited market access, technological gaps, insecure land
tenure, and climate change [3].

The Iranian government has implemented a range of policies, including subsidy
reform [4], investment in irrigation infrastructure, water management [5], R&D support,
extension services, agricultural insurance, land tenure reforms [6], improved market access,
export promotion, and price support, to overcome agricultural sector challenges [7]. These
policies are designed to tackle urgent challenges in Iranian agriculture. However, their
effectiveness and impact can vary, with one common goal in mind: assisting farmers in
enhancing their production and productivity. To meet Iran’s increasing food demand in
the face of a growing population, limited resources, and land with poor soil fertility, it is
crucial to increase agricultural yields by adopting more intensive farming practices and
optimizing inputs, particularly fertilizer use [8].

Enhancing nitrate utilization in Iranian agriculture is key to improving crop produc-
tivity [9]. Iran’s diverse soil profiles, influenced by varied geology and vegetation, impact
nitrate availability [10]. The challenge intensifies in Iran’s agro-climatic zones, including
arid, semiarid, humid, sub-humid, and tropical semiarid regions, where climate factors
notably affect nitrogen use in agriculture. Predominantly arid soils like Calcids, Gypsids,
Salids, Cambids, Entisols, and Inceptisols cover 97% of Iran’s land, mainly in arid and
semiarid zones, while Mollisols, Alfisols, and Ultisols in the Caspian Sea region constitute
less than 3% [11]. With only 12% of land cultivated, and less than a third irrigated, nitrogen,
vital for crop growth, presents challenges, as only a small portion is readily available in the
soil, and mineral nitrogen makes up only 2% [12]. Chemical nitrate fertilizers help bridge
this gap, but their excessive use can lead to detrimental effects, while deficiency results in
stunted, yellowing plants with compromised growth [13].

Due to the diverse climate conditions and soil management practices across Iran’s
regions, a considerable gap exists between the optimal use of nitrates and their actual
application by farmers. This disparity notably impacts yield variations in agriculture [14].
Addressing this difference necessitates precise estimation of the yield response function to
nitrogen fertilizer, which determines the most effective application rates [15]. This function
emerges as a cornerstone in agriculture, offering multifaceted advantages. It allows the
adjustment of nitrogen application rates to change in an economic context (i.e., changes
in input and output prices), in terms of climate change (the mitigation of CO2 emissions
and greenhouse gases), and under different policy options [4]. It also enables precision
farming [16], allowing targeted nitrogen applications based on soil variations and crop
requirements, preventing both over-fertilization and under-fertilization [17]. As climate
and soil conditions evolve, re-estimating the yield response function empowers farmers
to make informed decisions, adapting nitrogen management practices to the dynamic
agricultural landscape [18].

In the Iranian context, the pioneering contribution that stands out for this study
is its high spatial resolution, utilizing advanced visualization techniques such as GIS
maps to showcase diverse crop rotations and variations in both optimal and actual yields.
Leveraging unbalanced panel data from 2000 to 2016 adds temporal relevance to the results,
contributing to a dynamic understanding of changes and trends in nitrate application
practices and crop yields over the years. A methodological innovation in this study is the
use of a quadratic yield response function model, offering a more nuanced understanding of
nonlinear yield responses compared to common linear models. Notably, the detailed maps
presented in this study are unavailable from established international sources, highlighting
their unique and valuable contribution to the scientific community. This research addresses
the gap in utilizing optimal yield in farm models for optimization solutions, particularly
within the context of farming system simulation models using regional crop programming.
By providing crucial primary and secondary information for calibrating models based on
optimal yield values, this study provides a more comprehensive understanding of the
practical implications of optimal yield in agricultural management and policy decision
making [4,6].
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This study introduces a distinctive innovation within the existing literature by ad-
dressing limitations identified in prior research. While conventional approaches have often
employed stochastic plateau functional forms, this work breaks new ground by incorpo-
rating the quadratic form into yield response functions. This departure from the norm
not only provides a more nuanced explanation for crop responses to nutrient application
but also notably enhances the accuracy and robustness of the models [14]. In contrast to
studies emphasizing the broader context of agroecosystem dynamics and crop diversity,
our primary focus on nutrient application highlights a specific and critical facet of crop
management [19]. Moreover, this research aligns with the themes explored in an editorial
that emphasizes the interconnected nature of crop traits [20]. This study also underscores
the importance of advanced statistical approaches and modeling techniques for national
and regional crop yield predictions [21]. By referencing research on spatial variability in
crop responses and crop yield responses to water, this study places strong emphasis on
regional-scale analyses and the consideration of diverse factors influencing crop yield,
contributing to a more holistic understanding of agricultural practices [22,23].

2. Methodology

Experts in agronomy and economics emphasize aligning crop production with fertil-
izer use, but selecting precise response function forms from empirical data poses challenges
due to uncertainties in their shapes and skewness. The literature offers various forms
based on theory and data, evaluated by researchers like [24], who assessed 20 functions
for criteria such as concavity and goodness-of-fit. Others, like [25], outlined methods for
crafting predictive equations from field data. However, many researchers advocate for
estimating crop responses with smooth, concave functions, often quadratic in nature [14].

The quadratic function has long been fundamental in modeling crop yield response
to nutrients. It suggests that increasing inputs boosts yield until the maximum potential
is reached, after which more inputs result in reduced output. Its advantages include
addressing diminishing marginal productivity and concavity, offering solutions for optimal
input levels, and solving fertilization issues efficiently. These traits, along with its linear
parameterization, explain its widespread use. It can be mathematically expressed for nitrate
application as [14]

Yi = β0 + β1Ni + β2N2
i + εi (1)

where Yi is crop yield, Ni is an applied nitrate, N2
i is the square of applied nitrate, β0, β1,

and β2 are parameters, and εi∼N(0, σ2 e) is a random disturbance term. The optimal nitrate
rate (N∗) is:

N∗ =
β1

2β2
(2)

In this study, an unbalanced panel dataset is employed to derive yield response
functions for 14 annual crops across a 16-year timeframe (2000–2016). This analysis aims
to determine the optimal nitrate application rate and the corresponding optimal yield for
each crop. Consequently, Equation (3) is reformulated from Equation (1) to conform to a
general panel format, presented as follows:

Yit = βit + β1itNit + β2itN2
it + εit

i = 1, . . . , N
t = 1, . . . , T

(3)

where (i) is the individual dimension (region) and (t ) is the time dimension. Further-
more, the collected regional-level rainfall data spanning a 16-year period serve as specific
parameters (rainfall) in estimating the yield response function, as demonstrated by the
following equation:
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Yit = βit + β1itNit + β2itN2
it + β3iRainfall + εit

i = 1, . . . , N
t = 1, . . . , T

(4)

Using unbalanced panel data offers unique advantages. Unlike balanced panels,
unbalanced datasets adapt to variations in observations across entities or time periods,
providing a more realistic view of real-world phenomena. This flexibility captures dynamic
changes, accounting for evolving entity characteristics over time, offering a deeper un-
derstanding of complex relationships. Unbalanced panels also increase statistical power
by using diverse samples or time spans, minimizing bias and improving efficiency [26].
They enable control for individual unobserved heterogeneity, potentially improving the
robustness and generalizability of findings, and allow the exploration of both within- and
between-entity variations, providing a nuanced understanding of influencing factors [27].

In dealing with unbalanced panel data, the choice between fixed and random-effects
models holds crucial importance. Fixed effects handle unobserved individual-specific
effects in longitudinal datasets. In unbalanced panel data, where entities are observed over
time, individual-specific characteristics can affect the dependent variable. Using individual-
specific dummy variables, fixed effects mitigate these effects, focusing on the time-varying
impacts of independent variables [28]. This method controls for time-invariant differences
among individuals, assuming these traits are unique and uncorrelated with other individual
characteristics. A simple fixed-effects model for data observed for a region (i) across time
(t) can be described by the following equation [29]:

Yit = βi + β1Nit + β2N2
it + β3iRainfall + εit

i = 1, . . . , N
t = 1, . . . , T

(5)

where (β 1) is the coefficient for the independent variable. The interpretation of this
coefficient would be as follows: for a given entity (region), as nitrate varies across time by
one unit, yield increases or decreases by (β1) units. (β i) is the unobserved entity-specific
time-constant error term. It is possibly correlated with (N it) and

(
N2

it
)
. (εit) is the error

term. This is assumed to be uncorrelated with (N it) and
(

N2
it
)
.

Random effects treat individual-specific effects as random and uncorrelated variables
to handle unobserved heterogeneity [30]. Unlike fixed effects, they allow for variability
in these effects and estimate the average impact of independent variables on the depen-
dent variable, accounting for time-varying and time-invariant unobserved factors. They
are used when there are concerns about unobserved heterogeneity affecting coefficients,
assuming individual-specific effects are genuinely random and unrelated to indepen-
dent variables [31]. An advantage of random effects is their inclusion of time-invariant
variables, unlike fixed effects, where the intercept absorbs all such variables. A simple
random-effects model for data observed for region (i) across time (t) can be described by the
following equation:

Yit = α0 + βi + β1Nit + β2N2
it + β3iRainfall + εit

i = 1, . . . , N
t = 1, . . . , T

(6)

where (α 0) is the intercept and, contrary to the fixed effect, it can be estimated. (β i) is the
unobserved entity-specific time-constant error term. Contrary to fixed effect, it is possibly
correlated with (N it) and

(
N2

it
)
.

The Hausman test in econometrics helps decide between fixed-effects models (assum-
ing constant parameters but allowing for individual-specific effects) and random-effects
models (assuming uncorrelated individual-specific effects with the regressors). It tests
whether individual-specific effects (random effects) correlate with the model’s regressors.
If the null hypothesis is not rejected, indicating no systematic relation between individual
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effects and independent variables, a random-effects model might be suitable. Rejecting the
null suggests inconsistency in the random-effects model, favoring fixed effects to address
correlated individual-specific effects with regressors [32].

In this study, a crop-specific quadratic yield response function to nitrogen fertilizer
is econometrically estimated using a fixed- or random-effects specification following the
Hausman test, under the assumption that yield is independent of the acreage planted.
Crop yield and nitrogen application rate are the main coefficients in the regression model.
However, the inclusion of rainfall per millimeter in the model serves the purpose of
enhancing model fitness and robustness. The other fertilizer elements (P and K) are
assumed to be applied in a fixed proportion to nitrogen (N) fertilizer, and the remaining
inputs, such as pesticides, labor use, etc., are assumed to be independent of fertilizer
and employed at a fixed rate by hectare of each specific crop [33] (This assumption lacks
rationalization given the strong relationship between nitrate and other inputs. However,
due to the lack of data to make a reliable estimate of this relationship, and in order to avoid
additional bias, we adopted this assumption following previous studies [34–36].).

Data and Information

The yield response function model relies on the Iranian Agriculture Ministry Jihad [2]
database, derived from annual reports aggregating individual farm data collected through
surveys. The Information and Communication Technology Centre of the Iranian Agri-
culture Ministry (ICTC-IMAJ) uses these data to derive input/output quantities via the
Cost Bank System (CBS). These databases offer detailed regional info on five crop groups:
cereals, legumes, vegetables, industrial crops, and melons. Unbalanced panel data from
2000 to 2016, covering 14 crops, utilize these sources.

Our decision to employ regional models in this study is grounded in the distinctive
characteristics of arable farms in Iran. With over 70% of the country’s farms being small-
holders with less than 3 hectares of land, the relative homogeneity of these farms played a
crucial role in shaping our research methodology. This homogeneity not only allowed us to
effectively capture the prevailing agricultural landscape, but also facilitated a more nuanced
understanding of regional dynamics. An important contributing factor to this homogeneity
is the shared technology and equipment among the majority of these smallholder farms,
further emphasizing the practicality of utilizing regional models. The prevalence of similar
agricultural practices within each region enhances the representativeness of our approach,
enabling us to extrapolate our findings to individual farms or fields within those regions.

It is worth noting that, in the broader agricultural context of Iran, large-scale farms
constitute a minimal percentage, accounting for less than 0.2% of agricultural holdings.
Excluding these large-scale entities, arable farms within the same region exhibit a notable
degree of homogeneity, a point underscored by [3]. This relative uniformity in farm
size, technology, and equipment within regions led us to conceptualize each region as
emblematic of individual farms or fields, thereby providing a solid foundation for our
regional modeling approach. Moreover, the decision to employ regional data for assessing
nitrate yield response functions is grounded in several considerations aligned with the
goals and nature of this research. Firstly, the real-world applicability of the findings is
enhanced by capturing the diverse and complex interactions influencing nitrate yields in
specific geographic areas. Secondly, the cost-effectiveness of utilizing existing databases,
surveys, and observational records for regional data aligns with the resource-efficient
nature of the study. Lastly, longitudinal studies facilitated by regional data enable the
examination of temporal patterns and changes in nitrate yield responses, offering insights
into their dynamics over time [37–39].

Table 1 presents the key statistics for 14 crops in Iran, covering variables like cultivated
areas, production, yield, fertilizer, and nitrate application rates across 31 regions averaged
over three years. Wheat and barley occupy the largest cultivated areas but yield around
2 t/ha each. In contrast, rice and maize show higher yields at 5 and 7 t/ha, respectively.
Cucumber and onion also exhibit high yields at 21 and 37 t/ha, while legumes perform
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sub-optimally at less than 1 t/ha each. The data reveal a trend of increased fertilizer
usage correlating with higher yields, notably exceeding 500 (kg/ha) for high-yield crops
like sugar beet and tomato. This trend of intensified fertilizer use aligns with onion and
rice cultivation, where usage exceeds 1000 (kg/ha). However, the relationship between
increased fertilizer application and nitrate use is evident in the percentage share of nitrate
from fertilizer, exceeding 60% in most crops. This highlights the need to assess the optimal
balance between nitrate application for maximizing yields in Iranian agriculture, crucial
due to the reliance on nitrate-heavy fertilizers and farmers’ inclination to amplify fertilizer
application for higher yields.

Table 1. Statistical characteristics of variables.

Group Crops
Area under
Cultivation

(1000 ha)

Production
(1000 ton)

Yield
(t/ha)

Fertilizer Use 1

(kg/ha)
Nitrate Use

(kg/ha)

Nitrate
Contribution from

Fertilizer (%)

Cereals

Wheat 5894.07 12,117.70 2.06 302.02 194.46 64.39

Barley 1739.84 3281.66 1.89 171.97 110.06 64.00

Rice 332.58 1737.17 5.22 1127.29 695.03 61.65

Maize 173.53 1249.70 7.20 677.63 441.84 65.20

Legumes
Peas 492.56 236.67 0.48 18.49 11.45 61.93

Lentils 134.57 74.71 0.56 5.13 3.36 65.50

Vegetables

Tomato 118.76 4878.06 41.08 676.35 427.57 63.22

Potato 148.45 4726.75 31.84 620.01 371.17 59.87

Onion 50.16 1861.46 37.11 1033.77 629.38 60.88

Industrial

Sugar
beet 100.66 5278.90 52.44 587.20 350.48 59.69

Canola 60.01 93.63 1.56 425.24 259.02 60.91

Cotton 72.09 166.30 2.31 132.61 81.2 61.23

Melons
Cucumber 46.25 1007.52 21.78 307.87 209.55 68.06

Watermelon 112.39 3099.80 27.58 487.34 288.78 59.26

MIN 46.25 74.71 0.48 288.78 3.36 59.26

MAX 5894.07 12,117.70 52.44 1127.29 695.03 68.06

STDEV 1564.68 3248.38 18.14 345.43 211.90 2.58
1 “Nitrate use” refers to the consumption of nitrate, and “fertilizer use” pertains to the quantity of nitrogen (N),
phosphorus (P), and potassium (K) consumed and utilized for each crop. Source: ICTC-IMAJ. Three-year average
around 2015 (2014–2016).

3. Results

In choosing the quadratic form for modeling nitrate yield response using unbalanced
data, distinguishing fixed or random effects for different crops was crucial to optimize yield
and nitrate use. The Hausman test helped determine these effects. Notably, significant Chi-
squared values at the 1% level were found for rain-fed barley and irrigated lentils, cotton,
cucumber, and watermelon, while the remaining crops showed significance at the 5% level.
Further analysis using the Hausman test underscores intriguing distinctions among regions.
For irrigated wheat, rice, lentils, sugar beet, cotton, and cucumber and rain-fed barley and
watermelon, the absence of regional disparities implies uniform intercepts and optimal
yield values across all regions for these crops. Conversely, the results indicate fixed effects
for rain-fed wheat, peas, lentils, and canola, and irrigated barley, maize, peas, tomato,
potato, onion, canola, and watermelon. This suggests distinct intercepts and optimal yields
unique to each region for these specified crops, aligning with the specific characteristics
prevalent in each production region (Table 2).
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Table 2. Hausman test results for determining fixed or random effects in crops 1.

Group Crop Technology Chi-Squared (χ2) Fixed Effect/Random Effect

Cereals

Wheat
Rain-fed 46.23

(0.00) * Fixed effect

Irrigated 6.43
(0.02) * Random effect

Barley Rain-fed 4.84
(0.08) ** Random effect

Irrigated 13.75
(0.00) * Fixed effect

Rice Irrigated 5.89
(0.03) * Random effect

Maize Irrigated 16.28
(0.00) * Fixed effect

Legumes

Peas
Rain-fed 12.13

(0.00) * Fixed effect

Irrigated 14.53
(0.00) * Fixed effect

Lentils
Rain-fed 21.34

(0.00) * Fixed effect

Irrigated 5.10
(0.05) ** Random effect

Vegetables

Tomato Irrigated 20.76
(0.00) * Fixed effect

Potato Irrigated 12.53
(0.00) * Fixed effect

Onion Irrigated 19.23
(0.00) * Fixed effect

Industrial

Sugar
beet Irrigated 10.28

(0.03) * Random effect

Canola
Rain-fed 17.05

(0.00) * Fixed effect

Irrigated 11.01
(0.01) * Fixed effect

Cotton Irrigated 9.05
(0.05) ** Random effect

Melons

Cucumber Irrigated 6.52
(0.08) ** Random effect

Watermelon
Rain-fed 7.10

(0.07) ** Random effect

Irrigated 8.02
(0.05) ** Fixed effect

1 Statistical software name: STATA, manufacturer: Stata Corp LLC., version: 16, publisher: College Station, TX,
USA. * The p-value of the Chi-squared test is significant at the 5% level. ** The p-value of the Chi-squared test is
significant at the 1% level. Source: model results.

Our study delves into evaluating the optimal yield and nitrate application rate across
various regions, focusing on crops that display significant coefficients for rainfall, their
nitrate levels, and their squares. Table 3 reveals that multiple crops exhibit significant
coefficients at the 5% level, notably wheat (rain-fed), barley (rain-fed and irrigated), rice
(irrigated), maize (irrigated), tomato (irrigated), potato (irrigated), onion (irrigated), and
canola (rain-fed and irrigated). Of these crops, barley (rain-fed) demonstrates a random
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effect, while the others showcase fixed effects. For crops displaying random effects, the
intercepts have been documented. However, in cases where crops exhibit fixed effects and
regions present distinct characteristics, separate definitions for each crop within each region
are imperative. Table 4 elaborates on the detailed outcomes derived from this analysis.

Table 3. Coefficients of yield response functions and optimal nitrogen rates.

Group Crop Technology Intercept Rainfall N N2

Cereals

Rain-fed - 1 0.53
(0.18) *2

10.10
(1.98) *

−0.031
(0.013) *

Wheat 3

Irrigated 1915.70
(475.29) *

1.11
(0.33) *

5.86
(4.46)

−0.004
(0.011)

Barley
Rain-fed 539.61

(76.72) *
0.40

(0.11) *
4.80

(1.64) *
−0.010

(0.006) ***

Irrigated - 1.85
(0.36) *

18.07
(2.14) *

−0.045
(0.007) *

Rice Irrigated 3299.83
(363.61) *

0.84
(0.57) ***

1.86
(1.11) ***

−0.001
(0.0004) *

Maize Irrigated - 3.84
(0.83) *

20.27
(1.70) *

−0.021
(0.002) *

Legumes

Peas
Rain-fed - 0.64

(0.09) *
2.27

(1.22) **
−0.008
(0.010)

Irrigated - 2.55
(0.42) *

1.84
(1.50)

−0.003
(0.005)

Lentils
Rain-fed - 0.44

(0.08) *
0.27

(1.67)
−0.018
(0.016)

Irrigated 974.40
(105.35) *

0.08
(0.16)

1.04
(1.20)

−0.001
(0.004)

Vegetables

Tomato Irrigated - 23.78
(4.77) *

57.92
(8.29) *

−0.058
(0.010) *

Potato Irrigated - 18.75
(3.39) *

53.71
(6.57) *

−0.066
(0.008) *

Onion Irrigated - 39.91
(6.34) *

54.37
(8.47) *

−0.034
(0.008) *

Industrial

Sugar beet Irrigated 24,734.92
(7711.08) *

10.43
(10.53)

34.46
(39.83)

−0.039
(0.054)

Canola Rain-fed - 0.84
(0.31) *

11.99
(3.09) *

−0.035
(0.011) *

Canola Irrigated - 1.27
(0.52) *

6.60
(1.27) *

−0.009
(0.003) *

Cotton Irrigated 2318.37
(186.67) *

0.19
(0.33)

0.41
(0.72)

−0.0004
(0.0007)

Melons

Cucumber Irrigated 18,120.04
(3071.62) *

2.20
(2.86)

3.35
(12.70)

−0.005
(0.013)

Watermelon
Rain-fed 4445.45

(1650.40) *
0.76

(5.52)
104.09

(51.14) *
−0.152

(0.097) ***

Irrigated - 2.35
(3.96)

97.39
(12.01) *

−0.152
(0.021) *

1 Table 4 lists the individual intercepts reported for each crop within a fixed-effects model, defining a spe-
cific intercept for each region. 2 Numbers in parentheses denote the standard deviations of the coefficients.
* The coefficient is significant at the 1% level. ** The coefficient is significant at the 5% level. *** The coeffi-
cient is significant at the 10% level. Coefficients without stars lack significant meaning at either the 1%, 5%,
or 10% levels. 3 Crops shaded in grey are selected due to all their coefficients being statistically significant.
Source: model results.
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Table 4. Region-specific intercepts in yield response functions under fixed-effects models.

Abbr.
Crop Wheat Barley Maize Peas Lentils Tomato Potato Onion Canola Watermelon

Region Rain-Fed Irrigated Irrigated Rain-Fed Irrigated Rain-Fed Irrigated Irrigated Irrigated Rain-Fed Irrigated Irrigated

ALB Alborz - 1875.59
(326.97) 1,2,* - - - - -- 4367.91

(2239.95) ** - - - -

ARD Ardebil 639.23
(99.56) *

721.74
(199.75) *

469.99
(238.57) *

266.10
(71.50) * - 382.21

(45.49) *
12,326.48

(2628.71) *
13,212.93

(1788.62) * - - 1095.93
(213.70) * -

BUS Bushehr 164.48
(135.11) ***

111.06
(69.41) ***

1789.34
(513.42) * - - - 18,956.24

(2623.89) * - 1153.61
(721.00) *** - 126.13

(78.83) ***
16,085.23

(2339.44) *

CHM Chahar Mahall and
Bakhtiari

222.51
(130.88) ***

459.21
(234.35) * - 292.82

(54.66) * - 597.04
(75.35) * - 15,608.02

(1914.44) * - - - -

EAZ East Azarbaijan 387.78
(150.01) *

990.42
(215.27) * - 331.55

(43.60) *
306.93

(190.73) ***
380.67

(39.83) *
20,491.75

(2683.91) *
14,842.95

(1859.84) *
17,678.11

(2671.72) * - 517.09
(217.63) *

20,474.54
(3430.24) *

ILM Ilam 218.40
(136.26) ***

232.84
(122.54) **

−536.81
(275.29) **

188.45
(62.53) * - 327.12

(65.93) *
1272.21

(795.13) *** - - 623.61
(218.66) *

140.67
(82.74) ***

19,107.47
(3016.10) *

ESF Esfahan 186.28
(116.42) ***

1751.67
(292.01) *

2099.80
(480.05) *

234.49
(44.84) *

947.35
(142.52) *

416.29
(55.57) *

20,366.24
(2743.14)

14,746.41
(1991.57) *

30,393.90
(3632.51) * - 1513.74

(247.63) *
20,499.08

(2637.61) *

FRS Fars 136.39
(75.78) ***

789.48
(288.01) *

1785.87
(499.87) *

113.93
(51.15) *

432.11
(156.87) *

325.46
(53.89) *

31,288.56
(2838.36) *

7546.07
(1955.90) *

16,504.09
(3143.61) * - 942.09

(218.67) *
15,905.97

(2549.33) *

GIL Gilan 461.41
(223.36) * - - - - 16.75

(121.85) - 17,514.08
(4417.52) * - - - 6670.47

(3368.92) *

GOL Golestan 954.77
(163.03) *

607.64
(293.22) *

318.78
(199.23) *** - - 312.76

(86.51) *
8902.02

(3063.27) *
2141.74

(1338.59) *** - 192.89
(120.56) ***

750.09
(257.59) *

12,760.01
(3102.36) *

HAM Hamadan 280.32
(116.87) *

1373.85
(233.23) *

2310.61
(468.68) *

221.38
(47.94) *

200.78
(125.48) ***

288.64
(56.17) *

17,623.94
(2754.43) *

19,706.23
(1898.36) * - - 1185.07

(228.63) *
21,982.84

(2593.30) *

HOR Hormozgan - 221.74
(123.19) ***

963.12
(495.04) * - - - 10,944.12

(2541.08) *
15,631.80

(2802.31) *
5250.58

(2746.27) * - 218.83
(110.52) **

5918.89
(2450.61) *

KOH Kohgiluyeh and
Buyer Ahmad

201.46
(111.92) ***

485.14
(312.90) ***

741.08
(376.18) *

268.52
(80.23) * - 511.34

(84.28) *
1558.73

(974.20) *** - 13,963.67
(4560.04) * - - 18,532.38

(3414.16) *

KER Kerman - 124.86
(63.38) **

1513.52
(475.69) * - 718.35

(125.62) * - 5906.26
(3028.85) **

9696.35
(1907.38) *

9866.16
(3399.20) * - - 14,337.10

(2586.03) *

KRD Kordestan 301.84
(135.80) *

806.59
(233.37) *

1548.28
(682.07) *

52.62
(48.12) * - 116.44

(56.36) *
2515.42

(1572.14) ***
13,773.89

(1925.17) *
1141.52

(713.45) *** - 356.80
(209.88) ***

9580.82
(3245.69) *

KRM Kermanshah 257.28
(125.54) *

1211.95
(282.20) *

1574.41
(500.79) *

189.71
(32.88) *** - - 13,135.53

(3017.10) *
2662.87

(2087.62) *

3310.78
(2069.24)

***
- 391.48

(230.28) *** -
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Table 4. Cont.

Abbr.
Crop Wheat Barley Maize Peas Lentils Tomato Potato Onion Canola Watermelon

Region Rain-Fed Irrigated Irrigated Rain-Fed Irrigated Rain-Fed Irrigated Irrigated Irrigated Rain-Fed Irrigated Irrigated

KHZ Khuzestan 145.98
(82.01) ***

159.62
(93.90) ***

1289.78
(464.23) * - - 632.32

(85.93) *
17,239.31

(2651.88) *
9536.86

(1863.94) *
7129.97

(2961.85) *
144.22

(73.58) **
152.90

(85.50) ***
14,729.58

(2467.24) *

LRS Lorestan 217.16
(109.67) **

30.42
(18.21) ***

1848.85
(511.18) *

198.74
(54.28) *

90.30
(54.07) ***

259.93
(54.16) *

1200.21
(718.70) ***

8634.78
(2042.19) * - - 167.58

(101.56) ***
20,270.74

(4172.69) *

MRK Markazi 827.09
(175.05) *

1562.76
(262.62) *

2205.20
(474.365) * - - - 18,995.09

(2516.86) **
17,226.32

(1944.965) *
30,393.9

(3632.51) * - - -

MAZ Mazandaran 822.30
(203.18) *

742.43
(357.04) * - - - 146.83

(90.46) ***
4933.05

(4215.13) *
7668.62

(2787.22) *
25,726.26

(5669.57) * - - 15,713.85
(3700.82) *

NKR North Khorasan 375.38
(162.61) *

182.80
(109.46) *** - 149.49

(55.37) * - 289.95
(49.92) *

13,321.84
(2921.88) *

9087.52
(2091.47) *

20,644.72
(2710.28) * - 171.42

(107.13) ***
5480.32

(3242.74) ***

QOM Qom 197.72
(105.17) ***

774.58
(259.42) * - - - - - - - - 799.28

(232.65) * -

QZV Qazvin 246.04
(117.20) *

716.85
(253.77) *

3265.71
(478.44) *

171.00
(49.57) * - 176.53

(65.95) *
19,228.90

(2737.06) *
6700.52

(1907.27) * - - 999.00
(232.15) * -

RKR Razavi Khorasan 314.33
(112.03) *

598.93
(256.30) *

1426.91
(600.23) *

51.91
(31.03) ***

222.35
(133.14) ***

159.07
(65.82) *

18,363.82
(3066.07) *

14,302.08
(2083.65) *

20,040.48
(3099.55) * - 370.98

(189.28) **
9433.59

(2707.73) *

SIS Sistan and
Baluchestan - 129.65

(77.69) ***
467.41

(236.06) * - - - 11,527.22
(2371.48) *

11,646.07
(2834.44) *

16,160.10
(2577.94) * - 402.21

(205.20) **
10,927.99

(2224.71) *

SKR South Khorasan 337.44
(129.62) *

321.13
(162.18) * - - 471.73

(211.57) * - 534.66
(320.15) ***

3869.28
(1974.12) **

5731.15
(2924.06) ** - - 8320.09

(2648.87) *

SMN Semnan 555.44
(118.59) *

1055.15
(238.24) * - - - 421.21

(51.32) *
9947.72

(2858.18) *
5903.01

(1876.29) * - - - 4989.82
(2771.10) ***

THE Tehran 309.06
(106.76) *

1315.73
(244.45) * - - - - 19,701.52

(2709.22) *
10,845.51

(1783.89) *
25,797.34

(4168.44) * - 361.29
(184.33) **

15,026.99
(4096.34) *

WAZR West Azarbaijan 414.59
(121.44) *

1052.98
(200.16) * - 195.41

(44.78) *
23.47

(14.05) ***
173.71

(47.41) *
14,205.00

(2706.69) *
9032.89

(1795.97) *
7143.82

(3495.17) * - 816.37
(298.45) *

17,318.75
(2454.50) *

YZD Yazd - 1045.21
(239.37) *

2151.67
(504.84) * - 768.70

(197.42) * - 14,216.37
(2727.38) *

12,318.72
(2190.62) *

35,673.81
(3320.70) * - - 12,302.64

(2577.66) *

ZNJ Zanjan 219.43
(135.95) ***

541.68
(217.09) * - 78.58

(45.57) ***
197.21

(116.70) ***
162.06

(46.73) *
11,194.78

(2666.36) *
13,406.53

(1767.37) *
5821.94

(3210.14) * - - -

1 Numbers in parentheses denote the standard deviations of the coefficients. * The coefficient is significant at the 1% level. ** The coefficient is significant at the 5% level. *** The
coefficient is significant at the 10% level. 2 Crops shaded in grey are selected due to all their coefficients (rainfall, nitrate, square of nitrate) being statistically significant at either the 5% or
1% significance levels (Table 3). Source: Model results.
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Following the determination of random and fixed effects (Table 2) and subsequent
coefficient estimation (Tables 3 and 4), the calculation of the optimal nitrate application
rate, as outlined in the methodology, became feasible (Figure 1). The results of the esti-
mated quadratic yield response functions show that rice (with 1031 (kg/ha)), onion (with
800 (kg/ha)), and tomato (with 508 (kg/ha)) have the largest usage of nitrogen at the
optimal point, and rain-fed wheat (with 168 (kg/ha)) and rain-fed canola (with 171 (kg/ha))
have the smallest. Figure 1 shows that across all crops, the optimal nitrate use exceeds the
observed application rates in 2016. This discrepancy is more evident in rice in Iran. The
lower-than-optimal nitrate use for rice in the north of Iran can be influenced by specific
soil types prevalent in the region. Factors such as the presence of alluvial, clayey, or coastal
soils may contribute to suboptimal nitrogen application. Limited awareness of soil charac-
teristics, inadequate soil testing, and inefficient nitrogen management practices may further
contribute to the disparity between actual and optimal nitrate use.
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Figure 1. Optimal nitrate application (kg/ha) for crops under rain-fed and irrigated technologies in
Iran. Source: model results.

The gap between estimated optimal nitrate use and actual application in Iran’s agricul-
ture stems from multiple factors. Firstly, economic constraints, limited fertilizer accessibility,
and affordability issues notably contribute to farmers applying lower nitrate levels than
the estimated optimal values. Despite government efforts to provide nitrate to farmers
annually, the timely receipt of fertilizers, especially nitrate, remains a persistent challenge.
Particularly for farms situated far from distribution centers, high transportation costs often
prompt farmers to rely on leftover fertilizer from the previous year, which is suboptimal for
their crops and results in consistently lower-than-optimal application rates [7]. However,
accessibility and affordability are not the sole concerns. Recent high inflation rates and
increasing nitrate prices on the market have prompted farmers to engage with intermedi-
aries, creating a new market dynamic. Iranian farmers, generally earning modest incomes
from their produce, view government-subsidized nitrate as an opportunity to make profits
by selling it at higher rates in the free market [6]. This trend is prevalent in the agricul-
tural sector, especially for cereal crops that receive higher subsidies compared to others.
Consequently, farmers opt to store subsidized nitrate for resale at higher prices rather than
using it for their current crops. This practice results in the recurrent underutilization of
nitrate, leading to application rates consistently below the optimal threshold [4]. Secondly,
diverse localized conditions and soil management practices in Iran influence actual nitrate
use. Varied factors like soil types, crop needs, climate variations, and traditional farming
practices create discrepancies between actual and optimal nitrate usage in agriculture.
Soil differences affect optimal nitrate needs regionally, while crops may require varying
nitrogen levels during growth, deviating from standard practices [10]. Climate disparities
impacting water availability, along with traditional farming practices, may lead to either
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insufficient or excessive nitrate application compared to optimized levels [9]. Last but
not least is the lack of access to updated research and the diverse responses of crops to
varying nitrate levels. Limited access to the latest agricultural findings can lead farmers to
rely on outdated or generalized guidelines, hindering the alignment of practices with the
most current and optimized nitrate application strategies. Moreover, crops exhibit diverse
responses to nitrate levels, and optimal usage can differ based on individual crop require-
ments, growth stages, and regional variations in soil types and climatic conditions. Without
precise knowledge of these crop-specific responses and localized guidelines, farmers may
apply nitrate levels that are insufficient, resulting in either suboptimal yields or inefficient
resource utilization [40].

Our study utilized the quadratic yield response function to uncover insights into
optimal nitrate use and yield determination. After comparing the 2016 nitrate application
rates with the calculated optimal use, we focused on disparities between the optimal and
actual yields for specific crops. It is important to note that our analysis focused on crops
displaying significant coefficients, as indicated in Table 3. Based on the determination
of the most appropriate specification between random- or fixed-effects estimation, the
average yields corresponding to the optimal nitrogen usage level were computed. These
computations were conducted either regionally or as an aggregate across all regions, and
will be illustrated using GIS maps in the discussion section.

The estimated optimal yield for rain-fed barley is 1.29 t/ha, reflecting the random-
effect nature of the analysis without individual regional specifications. Applying nitrate
optimally could potentially increase yields by 176 kg/ha compared to the 2016 observed
yield. For other crops with significant coefficients, specific optimal yields were determined
for each region, considering their fixed effect. Rain-fed canola, limited to Ilam, Golestan,
and Khuzestan, was not displayed separately due to its limited presence. However, a slight
nitrate increase to reach optimal levels might potentially raise yields by approximately
400 kg/ha in Ilam and Khuzestan. Yet, in Golestan, due to distinct soil characteristics and
nutrient balancing challenges, optimal nitrate use may result in a slight yield decrease of
about 50 kg/ha.

Figure 2 displays rain-fed wheat’s optimal and observed 2016 regional yield dis-
tribution across 31 regions. Rain-fed wheat data were unavailable for Alborz, Kerman,
Hormozgan, Sistan and Baluchestan, and Yazd. Comparing the average observed yields
in 2016 to the optimal yields shows a 31% increase in optimal yield. Most regions, with
optimal nitrate use, indicate potential yield increases compared to 2016. Exceptions are
Golestan and Mazandaran, showing slightly lower optimal yields, about 70 kg/ha less than
in 2016. Gilan has the smallest optimal yield, just below 1 t/ha. Notably, Bushehr, South
Khorasan, and Razavi Khorasan exhibit substantial increases in optimal yield, exceeding
60% compared to the 2016 yields.

Figure 3 showcases the regional yield distribution of irrigated barley at its optimal
point compared to the 2016 yields, excluding Gilan due to data limitations. On average,
the optimal yield displays a 9% increase compared to 2016. However, in Kermanshah,
Kerman, South Khorasan, Mazandaran, North Khorasan, Tehran, Qazvin, and Qom, a
slight decrease in optimal yield is observed. Conversely, other regions exhibit an increase in
optimal yield over 2016. Markazi province leads with a 4.5-t/ha increase, while Sistan and
Baluchestan has the lowest increase at 2 t/ha. Notably, Hormozgan shows a substantial
30% surge compared to 2016, while Hamadan experiences a mere 1% increase.

The maize crop, part of the cereal group, is observed to have a fixed effect. Figure 4
displays regions where data were available, indicating higher optimal yields compared
to 2016 when using optimal nitrate levels. Qazvin, Lorestan, and Kohgiluyeh and Buyer
Ahmad show the highest optimal maize yields, around 8.42 to 8.93 t/ha. Golestan and
Markazi exhibit a notable percentage increase of approximately 25%, while Sistan and
Baluchestan display the highest percentage change, approximately 20%, despite having the
smallest optimal yield among the regions.
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Figure 3. Optimal and observed 2016 regional yield distribution of irrigated barley in Iran.

Figures 5–7 display higher yields in the vegetable group compared to cereals. For toma-
toes, potatoes, and onions, Figure 5 reveals 8%, 7%, and 18% increases in the optimal yield
versus 2016. Fars, East Azarbaijan, and Bushehr top the regions with the largest optimal
yield for tomatoes, with increases ranging from 40 to 52 t/ha. Conversely, South Khorasan,
Kordestan, and Kerman exhibit smaller increases, around 16 to 24 t/ha. Hormozgan and
Sistan and Baluchestan present the most significant percentage rises, approximately 25%.
Unfortunately, data for tomatoes were unavailable for Alborz, Chaharmahal and Bakhtiari,
Gilan, and Qom.
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Figure 6 reveals that Hamadan has the largest potato yield increase at 35 t/ha, followed
closely by Chahar Mahall and Bakhtiari with a 33 t/ha rise. Markazi and Esfahan present
the most substantial percentage changes, around 20%, between their optimal and observed
yields in 2016. Hormozgan stands out with both the highest optimal yield value and
the highest percentage increase in potato yield compared to 2016. Conversely, except for
Tehran, Mazandaran, and Golestan, which show decreased yields at the optimal level
compared to 2016, Gilan has the smallest optimal yield value with a 15-t/ha increase,
while Hamadan showcases the lowest percentage increase, less than 1%. Note that potato
data were unavailable for Bushehr, Kohgiluyeh and Buyer Ahmad, Ilam, and Qom due to
data limitations.
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Figure 6. Optimal and observed 2016 regional yield distribution of irrigated potato in Iran.
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The analysis of onion, the final crop in the vegetable group, is presented in Figure 7.
Yazd and Esfahan lead the pack, with yields of approximately 60 t/ha each as the regions
with the largest optimal yields. Conversely, South Khorasan and Mazandaran exhibit the
smallest optimal yields, around 20 t/ha each. However, the most intriguing aspect lies
with Hormozgan. When comparing the percentage changes between its optimal yield and
the observed yield in 2016, a striking increase of around 50% is observed.

Figure 8 shows the yield distribution of irrigated canola. Comparing the average
observed yields in 2016 with the optimal yield, there is a 13% increase in the optimal yield.
Esfahan leads with the largest optimal yield allocation, exceeding the others by 3 t/ha,
while North Khorasan has the smallest at just 1 t/ha. Notably, Bushehr stands out with a
significant 56% increase between the observed and optimal yields. However, both Qazvin
and Tehran show lower optimal yields compared to 2016, in contrast to other regions.
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4. Discussion

In our study, the incorporation of Geographic Information System (GIS) maps is
instrumental for visualizing and understanding the relationships between cropping pat-
terns, optimal yield distribution, and nitrate use at both regional and national scales. The
overarching objective is to provide a roadmap that extends beyond the scientific commu-
nity to policymakers, offering insights for the implementation of targeted policy reforms,
specifically focusing on nitrate subsidies in Iran based on optimal applications and yield
distributions. This distinctive feature sets our research apart from others in the realm
of yield assessment and nitrate use. The utilization of GIS maps not only enhances the
scientific discourse, but also positions our findings as a practical guide for policymakers,
facilitating informed decisions and reforms to optimize agricultural practices, particularly
in the context of nitrogen management.

In Iran, wheat and barley yields vary due to factors like climate and geography, despite
some shared cultivation practices [41]. Wheat tends to flourish in temperate climates with
cooler temperatures during growth and warmer weather during ripening, favoring well-
drained, fertile soils and adequate moisture [42]. On the other hand, barley exhibits more
adaptability to diverse climates, thriving in cooler conditions and tolerating drier periods,
but benefitting from consistent moisture during crucial growth stages [43]. Both grains
require ample sunlight for optimal growth, yet their specific soil preferences and moisture
tolerances set them apart in terms of cultivation needs, a crucial understanding for effective
agricultural practice selection [44]. In the context of Iran’s regions, high rain-fed wheat
yields in the northern areas, particularly Golestan and Mazandaran, stem from a blend of
climatic nuances, soil quality, agricultural methods, and water access [45]. While Gilan
benefits from a favorable temperate and humid climate, occasional waterlogging impacts
wheat growth. In contrast, Golestan and Mazandaran strike a balance between rainfall
and dry periods, fostering ideal conditions [46]. Central regions like Markazi and Semnan,
with better soil quality and moderate rainfall, support robust wheat yields. Northwestern
areas like Ardebil and East and West Azarbaijan benefit from ample rainfall and cooler
temperatures, ideal for wheat cultivation. Conversely, southern regions like Kohgiluyeh
and Buyer Ahmad, Khuzestan, and Fars grapple with water scarcity and high temperatures,
posing challenges for rain-fed wheat cultivation [47] (Figures 9 and 10). Our results align
with published studies, such as [48], highlighting regional variations in climate change
impact on rain-fed wheat yield. The positive effects observed in northern regions mirror
findings in Golestan and Mazandaran, while negative impacts align with southern areas
like Khuzestan and Fars. Ref. [49] supports our study, emphasizing rain-fed wheat yield
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sensitivity to temperature and precipitation fluctuations. The consensus on anticipated
yield decline in strategic crops due to climate change, including [50], aligns with our
findings. Ref. [50] emphasizes increased rainfall needs in Southern Iran, coinciding with
our identified challenges. Shared focus on adequate water resources for wheat crops
strengthens alignment with existing literature. Ref. [50] predicts a marginal rise in wheat
yield and income in Markazi’s central region, echoing our projections.
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Barley finds conducive conditions for cultivation in regions like Markazi, Alborz, East
and West Azarbaijan, Kordestan, and Kermanshah, characterized by cooler temperatures
and irrigation access, along with fertile soils. Barley’s remarkable adaptability allows it to
thrive even in semi-arid to arid climates like those found in Hamadan and Esfahan [51].
However, its cultivation in these regions is not solely due to climatic suitability. Cen-
turies of historical cultivation have established barley as a staple, deeply rooted in the
traditional agricultural practices of these areas. This historical precedence has led to the
adaptation of traditional methods, favoring barley’s growth specifically in Hamadan and
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Esfahan [41]. Moreover, government support through subsidies and agricultural policies
likely contributes notably to the continued cultivation of barley in these regions [4]. Con-
versely, arid regions or those with limited irrigation, such as Kerman, Khuzestan, and
Sistan and Baluchestan, encounter challenges in achieving high barley yields due to water
scarcity or unsuitable growing conditions [52] (Figures 11 and 12). Ref. [53] substantiates
our research by illuminating historical, cultural, and political factors influencing barley
cultivation. Our regional observations also resonate with its exploration of diverse barley
species distribution.
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Regions such as Qazvin, Lorestan, and Kohkiloyeh and Buyer Ahmad in the central–
western area offer favorable climates for maize cultivation, characterized by sufficient
rainfall, suitable temperatures, and extended growing seasons. Conversely, areas like
Sistan and Baluchestan (southeast), Ardebil (northwest), and Golestan (northeast) face
challenges due to aridity, extreme temperatures, or shorter growing periods, limiting maize
productivity. Soil quality variations greatly impact yields; nutrient-rich soils with good
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drainage and suitable pH levels tend to support higher maize production [54]. Qazvin,
Lorestan, and Kohkiloyeh and Buyer Ahmad potentially possess more fertile soils compared
to regions like Sistan and Baluchestan or Ardebil. Adequate water supply is crucial
for maize cultivation, favoring regions with better irrigation systems or access to water
reservoirs [55]. Qazvin, Lorestan, and Kohkiloyeh and Buyer Ahmad likely benefit from
better water availability and more developed irrigation systems compared to Sistan and
Baluchestan, Ardebil, Golestan, and Ilam [56]. Disparities in farming practices, agricultural
technologies, and access to modern farming techniques can substantially impact maize
yields. Regions with advanced agricultural practices, better infrastructure, and technology
adoption tend to achieve higher productivity. Areas with lower yields might lack access
to modern farming techniques or face limitations in implementing efficient agricultural
methods [57] (Figures 13 and 14). Our study reveals that maize cultivation in Iran is
influenced by factors like climate, soil, water, and farming practices, varying across regions.
Ref. [58] supports this, highlighting how management practices impact maize in semi-arid
regions. Ref. [59] reinforces this, detailing maize diversity and adaptive cultivation in
different climates. Our results show that favorable climates, fertile soils, water access, and
advanced practices lead to higher maize productivity. Ref. [59] identifies traits linked to
increased yield, while [60] highlights the benefits of early-maturing cultivars under climate
change impacts.

Agronomy 2024, 14, x FOR PEER REVIEW 20 of 30 
 

 

 

Figure 13. Optimal regional yield distribution of irrigated maize in Iran. 

 

Figure 14. Observed 2016 regional yield distribution of irrigated maize in Iran. 

In Iran, vegetable crops often yield more than cereal crops. Shorter growing seasons 
allow multiple cultivation cycles per year, maximizing overall yields [61]. The intensive 
care and nutrient management required for vegetables, along with the potential suitability 
of local climates and soils, contribute to enhanced productivity. Farmers might prioritize 
vegetable cultivation due to higher market demand, better pricing, and the potential for 
increased profitability. They employ advanced agricultural practices that further optimize 
yields compared to traditional methods used for cereal crops [4]. 

Tomatoes thrive in warm climates (15 °C to 30 °C), needing well-draining, fertile soil 
with pH 6.0 to 6.8. They require consistent watering, ample sunlight (6–8 h/day), support, 
and spacing. Regions like Fars, East Azarbaijan, and Bushehr, meeting these conditions, 
excel in tomato cultivation. Conversely, in some inland regions like parts of south Khora-
san, Kordestan, and Kerman, where arid or desert-like conditions prevail, tomato cultiva-
tion might yield lower outputs [62]. Limited water availability, high temperatures, and 
arid soils pose challenges, necessitating notable irrigation efforts and resource-intensive 

Figure 13. Optimal regional yield distribution of irrigated maize in Iran.

In Iran, vegetable crops often yield more than cereal crops. Shorter growing seasons
allow multiple cultivation cycles per year, maximizing overall yields [61]. The intensive
care and nutrient management required for vegetables, along with the potential suitability
of local climates and soils, contribute to enhanced productivity. Farmers might prioritize
vegetable cultivation due to higher market demand, better pricing, and the potential for
increased profitability. They employ advanced agricultural practices that further optimize
yields compared to traditional methods used for cereal crops [4].
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Figure 14. Observed 2016 regional yield distribution of irrigated maize in Iran.

Tomatoes thrive in warm climates (15 ◦C to 30 ◦C), needing well-draining, fertile soil
with pH 6.0 to 6.8. They require consistent watering, ample sunlight (6–8 h/day), support,
and spacing. Regions like Fars, East Azarbaijan, and Bushehr, meeting these conditions,
excel in tomato cultivation. Conversely, in some inland regions like parts of south Khorasan,
Kordestan, and Kerman, where arid or desert-like conditions prevail, tomato cultivation
might yield lower outputs [62]. Limited water availability, high temperatures, and arid soils
pose challenges, necessitating notable irrigation efforts and resource-intensive practices to
sustain tomato crops, ultimately impacting yields negatively [63] (Figures 15 and 16). Our
study aligns with [64], confirming the diverse influence of climate, soil, water, and farming
practices on tomato cultivation. Ref. [64] reinforces our findings on optimal greenhouse
conditions, showing that regions with favorable climates, fertile soils, sufficient water, and
advanced practices achieve higher tomato productivity. These results also highlight the
benefits of greenhouse cultivation in leading tomato-producing regions for both quality
and quantity.
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Unlike tomatoes, potatoes in Iran do well in cooler climates (15–20 ◦C) with well-
drained soil and proper moisture. Hamadan enjoys a moderate climate with relatively
cool temperatures, attributed in part to its elevation of around 1800 m (5900 feet), making
it suitable for potato cultivation [65]. Adequate rainfall and supplementary irrigation
methods maintain consistent moisture levels crucial for potato growth [66]. The fertile,
well-drained loamy soils in Hamadan further contribute to optimal conditions, provid-
ing good drainage to prevent waterlogging and supporting healthy root development.
Similarly, in Chaharmahal and Bakhtiyari, the mountainous terrain creates various mi-
croclimates suitable for potatoes. Climate variability due to the landscape offers milder
temperatures in lower valleys and cooler conditions at higher elevations, enabling diverse
potato varieties to thrive. The region’s soils, often loamy or sandy loam, ensure proper
drainage, crucial for preventing potato rot [67] (Figures 17 and 18). Refs. [68,69] support
our findings on the variability of potato production in Iran, emphasizing the influence
of resource and market dynamics. Both of these sources corroborate our observation of
optimal conditions and practices for potato cultivation in Hamedan, with [69] addressing
environmental and technical challenges. They agree on Hamedan and Chaharmahal and
Bakhtiyari as leading potato producers, attributing their success to climatic advantages and
modern technologies. However, Ref. [68] introduces a contrasting view, highlighting the
environmental unsustainability of potato production in Hamedan. It suggests that reducing
resource consumption can mitigate ecological impact and contribute to sustainability in
this region.

Onions, much like tomatoes, thrive in cooler temperatures ranging from 13 ◦C to 24 ◦C,
requiring well-draining, nutrient-rich soil, consistent moisture, and ample sunlight for opti-
mal growth [70]. Yazd, known for its arid climate and well-drained sandy soils, provides an
environment that prevents fungal diseases while offering adequate sunlight and moderate
temperatures, fostering robust onion growth. Esfahan benefits from fertile soils like loam
and clay loam, coupled with a moderate climate featuring distinct seasons, creating ideal
conditions for successful onion cultivation [71]. Razavi Khorasan’s geographical diversity,
varying landscapes, soils, and altitude variations support the thriving of diverse onion
varieties. Moreover, East and West Azarbaijan, with their moderate climates and rich
agricultural heritage, facilitate successful onion farming, where traditional practices play a
pivotal role in supporting cultivation [72]. These unique regional advantages contribute to
the successful cultivation of onions across Iran’s diverse landscapes (Figures 19 and 20).
The study of the Yazd, Esfahan, Razavi Khorasan, and East/West Azarbaijan provinces
reveals how onion cultivation is intricately influenced by climate, soil, water, and farming



Agronomy 2024, 14, 436 22 of 29

practices, creating optimal growth conditions. Ref. [71] supports this, illustrating onion pro-
duction’s diverse distribution in Iran based on resource availability. Additionally, Ref. [72]
aligns with findings on common cultural methods, production statistics, and challenges.
Our results highlight the productivity and profitability of onion cultivation utilizing arid
climates, well-drained sandy and fertile soils, geographical diversity, and agricultural
heritage. Ref. [71] identifies native onion cultivars and their optimal conditions, while [72]
introduces challenges like a single annual production season, high bulb losses during
storage, and the need for resistant cultivars and pest management. Ref. [71] suggests key
research goals for Iran, including extending shelf life, reducing resource consumption, and
improving pest control in onion cultivation.
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In Iran, canola thrives in regions with moderate climates, adequate moisture, fertile
soil, and proper farming practices [73], yielding well in areas around northwestern regions
(Ardebil, West Azarbaijan) [74], and parts of the central plateau (Esfahan). High yields
correlate with moderate temperatures, good soil quality, and sufficient water. Esfahan
boasts a moderate climate complemented by the Zayandeh Rud River, offering optimal
conditions for irrigated canola cultivation [75]. Hamadan, with its higher altitude, en-
joys a cooler climate and abundant water resources, facilitating successful canola growth
through irrigation. Ardebil, situated in the northwest, benefits from cooler temperatures
and available water sources, creating a conducive environment for canola crops. Fars
province, characterized by diverse geography, presents adaptable conditions and ample
water reservoirs, fostering thriving canola cultivation. Meanwhile, West Azarbaijan, with
its varied but often moderate climate, coupled with access to rivers and lakes, supports
irrigated canola growth, contributing to its success in the region [75] (Figures 21 and 22).
Canola cultivation in Iran thrives under the influence of climate, soil, water, and farming
practices, as revealed in our study. Ref. [74] supports this, illustrating the impact of various
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factors on canola cultivation in Kermanshah province. Additionally, Ref. [75] highlights
the diversity of canola cultivation in Iran, coupled with government support. Our results
underscore the productivity and profitability of canola cultivation, crediting this success to
moderate climates, fertile soils, sufficient water supply, and appropriate farming practices.
Despite Iran’s significant increase in canola production, Ref. [74] points out limitations in
Kermanshah province, including low guaranteed prices, poor seed quality, and a lack of
extension and credit services. The article suggests that enhancing canola adoption in the
region requires addressing these challenges through increased guaranteed prices, improved
seed quality, and better provision of extension and credit services.
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Acknowledging the notable impact of economic constraints and soil management
practices on the yield response function to nitrate, it is evident that economic factors play
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a pivotal role in shaping farmers’ decisions on nitrogen fertilizer application, especially
with rising input costs [76]. Understanding the complexities of resource allocation and
the influence of economic considerations on farmers’ prioritization of crops and regions
within their fields leads to variations in nitrogen application rates, impacting the overall
yield response. Highlighting soil management, the examination of soil characteristics, and
organic matter content are crucial to comprehending their role in nitrogen efficiency and
optimal crop yields [77]. Recognizing government policies and subsidies, an extended
discussion will elaborate on their influence on farmers’ decisions, including their potential
impacts on fertilizer usage and their regulatory roles in mitigating environmental concerns
related to nitrogen application [4].

The utilization of regional yield response functions in the context of nitrogen applica-
tion, while presenting a convenient method, brings forth several limitations that require
thoughtful consideration. Regional yield response functions often fail to adequately capture
the variability in soil conditions, crop types, and climatic factors across different fields,
potentially compromising the accuracy of predicting optimal nitrogen requirements. Addi-
tionally, these models may lack consideration for interactive effects with other nutrients and
the temporal dynamics of nitrogen availability throughout the growing season. Despite the
challenges associated with the time and cost of monitoring in field experiments, their practi-
cal conditions contribute notably to their superiority over relying solely on regional models.
Furthermore, it is crucial to acknowledge that regional assessments may introduce biases
in nitrogen–crop models, particularly in the presence of significant variations in technology
adoption and farm sizes within a given region. Heterogeneity in technology use or farm
sizes can lead to diverse agricultural practices, impacting the accuracy of regional models.
The risk of overestimating or underestimating optimal nitrate levels and, consequently,
optimal yields is heightened when these variations are not adequately accounted for. In
such cases, field experiments become indispensable, providing the granularity necessary
to discern the impact of diverse agricultural practices and farm structures on nitrogen
response [14].

5. Conclusions

Given Iran’s diverse climatic conditions and geological compositions and varying
soil management practices, there exists a notable gap between the optimal utilization of
nitrate and its practical implementation by farmers. This gap directly affects the difference
between potential and actual yields in farming. To tackle this, accurately estimating the
yield response function to nitrogen fertilizer becomes crucial, as it determines the most
efficient application rates. The results of the estimated quadratic yield response functions
show that rice (with 1031 (kg/ha)), onion (with 800 (kg/ha)), and tomato (with 508 (kg/ha))
have the largest usage of nitrogen at the optimal point, and rain-fed wheat (with 168
(kg/ha)) and rain-fed canola (with 171 (kg/ha)) have the smallest. Depending on whether
the random or fixed-effects estimation is found to be the most suitable specification, the
average yields corresponding to the optimal level of nitrogen use are calculated by region,
or the average across all regions.

The GIS maps reveal how the varied geographical conditions across Iran’s regions
intricately influence the cultivation patterns and yields of different crops. As is also shown
in the Iran yield gap atlas [78], the intricate interplay of factors such as temperature,
rainfall, soil quality, and historical agricultural practices distinctly impacts the success and
productivity of cereals like wheat and barley, alongside vegetable crops including tomatoes,
potatoes, onions, and canola. Northern regions like Golestan and Mazandaran, with a
balanced mix of rainfall and dry periods, are ideal for rain-fed wheat. Barley adapts well
to semi-arid climates in Hamadan and Esfahan, driven by both climatic suitability and
traditional practices. Maize thrives in Qazvin, Lorestan, and Kohkiloyeh and Buyer Ahmad,
while limitations in Sistan and Baluchestan, Ardebil, and Golestan occur due to aridity.
Tomatoes and potatoes succeed in Fars, East Azarbaijan, Hamadan, and Chaharmahal
and Bakhtiyari, owing to specific climate and soil conditions. Onions, preferring cooler
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temperatures, find optimal growth in diverse regions like Yazd, Esfahan, Razavi Khorasan,
and East and West Azarbaijan. Canola excels in moderate climates, flourishing in areas
such as Esfahan, Hamadan, Ardebil, and Fars, benefiting from varied yet conducive
environmental factors.

The nuanced regional disparities in climate, soil, and agricultural traditions under-
score the importance of tailoring cultivation practices and embracing adaptive strategies.
Understanding these regional intricacies is crucial for devising targeted agricultural inter-
ventions (e.g., subsidies), enhancing crop productivity, and ensuring food security amidst
Iran’s diverse landscapes. Therefore, the estimated yield response functions will be embed-
ded into comprehensive agricultural–economic–environmental optimization models that
facilitate assessing the impacts of different fertilizer policies on fertilizer use, land alloca-
tion, farm-household incomes and environmental externalities such as nitrate leaching and
nitrate balance.

This study presents a novel contribution that explores policy implications related to
fertilizer usage, particularly relevant for Iran and other developing nations struggling with
inefficient agricultural practices. It stands out as the first of its kind, offering estimations
of optimal nitrogen use and crop yield points across all regions in Iran through advanced
GIS map visualization. While our findings present valuable insights, they warrant cautious
interpretation. The choice of yield response function, transitioning from quadratic to
alternative forms, can yield differing outcomes. Additionally, due to data constraints, our
assumption regarding the fixed proportional application of phosphorus and potassium to
nitrogen fertilizer, alongside the independent application rates of remaining inputs, such
as pesticides and labor, by hectare, for each specific crop, may limit precision. Relaxing this
assumption could lead to more accurate estimations of optimal nitrate application rates and
subsequently refine yield distributions across regions. Acknowledging these limitations,
our study marks a notable milestone as an inaugural exploration providing estimations for
the optimal and most efficient points of nitrogen use and yields across all Iranian regions.
Furthermore, it sheds light on the policy implications tied to fertilizer utilization, a matter
of paramount importance not only for Iran, but also for numerous developing nations
grappling with inefficient and unsustainable agricultural practices.
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