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A R T I C L E  I N F O   

Keywords: 
ForestREplot 
Forest understorey 
Climate change 
Soil pH 
Machine learning 
Site-scale 

A B S T R A C T   

Predicting forest understorey community responses to global change and forest management is vital given the 
importance of the understorey for biodiversity conservation and forest functioning. Though substantial effort has 
gone into disentangling the impact of global change on understorey communities, scarcity of information on site- 
specific environmental drivers across large temporal-spatial scales has limited our ability to predict global 
change effects at specific forest sites. In this study, using vegetation resurvey and soil data from 1363 plots across 
temperate Europe, we applied a machine learning approach (gradient boosting regression, GBR) to model and 
predict site-specific responses of four understorey properties to global change. We applied our final GBR models 
at 8 forest sites in Austria to validate the model performance, predict understorey trajectories, and evaluate the 
effect of alternative scenarios for future nitrogen(N) deposition, climate change and forest management on the 
projected trajectories. Our results showed that the R2 value of the four final GBR models on the independent 
testing dataset ranged between 0.611 and 0.723 and the most important environmental drivers in predicting the 
trajectory of understorey properties at specific forest sites were soil pH, soil total carbon-to-nitrogen ratio, 
overstorey shade-casting ability and regional-scale mean annual precipitation. The out-of-sample R2 value of the 
four final GBR models on the Austrian data ranged between 0.224 and 0.561. The forecasted trajectories for the 
Austrian forest sites showed that site-specific understorey responses to near-future climate warming were ex-
pected to be weak. Under N deposition decreases, the proportion of woody species was predicted to increase, 
while species richness and total vegetation cover were predicted to decrease. Furthermore, under a closed 
canopy, the understorey community was predicted to shift towards more woody species and more forest spe-
cialists, albeit with reduced species richness and vegetation cover. Given expected warming and declining N 
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pollution pressures, our presented GBR models allow the prediction of trajectories of understorey vegetation 
responses to global change and management interventions at specific forest sites. Such projections could aid 
forest management in addressing challenges posed by global change.   

1. Introduction 

The forest understorey layer harbours more than 80 % of the vascular 
plant diversity in temperate forests (Gilliam, 2007; Spicer et al., 2020) 
and plays a crucial functional role in temperate forests by influencing 
tree regeneration, water cycling, nutrient, and carbon dynamics 
(Landuyt et al., 2019). However, their biodiversity and functioning are 
being impacted by a complex set of pressures, including accelerating 
climate change, high levels of acidifying and eutrophying deposition of 
reactive nitrogen (N), natural disturbance, and changes in forest man-
agement (Bertrand et al., 2011; Gilliam, 2006; Perring et al., 2016; Seidl 
et al., 2017; Zellweger et al., 2020). Predicting how temperate forest 
understorey communities will respond to these pressures is crucial for 
forest management to be able to conserve forest biodiversity and func-
tion in an era of global change. 

Past studies on the effects of global change on temperate forest 
understorey communities have shown that these communities are sen-
sitive to multiple global-change drivers, but that responses are often 
context-dependent, driven by differences in soil characteristics and 
overstorey structure and composition (Ampoorter et al., 2016; De 
Frenne et al., 2009; Naaf and Kolk, 2016; Perring et al., 2018b; Verheyen 
et al., 2012). Climate warming can, for example, cause a shift in 
understorey composition, favouring warm-adapted species, forest gen-
eralists, and woody species (e.g. Blondeel et al., 2020; Govaert et al., 
2021; Maes et al., 2020), while the tree layer has the potential to slow 
down these responses by buffering temperature changes at the forest 
floor (De Frenne et al., 2013; Zellweger et al., 2020). In addition, al-
terations in precipitation regimes, potentially leading to drought stress, 
may steer understorey composition towards a state where only 
stress-resistant plant species can survive (McDowell et al., 2008). Again, 
the local tree layer will co-determine the severity of drought stress at the 
plot level, by regulating throughfall amounts and below canopy vapour 
pressure deficit (Bachofen et al. 2023; Zhang et al. 2022), and, in turn, 
affect the composition and structure of understorey communities. 

Elevated levels of N deposition have been found to increase the domi-
nance of eutrophic species (Dirnböck et al., 2014) and cause understorey 
species richness loss (Midolo et al., 2019). Again, understorey responses 
to N deposition will often depend on local soil and canopy characteris-
tics (Perring et al., 2018b). 

Many context-dependent understorey responses originate from 
distinct local abiotic and biotic conditions. The overstorey, for instance, 
influences light availability, forest floor temperature and humidity and 
nutrient availability for the understorey, which can modulate under-
storey responses to several global-change drivers (Hedwall et al., 2021; 
Márialigeti et al., 2016; Richard et al., 2021). Global-change-induced 
alterations in the soil, especially topsoil pH and total 
carbon-to-nitrogen ratio (CN), can affect understorey composition and 
biodiversity (Zhang et al., 2021). However, these soil properties also 
strongly depend on overstorey tree species composition (Weigel et al., 
2019) due to species-specific differences in leaf litter quality (Maes et al., 
2019). Such context-dependencies of understorey community responses 
to environmental drivers make it important to integrate both 
regional-scale global-change drivers and site-specific drivers (biotic and 
abiotic) for predicting forest understorey trajectories. 

Although previous empirical studies have enhanced our under-
standing of general correlative relationships between global-change and 
understorey responses to these changes, predicting site-specific under-
storey responses to global-change remains extremely challenging. In 
contrast to a large number of predictive overstorey models (e.g. 
Mahnken et al., 2022), reliable predictive understorey models are still 
scarce (Landuyt et al., 2018). Although some predictive models already 
exist (in a previous study, we already proposed GAM models to predict 
regional average trends (Wen et al., 2022)), models that can predict 
understorey vegetation responses to global change at specific forest sites 
are lacking, which limits their application in forest understorey decision 
support systems (Blondeel et al., 2021). Understorey biodiversity and 
functioning are expected to react in complex non-linear ways to envi-
ronmental change, so flexible modelling tools are required (De’Ath and 

Fig. 1. The geographic location of all datasets in the forestREplot and PASTFORWARD database (A) and the environmental gradients covered by these datasets (B), 
in terms of mean annual temperature (MAT [℃], averaged over a period of 10 years prior to the year 2017) and mean annual N deposition (N deposition averaged 
over a period of 10 years prior to the year 2017, [kg N ha− 1 y− 1]) are plotted, with symbol size reflecting the mean annual precipitation (MAP [mm], averaged over a 
period of 10 years prior to the year 2017). Numbers and codes on the map represent dataset ID as reported in Table S1. Blue dashed lines in panel B delineate the 
considered environmental zones as explained in the main text. 
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Fabricius, 2000). Machine learning tools are an example of such a 
flexible modelling tool and can extract non-linear and complex patterns 
from data without a priori system understanding of biological phe-
nomena required (Bzdok et al. 2017). Over the years, machine learning 
approaches have gained importance in ecological research and have 
been used to predict biodiversity patterns and dynamics at multiple 
scales (Cai et al., 2023; Park et al., 2020; Sabatini et al., 2022). However, 
their performance in modelling site-specific understorey community 
responses to global change has not been explored. Limited information 
on site-specific environmental conditions (e.g. soil characteristics) in 
regional-scale datasets prevented such efforts in the past. 

In this study, we use field-collected soil data and understorey vege-
tation resurvey data from 1363 temperate forest plots across central- 
western Europe, integrate both regional-scale and site-specific drivers 
and apply a machine-learning approach to (1) develop plot-level pre-
dictive models of the trajectories of temperate forest understorey 
properties (i.e. species richness, total vegetation cover, proportion of 
woody species, proportion of forest specialists) in response to global 
change and forest management. We then apply these predictive models 
to (2) identify important environmental factors driving understorey 
properties, and (3) predict trajectories of understorey vegetation re-
sponses to climate change, N deposition and forest management at eight 
specific forest sites in Austria. 

2. Methods 

2.1. Data collection 

2.1.1. Datasets 
For our purpose of predicting trajectories of forest understorey 

properties in response to global-change drivers and forest management, 
we used data for 1363 plots from 40 individual resurvey studies in 
temperate forests across Western and Central Europe deposited in the 
forestREplot database (https://forestreplot.ugent.be/) and the PAST-
FORWARD project (https://pastforward.ugent.be/) to build and test 
models. We considered the understorey to comprise woody and herba-
ceous vascular plants with a height below 1 m (Gilliam, 2007). Of these 
1363 plots, 1171 plots (21 resurvey datasets) were selected from the 
forestREplot database and 192 plots (19 resurvey datasets) were 
selected from the PASTFORWARD project. We selected 1171 plots from 
the forestREplot database based on two criteria. First, we classified all 
datasets in the forestREplot database in nine different environmental 
zones based on three classes of N deposition rates following the classi-
fication used in Blondeel, (2019): low (<12 kg N ha− 1 y− 1), medium 
(12–18 kg N ha− 1 y− 1), and high (>18 kg N ha− 1 y− 1), and three classes 
of mean annual temperature (MAT): low (<8 ℃), medium (8–10 ℃) and 
high (>10 ℃). We selected at least one dataset from each environmental 
zone in the forestREplot database. Second, we only selected datasets that 
had field-collected soil data available or datasets that we could com-
plement ourselves with soil data by revisiting the plots in the year 2022 
or 2023, given our focus on the site-specific drivers (Fig. 1). Since the 
datasets classified as “high N / low MAT”, and the datasets classified as 
“low N /low MAT” did not have field-collected soil data or the possibility 
of soil sampling, we ended up with 1171 plots from the forestREplot 
distributed in seven environmental zones. We then complemented the 
resulting 1171 plots from the forestREplot database with 192 plots (19 
datasets) to ensure maximum representation of European N deposition 
and MAT gradients (Fig. 1). The 192 plots were collected within the 
frame of the PASTFORWARD project which contains data on under-
storey community composition, field-collected soil data and overstorey 
data distributed across the Central-Western European temperate forest 
biome (Maes et al., 2020). Each of the 1363 plots analysed here holds 
information on plot size (m2), survey year, understorey and overstorey 
species composition and structure, topsoil pH and CN. Initial vegetation 
surveys (hereafter referred to as ‘initial surveys’) were carried out be-
tween the year 1928 and 2003, while the most recent surveys (hereafter 

referred to as ‘resurveys’) took place between the year 1999 and 2017. 
Time intervals between two surveys in the 1363 plots analysed here 
ranged between 12 and 83 years (37.88 ± 12.47[1 SD] years on 
average); such intervals are considered sufficient to detect directional 
change in the understory (De Frenne et al., 2013). For further details of 
the datasets, see Appendix S1. 

2.1.2. Understorey properties 
We focussed on changes in four understorey properties, including 

species richness, Fischer-corrected total vegetation cover, proportion of 
woody species, and proportion of forest specialists, since these aspects (i. 
e. biodiversity, forest regeneration) have been found to be of most 
concern for forest managers (Blondeel et al., 2021). Species richness was 
calculated as the number of all vascular plant species occurring in the 
understorey layer within a plot. The total vegetation cover was calcu-
lated per plot based on species-specific cover values for all species 
occurring in the understorey layer, following the Fischer method to 
account for overlap (Fischer, 2015). The proportion of woody species 
was calculated as the ratio of the number of woody species to total 
species richness within a plot, which can be a proxy for the amount of 
woody regeneration in the understorey. We extracted ‘woodiness’ (two 
levels: woody versus herbaceous) as a functional trait from the LEDA 
trait database (Kleyer et al., 2008). The proportion of forest specialists 
can be a proxy for understorey species of conservation concern, as these 
species are linked explicitly to forests. Based on the forest specialist 
species list created by Heinken et al. (2022), we tallied the number of 
times each species was counted as a specialist (categories “1.1” and “1.2” 
in the aforementioned forest specialist species list) across all countries. 
We then classified a species as a forest specialist if the total tally of this 
species listed as a specialist was higher than the tally of this species listed 
as other categories combined; If this was not the case, the species was 
classified as a generalist (Wen et al., 2022). The proportion of forest 
specialists was calculated as the ratio of the number of forest specialist 
species to total species richness within a plot. We calculated these var-
iables for all plots and survey dates. We then calculated absolute 
changes in these responses over time by subtracting the value of the 
understorey property at the initial survey from the value of that property 
at the resurvey. Understorey properties in the resurvey and absolute 
changes of understorey properties over time were used as response 
variables for modelling, while understorey properties in the initial sur-
vey were used as predictor (explanatory) variables (see Section 2.2). 

2.1.3. Regional-scale global-change drivers 
We estimated regional-scale global-change drivers from open-source 

databases. Climate data, including MAT (℃) and mean annual precipi-
tation (MAP, mm), were derived from CRU TS4.06 (https://data.ceda. 
ac.uk/badc/cru/data/cru_ts/cru_ts_4.06) (Harris et al., 2014) based on 
plot coordinates and survey dates. Per plot, we calculated average MAT 
and MAP for a period of 10 years before the initial survey and a period of 
10 years before the resurvey, representing climatic conditions for the 
initial survey and the resurvey, respectively. Absolute changes in cli-
matic conditions between survey dates were calculated by subtracting 
the value of the initial survey from the value of the resurvey. Trend data 
of atmospheric N deposition (wet and dry deposition of reduced and 
oxidized N) for the years 2000–2017 were extracted from EMEP (www. 
emep.int), and extrapolated to the years 1900–2000 based on N depo-
sition for the year 2000 (kg N ha− 1 y− 1) and correction factors published 
by Duprè et al. (2010). We then calculated the average annual N 
deposition for a period of 10 years before the initial survey and a period 
of 10 years before the resurvey, representing average N deposition 
conditions for the initial survey and the resurvey, respectively. The 
absolute change of N deposition between the two survey dates was 
calculated by subtracting the value of the initial from the value of the 
resurvey. MAT, MAP and N deposition at initial surveys (hereafter 
referred to as ‘initial MAT’, ‘initial MAP’, ‘initial N deposition’) and 
absolute change between two survey dates of these three variables 
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(hereafter referred to as ‘ΔMAT’, ‘ΔMAP’, ‘Δ N deposition’), were used 
as predictor variables for modelling (see Section 2.2). 

2.1.4. Site-specific biotic and abiotic drivers 
Local forest management, through its impact on tree cover, can in-

fluence resource availability (mainly light) and growing conditions at 
the forest floor, and thus understorey biodiversity and functioning. We 
included three variables to represent management and resource avail-
ability, which were tree cover, overstorey shade-casting ability and litter 
quality. Tree cover was calculated as the total cover of all species (both 
tree and shrub) that occurred in the overstorey layer (plant height >1 m) 
based on species-specific cover values, again following the Fischer 
method to account for overlap (Fischer, 2015). Plot-level shade-casting 
ability (SCA) of the canopy layer was calculated as the cover-weighted 
mean of species-specific shade-casting ability scores, ranging between 
1 (low shade-casting ability) and 5 (high shade-casting ability). 
Plot-level overstorey litter quality (LQ) scores were calculated in the 
same way, ranging between 1 (slow litter decomposition) and 5 (fast 
litter decomposition). SCA and LQ scores were adapted from Depauw 
et al. (2020), the two scores for tree and shrub species that occurred in 
the overstorey layer can be found in Appendix S2. All three aforemen-
tioned variables were calculated for all plots and two survey dates. 
Absolute changes between survey dates were calculated by subtracting 
the value of the initial survey from the value of the resurvey. Tree cover, 
SCA scores and LQ scores at initial surveys (hereafter referred to as 

‘initial Tree Cover, ‘initial SCA’, ‘initial LQ’) and absolute change be-
tween survey dates of the three variables (hereafter referred to as ‘ΔTree 
Cover’, ‘ΔSCA’, ‘ΔLQ’) were used as predictor variables for modelling 
(see Section 2.2). 

We complemented the available vegetation data with two soil vari-
ables, topsoil pH and soil CN. Each of the 1363 plots holds field-collected 
soil pH and soil CN data for at least one survey date, including 183 plots 
(from the forestREplot database) with soil data for both survey dates, 
136 plots (from the forestREplot database) with soil data for the initial 
survey only, and 1044 plots (i.e. 852 plots from the forestREplot data-
base and 192 plots from the PASTFORWARD project) with soil data for 
the resurvey only. For the 183 plots that hold soil data for both survey 
dates, the absolute change in soil pH between both survey dates ranged 
between − 1.75 and 1.63 (0.03 ± 0.49(SD)), the absolute change in soil 
CN ratio between both survey dates ranged between − 15.15 and 5.17 
(on average − 1.15 ± 4.7(SD)). We then performed a paired t-test to 
investigate changes over time and found no significant difference be-
tween the two survey dates in terms of pH (p-value= 0.789) and CN (p- 
value= 0.153) (Figure S2) which showed that there is no directional 
change of soil pH and CN overall. Hence, soil properties were assumed to 
remain relatively stable across years. As a consequence, we only used 
one soil dataset per plot (soil data collected during the resurvey, or soil 
data collected during the initial survey when resurvey soil data were not 
available, or soil data collected in 2022/2023 if no historic soil data 
were available). Following this rule, the final soil dataset (n=1363) 

Table 1 
List of predictor variables and response variables included in the final GBR models. Mean and Range [Min, Max] represent the mean and [minimum (min) and 
maximum (max)] range values of the variables in the datasets that were used in models.  

Category Types Abbreviation Variable description Mean Range [Min, 
Max] 

Unit 

Predictors Regional-scale Initial MAT Mean annual temperature, averaged over a period of 10 years prior to the 
initial survey date.  

8.50 [6.02,10.22] ℃ 

Regional-scale ΔMAT Absolute change of MAT between resurvey and initial survey.  1.13 [0.35, 1.74] ℃ 
Regional-scale Initial MAP Mean annual precipitation, averaged over a period of 10 years prior to the 

initial survey date.  
846.10 [510.90,1486.70] mm 

Regional-scale ΔMAP Absolute change of MAP between resurvey and initial survey.  11.37 [-78.50, 152.85] mm 
Regional-scale Initial N deposition Mean annual N deposition, averaged over a period of 10 years prior to the 

initial survey date.  
16.43 [0, 60.58] kg N 

ha− 1 

y− 1 

Regional-scale ΔN deposition Absolute change of N deposition between resurvey and initial survey.  0.03 [-25.49, 19.53] kg N 
ha− 1 

y− 1 

Site-specific Initial Tree Cover Fischer -corrected total tree cover from initial survey  0.68 [0,1] - 
Site-specific Δ Tree Cover Absolute change of tree cover between resurvey and initial survey  -0.03 [-0.80,0.88] - 
Site-specific Initial SCA Cover-weighted averaged SCA from initial survey  3.23 [0,5] - 
Site-specific ΔSCA Absolute change of SCA between resurvey and initial survey  0.30 [-4.06,5] - 
Site-specific Initial LQ Cover-weighted averaged LQ from initial survey  1.81 [0,5] - 
Site-specific Δ LQ Absolute change of LQ between resurvey and initial survey  0.05 [-5,3.38] - 
Site-specific Soil pH Topsoil pH-H2O (calibrated or original depending on pH estimation 

method (see Section 2.1.4).  
5.16 [3.69,8.19] - 

Site-specific Soil CN Topsoil total Carbon to total Nitrogen ratio.  14.29 [6.948,23.79] - 
Covariate Plot size The size of plot, calibrated into three categories in the modelling (Section 

2.2.1)  
298.30 [49,2500] m2 

Understorey 
properties 

Initial species richness The number of all species that occurred in the understorey layer within 
the plot in the initial survey  

24.68 [1,72]   

Initial total vegetation 
cover 

The Fischer-corrected total vegetation cover was calculated per plot 
based on species-specific cover values for all species that occurred in the 
understorey layer in the initial survey  

0.72 [0.01,1] -   

Initial proportion of 
woody species 

The ratio of the number of woody species to total species richness in the 
understorey layer within the plot in the initial survey  

0.10 [0,1] -   

Initial proportion of 
forest specialists 

The ratio of the number of forest specialist species to total species in the 
initial survey  

0.52 [0,1]  

Responses Understorey 
properties 

Resurvey species 
richness 

The number of all species that occurred in the understorey layer within 
the plot in the resurvey  

27.29 [0105] - 

Resurvey total 
vegetation cover 

The Fischer-corrected total vegetation cover was calculated per plot 
based on species-specific cover values for all species that occurred in the 
understorey layer in the resurvey  

0.60 [0,1] - 

Resurvey proportion of 
woody species 

The ratio of the number of woody species to total species richness in the 
understorey layer within the plot in the resurvey  

0.14 [0,1] - 

Resurvey proportion of 
forest specialist 

The ratio of the number of forest specialist species to total species in the 
resurvey  

0.53 [0,1] -  
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included 1171 plots from the forestREplot database (i.e. 1035 plots with 
soil data collected during the resurvey and 136 plots with soil data 
collected during the initial survey) and 192 plots from the PASTFOR-
WARD project with soil data collected during the resurvey. Soil acidity 
was determined using a suspension of soil in water (pH-H2O), or in a 
potassium chloride solution (pH-KCl), or a calcium chloride solution 
(pH-CaCl2). 412 plots hold data on both pH-H2O and pH-KCl, 21 plots 
hold data on both pH-H2O and pH-CaCl2, 325 plots hold data on pH-KCl, 
97 plots hold data on pH-CaCl2, and 508 plots hold data on pH-H2O. For 
all plots, we transformed pH data to pH-H2O values based on linear 
regression models, calibrated based on plot data that containing multi-
ple estimates of soil acidity with different approaches (more detailed 
information can be found in Appendix S3). Finally, pH-H2O and soil CN 
data were used as predictor variables for modelling (see Section 2.2). 

2.2. Model setup 

In a fully data-driven way, we trained a range of models for two types 
of response variables (resurvey understorey properties and the absolute 
change of understorey properties between surveys), and by using two 
distinct modelling techniques: Generalized Additive Models (GAM) and 
Gradient Boosting Regression (GBR) models, using the same set of pre-
dictor variables for each understorey property (Table S5). The best- 
performing model for each understorey property was the one that pre-
dicted resurvey understorey properties using GBR (final GBR models). 
We thus focussed our further analyses using the GBR models. The results 
of other tested models and model performance comparisons can be 
found in Appendix S4. 

2.2.1. Response variables and predictor variables 
In the final GBR models, we considered four response variables (four 

understorey properties in resurvey), including (i) resurvey species 
richness, (ii) resurvey total vegetation cover, (iii) resurvey proportion of 
woody species and (iv) resurvey proportion of forest specialists. Two 
types of predictor variables were included, regional-scale global-change 
drivers and site-specific biotic and abiotic drivers (Table 1). Regional- 
scale global-change drivers included (i) initial N deposition and Δ N 
deposition, (ii) initial MAT and ΔMAT, and (iii) initial MAP and ΔMAP. 
Site-specific biotic and abiotic drivers included (i) initial Tree Cover and 
ΔTree Cover, (ii) initial SCA and ΔSCA, (iii) initial LQ and ΔLQ, and (iv) 
soil pH and CN. We also considered understorey properties at the initial 
survey (being initial species richness, initial total vegetation cover, 
initial proportion of woody species, and initial proportion of forest 
specialist, depending on the modelled understorey property), as pre-
dictor variables to account for the regression to the mean phenomenon 
(Mazalla and Diekmann, 2022). We included a discrete plot size variable 
as an additional predictor variable for modelling resurvey species rich-
ness, given the non-linear scale dependence of plot-level richness mea-
surements (Dengler et al., 2020; Gotelli and Colwell, 2001). Plot size 
discretization was based on the distribution of the data, with the 
midpoint values for each discrete class set to the first quartile (100 m2), 
the mean (298.3 m2), and the third quartile (500 m2) of the data, clas-
sifying plot size into three groups: plot sizes smaller than 200 m2 were 
assigned to the 100 m2 class, plot sizes range between 200 m2 and 
400 m2were assigned to the 300 m2 class, and plot sizes above 400 m2 

were assigned to the 500 m2 class. 

2.2.2. Model training 
We applied a GBR algorithm to fit separate models for the four 

response variables using the package scikit-learn in Python 3.7 (Pefre-
gosa et al., 2011). GBR is a tree-based ensemble algorithm that con-
structs a predictive model from an ensemble of a series of weak 
predictive models (Friedman, 2001; Friedman, 2002). We randomly 
split the complete dataset without missing records (n =1178) into a 
training dataset (80 %, n=942) and a testing dataset (20 %, n=236). 
First, we scaled all features (predictors) based on the mean and standard 

deviation of the training set using the StandardScaler function and then 
applied those transformations to the test set (and to the Austrian dataset, 
see Section 2.3) to avoid any contamination of the test dataset. Second, 
we used the standardized training dataset to fine-tune the algorithm’s 
hyperparameter set. We first plotted the validation curve for each 
hyperparameter to check the influence of a single hyperparameter on 
the training score and the validation score to finetune the search range 
of each hyperparameter (to reduce calculation time when searching for 
the most optimal hyperparameter set later on). We also inspected the 
learning curve, showing training and validation scores for varying 
training dataset sizes, to define the optimal size of the training dataset, 
to avoid overfitting or underfitting. We then used the Random-
izedsearchCV function and the GradientBoostingRegressor function with 
five-fold cross-validation, including early stopping regularization, to 
find the most optimal hyperparameter set. During five-fold cross--
validation, 80 % of the training set was used for training (n=753, while 
the learning curve showed that the validation score reached a plateau 
after n=700) and 20 % of the training set was used for validation. The 
early stopping regularization mechanism terminated the iterative search 
process when no further improvements of the validation score were 
detected (validation score increase < 0.001 across 100 iterations). 

After optimizing the hyperparameter set, models were fitted on the 
full training dataset (n=942) using the previously defined optimal 
hyperparameter set (see Appendix S4 Table S6 for an overview of the 
applied hyperparameters) and then tested on the testing dataset. The 
coefficient of determination (R2) (Equation S1) was used to evaluate the 
model performance. We then calculated feature importance, which in-
dicates the relative importance of all predictor variables in the final GBR 
models, using the feature_importances_ function. This importance was 
calculated as the sum of the reduction in impurity produced when a node 
was split using that feature in all trees of the final ensemble model 
(Pefregosa et al., 2011). 

2.3. Predicting trajectories of understorey response to global change 

We selected 8 forest sites located in Austria from the forestREplot 
database (dataset 27 in Fig. 1) since only these plots in the database hold 
vegetation data at more than two points in time, which allows us to 
evaluate the model’s performance for predicting trajectories of change. 
These Austrian plots hold vegetation data for the years 1993, 2005, 
2008, 2010, 2014, and 2017, and soil data collected in 1993. N depo-
sition decreased from 19.35 kg N ha− 1 y− 1 to 16.66 kg N ha− 1 y− 1 and 
MAT increased from 6.3 ℃ to 7.4 ℃ between 1993 and 2017 at these 
Austrian plots. 

We hindcasted and forecasted the trajectories of forest understorey 
responses to climate change, N deposition, and forest management at the 
Austrian sites by applying the final GBR models. We applied our final 
GBR models at each of these sites to hindcast all four understorey 
properties for the years 2005, 2008, 2010, 2014, and 2017 using 1993 
vegetation data as the initial state/predictor in the models. To assess 
model performance on the Austrian data, we calculated the out-of- 
sample R2 (Equation S3) (Hawinkel et al., 2024), and Pearson’s r 
(Equation S4) by comparing model predictions to observations (n=32) 
(more details can be found in Appendix S4). 

To project understorey vegetation responses to global change for the 
year 2030, we carried out a scenario analysis, including two N deposi-
tion scenarios, two climate change scenarios, and three tree cover sce-
narios, leading to twelve alternative scenarios. The two N deposition 
scenarios were a business-as-usual (BAU) and a current legislation sce-
nario (CLE). The BAU scenario simply assumes no further change in N 
deposition rates since 2017, which was calculated as the average N 
deposition over a period of 10 years prior to the year 2017 based on data 
extracted from EMEP. The CLE was presented by the Clean Air Outlook 
of the European Commission and extracted from the Greenhouse Gas- 
Air Pollution Interactions and Synergies portal (GAINS, https://gains. 
iiasa.ac.at/models/gains_models4.html). We selected the European N 
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deposition EMEP 0.3◦ × 0.2◦ longitude-latitude grid data (available on 
map view under tab “Air quality and impacts-map of total nitrogen 
deposition”, with the scenario specified as “Clean Air Outlook 2- 
NAPCP_2030 and NAPCP_2050”. We recalculated the given unit of “eq N 
ha yr− 1” by applying the conversion factor of 1 keq N ha− 1 y− 1 equals 

14 kg N ha− 1 y− 1 (GAINS, https://gains.iiasa.ac.at/gains/impacts.EUN/ 
index.menu?page=1524). N deposition of the BAU scenario was set as 
19.35 kg N ha− 1 y− 1 and N deposition of the CLE scenario was set as 
6.83 kg N ha− 1 y− 1. 

The two climate change scenarios were based on two contrasting 
Shared Socio-economic Pathways (SSP1 and SSP5), extracted from 
WorldClim v2.1 (https://www.worldclim.org/data/cmip6/cmip6cli 
mate.html). We selected 10 minutes gridded data for mean annual 
temperature from the IPSL-CM6A-LR model, as this is a European 
(French) model that is linked to the ORCHIDEE dynamic global vege-
tation model. We considered this a good match for our temperate Eu-
ropean forest focus. We selected the period of 2021–2040, as the future 
scenario of year 2030. The MAT in 2030 under SSP1 was set to 9.2 ◦C, 
while 2030 MAT under SSP5 was set to 9.4 ◦C. The three forest man-
agement scenarios were represented by different tree cover values: 25 % 
tree cover representing an open condition, 50 % tree cover representing 
an intermediate condition, and 100 % tree cover representing a closed 
condition. 

For all 12 scenarios, we projected understorey properties for the year 
2030, using our final GBR models. 1993 vegetation data were used as the 
initial state, ΔN, ΔMAT and ΔTree cover was set based on the considered 
scenarios, while LQ, SCA, MAP, soil pH, and soil CN were assumed to 

Table 2 
Performance of the final GBR models that predict forest understorey trajectories 
based on the gradient boosting regression algorithm. R2

train was calculated on the 
training dataset (n = 942), R2

test was calculated on the test dataset (n = 236), and 
R2

full calculated on the full dataset (n = 1178). R2
Austrain is the out-of-sample R2 of 

the final GBR models on the Austrian subset. Pearson’s r values represent co-
efficients of correlation between predictions and observations for the Austrian 
subset.  

Response Variables R2
train R2

test R2
full R2

Austrain Pearson’s 
r 

Resurvey species richness  0.823  0.657  0.786  0.464  0.451 
Resurvey total vegetation 

cover  
0.751  0.639  0.797  0.390  0.664 

Resurvey proportion of 
woody species  

0.817  0.723  0.797  0.224  0.188 

Resurvey proportion of 
forest specialists  

0.729  0.611  0.707  0.561  0.770  

Fig. 2. The feature importance of predictor variables in final GBR models that predict the understorey trajectory, for all four properties, species richness, total 
vegetation cover, proportion of woody species, and proportion of forest specialists. The initial understorey property is the most important driver in all models but 
excluded from the figure, with values of 0.207 for the initial species richness, 0.171 for the initial total vegetation cover, 0.251 for the initial proportion of woody 
species, and 0.454 for the initial proportion of forest specialists. Abbreviations refer to mean annual temperature (MAT), Nitrogen deposition (N), mean annual 
precipitation (MAP), overstorey shade casting ability score (SCA), and litter quality score (LQ), soil total carbon to nitrogen ratio (Soil CN). ‘Δ’ refers to absolute 
changes in the respective drivers between the resurveys and initial survey. Plot Size was counted into three categories, 100 m2, 300 m2, and 500 m2, in the modelling. 
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remain constant over the full simulation period (1993–2030). 

3. Results 

3.1. Model performance of the final GBR models and important factors 
driving understorey properties 

All models fitted reasonably well, with R2 values of 0.657, 0.639, 
0.723 and 0.611 on the testing dataset, for species richness, total 
vegetation cover, proportion of woody species, and proportion of forest 
specialists, respectively (Table 2). Out-of-sample R2 values of models 
validated against the Austrian subset ranged between 0.224 and 0.561 
(Table 2). Pearson’s r values of models validated against the Austrian 
dataset ranged between 0.188 and 0.770, with the best model perfor-
mance for the proportion of forest specialists (Table 2, Figure S4). 

When reviewing the feature importance of all predictor variables 
across the final GBR models (Fig. 2), we found that soil pH, initial MAP, 
and soil CN were the most important variables explaining species rich-
ness. Initial MAP, initial SCA and soil pH were found to be the most 
important variables explaining total vegetation cover. Initial MAT, 
initial MAP and ΔN deposition were found to be the most important 
variables explaining the proportion of woody species, while initial MAP, 

initial SCA, and ΔSCA were the most important drivers explaining the 
proportion of forest specialists. 

3.2. Understorey trajectories between 1993 and 2030 

Species richness in the Austrian sites was predicted to increase from 
1993 to 2030 (Fig. 3), following the observed trend in the data up to 
2017. Projected species richness responses to climate warming were 
found to be weak (Fig. 3). Decreasing N deposition led to decreases in 
species richness but canopy opening led to further increases towards 
2030 (Fig. 3). 

Understorey total vegetation cover in the Austrian sites was pre-
dicted to decrease from 1993 to 2030, following the observed trend in 
the data up to 2017 (Fig. 4). Projected total vegetation cover responses 
to climate warming were found to be weak (Fig. 4). Decreasing N 
deposition led to a further decrease in total vegetation cover towards 
2030, while canopy opening was projected to lead to an increase in total 
vegetation cover (Fig. 4). 

The proportion of woody species in the Austrian sites was predicted 
to increase from 1993 to 2030, following the observed trend in the data 
up to 2017 (Fig. 5). Projected proportion of woody species responses to 
climate warming were found to be weak (Fig. 5). While decreasing N 

Fig. 3. Trajectories of understorey species richness between 1993 and 2030 for 8 forest sites in Austria. For the year 2005–2017, we hindcast species richness for 
each year with observed environmental changes. NA refers to no applicable scenario since there is no scenario applied in the hindcasting. For the year 2030, we 
forecasted species richness for two Nitrogen deposition scenarios: BAU (Business as Usual) and CLE (Clean air outlook of Europe), for two climate scenarios: SSP1 and 
SSP5, and for three canopy openness scenarios: open (25 %), intermediate (50 %) and closed (100 %). 
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deposition led to a further increase in the proportion of woody species 
towards 2030, canopy opening was projected to lead to a decrease in the 
proportion of woody species (Fig. 5). 

The proportion of forest specialists in the Austrian sites was pre-
dicted to increase from 1993 to 2030, while observations showed de-
creases or increases in this metric from 1993 to 2017, depending on the 
site (Fig. 6). Canopy opening led to a decrease in the proportion of forest 
specialists towards 2030 (Fig. 6). Projected responses of the proportion 
of forest specialists to climate warming were found to be weak, while 
projected responses to decreasing N deposition were site-specific, 
showing both decreases and increases (Fig. 6). 

4. Discussion 

4.1. Global-change and site-specific abiotic and biotic drivers affect 
understorey dynamics 

We found that understorey properties were sensitive to both 
regional-scale and site-specific drivers. In particular, the relative feature 
importance results showed that soil pH, soil CN, and SCA (as a proxy of 
light availability at the forest floor) were the most important site-specific 
drivers for predicting understorey properties at the plot level. This is 

consistent with other studies suggesting that initial local conditions 
determined understorey change over time (e.g. Naaf and Kolk, 2016) 
and understorey vegetation were more sensitive to light availability and 
overstorey structure than climate warming (e.g. Chelli et al., 2021; De 
Pauw et al., 2022). Several studies have shown that soil acidification can 
be a main contributor to long-term vegetation change in European for-
ests (e.g. Baeten et al., 2009; Van Calster et al., 2008), while soil organic 
matter and soil N content have been shown to significantly influence 
understorey species richness and cover (Laughlin et al., 2007). Changes 
in canopy cover and composition affect light availability, microclimate 
temperature, humidity and litter quality, and may potentially buffer 
responses of the understorey to global-change drivers such as N depo-
sition and climate warming (Chevaux et al., 2022; Naqinezhad et al., 
2022). The relatively low importance of climatic variables might be 
explained by this buffering effect of the forest canopy, which is espe-
cially pronounced for warming effects (Lenoir et al., 2017; Zellweger 
et al., 2020). 

Mean annual precipitation (MAP) was found to be very important in 
predicting understorey properties, among tested regional-scale drivers. 
Previously, less attention has been paid to precipitation compared to 
climate warming. However, variations in precipitation can affect 
ecosystem structure and function by altering the frequency, severity and 

Fig. 4. Trajectories of understorey total vegetation cover between 1993 and 2030 for 8 forest sites in Austria. For the years 2005–2017, we hindcasted total 
vegetation cover for each year with observed environmental changes. NA refers to no applicable scenario since there is no scenario applied in the hindcasting. For the 
year 2030, we forecasted total vegetation cover for two Nitrogen deposition scenarios: BAU (Business as Usual) and CLE (Clean air outlook of Europe), for two climate 
scenarios: SSP1 and SSP5, and for three canopy openness scenarios: open (25 %), intermediate (50 %) and closed (100 %). 
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timing of drought stress in the understorey (Gu et al., 2016). Short-term 
precipitation treatments have confirmed that variation in precipitation 
can impact the understorey’s functional composition (e.g. Felsmann 
et al., 2018; Hoeppner and Dukes, 2012). Otsu et al. (2023) also found 
that long-term increases in precipitation would alter understorey 
composition towards fewer forest generalist species. 

Although N deposition has been declining since the 1980s in Europe 
(Engardt et al., 2017), it remains unclear how long legacy effects from 
historically elevated N may linger and affect the understorey commu-
nity. Some studies reported that understorey herbs are in a slow re-
covery, either following decreased nitrogen input after the cessation of 
experimental treatments or from decreasing atmospheric N deposition 
(e.g. Stevens, 2016; Strengbom et al., 2001). Dirnböck et al., (2018) and 
Wen et al., (2022) have projected understorey vegetation responses to 
future declining N deposition targets and found that decreasing rates of 
N deposition under current legislation scenarios (CLE) do not reduce the 
N load enough to allow species recovery from eutrophication at the 
European scale. In our scenario analysis for the Austrian sites, we 
showed that species richness and total vegetation cover were found to 
decrease with declining N deposition, suggesting no recovery in terms of 
species richness and total vegetation cover in the short term. This might 
be explained by ecosystem hysteresis or legacy effects of past 

exceedance of critical loads (Gilliam et al., 2019). 
Overall, the projections of the four understorey properties in 2030 

were not sensitive to climate warming at the Austrian sites. This can be 
explained by the lower importance of initial MAT and ΔMAT in the 
models, and the relatively small (0.2 ◦C) differences between the SSP1 
and SSP5 scenarios. At the Austrian sites, a closed canopy could shift the 
understorey community towards a higher proportion of woody species 
and a higher proportion of forest specialists but with fewer species and a 
lower vegetation cover compared to an open canopy. This is in line with 
previous studies showing that forest canopies can play a key role in 
moderating the response of understorey vegetation to global change 
(Bhatta and Vetaas, 2016; De Lombaerde et al., 2022; Yu and Sun, 
2013). These findings indicate that thoughtful forest canopy manage-
ment will be key to protecting understorey biodiversity and functioning 
in the future. 

4.2. Strengths and limitations of proposed site-specific predictive models 

First, previous studies have suggested that plot-level predictive 
models of understorey biodiversity should not only incorporate 
regional-scale global-change drivers but also local-scale predictors rep-
resenting a range of environmental gradients (e.g. Janssen et al., 2018; 

Fig. 5. Trajectories of proportion of woody species between 1993 and 2030 for 8 forest sites in Austria. For the years 2005–2017, we hindcasted the proportion of 
woody species for each year with observed environmental changes. NA refers to no applicable scenario since there is no scenario applied in the hindcasting. For the 
year 2030, we forecasted the proportion of woody species for two Nitrogen deposition scenarios: BAU (Business as Usual) and CLE (Clean air outlook of Europe), for 
two climate scenarios: SSP1 and SSP5, and for three canopy openness scenarios: open (25 %), intermediate (50 %) and closed (100 %). 
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Zellweger et al., 2015). In our GBR models, we included regional-scale 
drivers together with site-specific drivers, which led to a relatively 
high predictive model performance compared to our previous 
regional-scale models (without site-specific drivers) that predicted 
averaged trends of understorey change (Wen et al., 2022). Second, 
benefiting from the machine learning approach, predictive performance 
increased on average by 47.45 % compared to the tested GAM models 
(Table S10). 

While our models exhibited a good predictive ability to forecast 
understorey properties under global change and forest management for 
specific forest sites (Figs. 3–6), they also have some limitations that 
should be considered in future studies. Given that the datasets from the 
forestREplot database are not representative (probabilistic) samples of 
European temperate forests, this might have introduced a bias in the 
final models. Second, since historical N deposition data are not available 
from the EMEP database, we estimated past N deposition using decadal 
correction factors (Duprè et al., 2010). More precise historical N depo-
sition data are likely needed to further improve the models. Third, there 
was still a small discrepancy between the performance evaluated based 
on the training dataset and the performance evaluated based on the test 
dataset (Table 2). This might be because our dataset is still quite small 
for a machine learning application, and hence prone to overfitting, 

although we used a regularization technique to avoid this (Jabbar and 
Khan, 2015). Although increasing the number of data points can be 
considered a straightforward solution to overcome this issue in the 
future, extending ecological datasets such as the one applied in this 
study with additional site-specific data is challenging and 
labour-intensive. Advances in remote sensing might open up new op-
portunities in the future to enrich large datasets with additional 
local-scale drivers (e.g. canopy height, canopy cover) (Newnham et al., 
2015). Moreover, the models’ performance on the Austrian subset was 
not as good as on the training and testing dataset, especially for the 
model that predicts the proportion of woody species. This indicates that 
models should be used with caution, especially for some of the consid-
ered understorey properties. Nevertheless, GBR model performance was 
found to be much better than the performance of GAM models 
(Table S10). A potential reason for the lower model performance on the 
Austrian dataset might be the rather short time intervals between survey 
dates (between 12 and 24 years), time intervals that were only compa-
rable to those of a small subset of training dataset. Finally, we only used 
one machine learning algorithm rather than ensemble predictions of 
multiple machine learning algorithms. With multiple machine learning 
algorithms, a larger dataset, and a more complete characterization of the 
abiotic and biotic environment (e.g. microclimate data), it might be 

Fig. 6. Trajectories of proportion of forest specialists between 1993 and 2030 for 8 forest sites in Austria. For the year 2005–2017, we hindcasted proportion of forest 
specialists for each year with observed environmental changes. NA refers to no applicable scenario since there is no scenario applied in the hindcasting. For the year 
2030, we forecasted proportion of forest specialists for two Nitrogen deposition scenarios: BAU (Business as Usual) and CLE (Clean air outlook of Europe), for two 
climate scenarios: SSP1 and SSP5, and for three canopy openness scenarios: open (25 %), intermediate (50 %) and closed (100 %). 
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possible to further improve the predictive ability of the models (Araújo 
and New, 2007). 

5. Conclusion 

Our study applied a machine learning approach to predict temperate 
forest understorey trajectories in response to global-change and site- 
specific drivers. Our findings illustrate that a machine learning 
approach is promising to grasp complex relationships between local 
environmental conditions, regional-scale global-change and under-
storey dynamics. It allows forecasting trajectories of different under-
storey properties, based on a relatively small dataset. The presented GBR 
models could allow forest managers to predict understorey responses to 
global change with high forecast precision at specific forest sites, which 
could aid in adjusting management interventions to address challenges 
posed by global change. Future work could focus on evaluating the ac-
curacy and general applicability of such models and integrating these 
with decision support systems that could be used by forest managers and 
planners to support decision-making in an uncertain future. 
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Conradi, T., Dembicz, I., Marcenò, C., García-Mijangos, I., Nowak, A., Storch, D., 
Ulrich, W., Campos, J.A., Cancellieri, L., Carboni, M., Ciaschetti, G., De Frenne, P., 
Dolezal, J., Dolnik, C., Essl, F., Fantinato, E., Filibeck, G., Grytnes, J., Guarino, R., 
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Wulf, M., Verheyen, K., 2020. Light availability and land-use history drive 
biodiversity and functional changes in forest herb layer communities. J. Ecol. 108, 
1411–1425. https://doi.org/10.1111/1365-2745.13339. 
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Petřík, P., Pillar, V.D., Sandel, B., Schmidt, M., Tang, Z., van Bodegom, P., 
Vassilev, K., Violle, C., Alvarez-Davila, E., Davidar, P., Dolezal, J., Hérault, B., Galán- 
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