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Abstract

Biodiversity loss and widespread ecosystem degradation are among the most pressing 
challenges of our time, requiring urgent action. Yet our understanding of their causes 
remains limited because prevailing ecological concepts and approaches often overlook 
the underlying complex interactions of individuals of the same or different species, in-
teracting with each other and with their environment. We propose a paradigm shift in 
ecological science, moving from simplifying frameworks that use species, population or 
community averages to an integrative approach that recognizes individual organisms as 
fundamental agents of ecological change. The urgency of the biodiversity crisis requires 
such a paradigm shift to advance ecology towards a predictive science by elucidating 
the causal mechanisms linking individual variation and adaptive behaviour to emergent 
properties of populations, communities, ecosystems, and ecological interactions with 
human interventions. Recent advances in computational technologies, sensors, and 
analytical tools now offer unprecedented opportunities to overcome past challenges 
and lay the foundation for a truly integrated Individual-Based Global Change Ecology 
(IBGCE). Unravelling the potential role of individual variability in global change impact 
analyses will require a systematic combination of empirical, experimental and model-
ling studies across systems, while taking into account multiple drivers of global change 
and their interactions. Key priorities include refining theoretical frameworks, develop-
ing benchmark models and standardized toolsets, and systematically incorporating 
individual variation and adaptive behaviour into empirical field work, experiments and 
predictive models. The emerging synergies between individual-based modelling, big 
data approaches, and machine learning hold great promise for addressing the inherent 
complexity of ecosystems. Each step in the development of IBGCE must systematical-
ly balance the complexity of the individual perspective with parsimony, computational 
efficiency, and experimental feasibility. IBGCE aims to unravel and predict the dynam-
ics of biodiversity in the Anthropocene through a comprehensive study of individual 
organisms, their variability and their interactions. It will provide a critical foundation for 
considering individual variation and behaviour for future conservation and sustainability 
management, taking into account individual-to-ecosystem pathways and feedbacks.

Key words: Agent-based, biodiversity crisis, climate change, ecological theory, individual 
trait variation, predictions, scaling up

Introduction

Ecosystems worldwide are undergoing unprecedented changes due to anthro-
pogenic drivers. Climate change, habitat loss, overexploitation, pollution and 
invasive species are threatening biodiversity and ecosystem functioning, caus-
ing dynamic shifts at all levels and scales of ecological systems (Scheffers et 
al. 2016; Jaureguiberry et al. 2022; Peixoto et al. 2022). Local extinctions and 
invasions often trigger cascading effects that alter species communities and 
food webs, pushing entire ecosystems towards tipping points and irreversible 
change (Scheffer et al. 2001; Dakos et al. 2019). These biodiversity and ecosys-
tem responses are difficult to anticipate and predict because the relevant drivers 
often act synergistically, pushing ecosystems out of equilibrium (e.g., rangeland 
degradation and desertification in drylands worldwide; Maestre et al. 2022). To 
make matters worse, changes in environmental conditions are highly stochas-
tic and non-stationary, i.e. they vary in space and time, such as turbid and clear 
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water conditions in shallow lakes (van der Bolt et al. 2018; Hastings et al. 2018; 
Shoemaker et al. 2020). In particular, transient dynamics in response to abrupt 
or ongoing anthropogenic change, which can last for decades or even centuries, 
are the norm rather than the exception under conditions of global change. One 
example is the ‘extinction debt’, where species loss continues long after habitat 
change (Krauss et al. 2010). Halting biodiversity loss and ecosystem degrada-
tion under continuing or even accelerating anthropogenic pressures will require 
novel approaches and concepts that improve our mechanistic and predictive 
understanding of the complex response of ecological systems and their com-
ponents to environmental change (Urban et al. 2022; Cerini et al. 2023).

Current ecological theories and predictive models often rely on simplified de-
scriptions of ecological systems based on aggregated units (e.g., populations, 
species, communities, or trophic levels) and assume equilibrium conditions. 
Although these simplifications increase the tractability of models, they limit a 
fully mechanistic and predictive understanding (Bolnick et al. 2011; Radchuk 
et al. 2014; Jeltsch et al. 2019; Cerini et al. 2023). Summary descriptions of 
process rates and equilibrium assumptions also limit the transferability of find-
ings across time and space, and obscure the prediction of transient dynamics 
(Kleiven et al. 2018). In particular, when dynamics are based on non-linear pro-
cesses (which is the norm in ecology), averaging assumptions lead to poten-
tially erroneous conclusions. This fact is already described in Jensen’s inequal-
ity (‘the fallacy of the average’), which states that for non-linear functions, the 
system response to average conditions is different from the average response 
to variable conditions (Jensen 1906; Denny 2017).

A key example of the importance of individual variation in understanding 
the collective response of populations, communities and entire ecosystems to 
global change is dispersal. Dispersal drives invasion processes, range shifts, 
and the success of species establishment. Individual differences in dispersal 
ability, often linked to behavioural traits such as boldness (Dammhahn et al. 
2020) or genetic differences, can influence the establishment success of inva-
sive or colonising species, with only some specific phenotypes or genotypes 
allowing successful dispersal (Fig. 1, González-Suárez et al. 2015; Premier et 
al. 2020). Similarly, biodiversity responses to land-use change, landscape frag-
mentation, and habitat loss have recently been linked to individual-level varia-
tion in behavioural and other traits (Rohwäder and Jeltsch 2022; Szangolies et 
al. 2022, 2024; Wolfgang et al. 2023; Rohwäder et al. 2024).

Indeed, individual responses and individual variation play a pivotal role in al-
most all ecological processes, including not only priority effects and invasions 
(Premier et al. 2020; Ruland and Jeschke 2020), but also food-web dynam-
ics (Gårdmark and Huss 2020; Ceulemans et al. 2021), extinction of (small) 
and genetically deprived populations (Jeltsch et al. 2019), predator-prey and 
host-pathogen dynamics (Scherer et al. 2020; Kürschner et al. 2021; Casa-
nelles-Abella et al. 2023; Grabow et al. 2024), species range shifts (Valladares 
et al. 2014; Donelson et al. 2019), animal migration (Fandos et al. 2020), com-
munity assembly (Clark 2010; Violle et al. 2012; Schirmer et al. 2020; Leibold 
et al. 2022) and community stability (Barabas and d’Andrea 2016; Crawford et 
al. 2019), nutrient supply (Allgeier et al. 2020), formation of novel ecosystems 
(Heger et al. 2019; Schlägel et al. 2020) and provisioning of ecosystem ser-
vices (e.g., in the context of fisheries, Monk et al. 2021).
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The above examples highlight the growing evidence for the critical role of 
individual variation and adaptive behaviour in shaping complex ecological 
dynamics. However, few studies have causally linked individual variation to 
complex biodiversity dynamics and ecosystem functioning (Wolf and Weiss-
ing 2012; Crawford et al. 2021). While individual-based concepts have been 
developed in theoretical ecology (e.g. Grimm and Railsback 2013), these ap-
proaches have largely been limited to modelling single species or simplified 
modules of pairwise interactions, with a few exceptions such as forest gap 
models (Grimm 1999; DeAngelis and Grimm 2014; DeAngelis 2018, see also a 
companion paper on individual-based ecology by Grimm et al. 2025, this issue).

Two main challenges have hindered the development of a truly integrated 
individual-based ecology (IBE) (for definition of IBE see Box 1, and for more de-
tails on IBE see the related companion paper by Grimm et al. 2025, this issue): 
First, difficulties in collecting and handling individual-specific data, and second, 
insufficient computational power. Even disciplines such as behavioural ecolo-
gy, plant ecology and evolutionary biology, where inter-individual differences 
and genetic and phenotypic variation have been extensively documented (e.g., 
Hellweger et al. 2016; Kindermann et al. 2022; Laskowski et al. 2022; Schmitz 

Figure 1. Examples of individual variation and its consequences: a individual variation describes the variation in traits, 
including behaviour, between or within individuals resulting from various processes such as microevolution and biotic 
filtering. It also explicitly includes variation induced by experience, health status or microbes and microbial communities 
associated with the host. The example visualises a mammal, but the processes are relevant to all organisms; b simpli-
fied example showing how successful colonisation or invasion depends on inter-individual variation in morphological or 
behavioural traits (González-Suárez et al. 2015; Dammhahn et al. 2020; Premier et al. 2020).
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et al. 2024), have rarely explored their consequences for more complex pro-
cesses and higher ecological levels. Research in these disciplines often re-
mains focused on single species or pairwise interactions as the primary unit 
of analysis (Terhorst et al. 2018). A deeper understanding of eco-evolutionary 
feedbacks within communities and ecological networks requires the integra-
tion of community ecology with evolutionary biology. Such a synthesis would 
reveal how genetic and phenotypic variation among individuals, as well as evo-
lutionary processes within a species, can shape the ecological properties of 
communities and ecosystems (De Meester et al. 2019).

The time is ripe to live up to previous claims and move ecology towards a 
predictive science (Mouquet et al. 2015; Elliott-Graves 2019; Johnston 2024). 
For global change scenarios, there is a strong need to systematically explore 
the causal mechanisms linking individual variation to emergent properties in 
multi-species communities and ecosystems. Achieving this ambitious goal 
will require a shift in ecological science from the simplifying, averaging view 
of early ecology to an individual-based ecology of global change – a science 
that explicitly recognizes individuals as fundamental agents of ecological and 
evolutionary change (see Box 2).

Why now?

Recent massive advances in technology and analytical tools enable IBGCE 
through new high-resolution data collections on a much larger scale, for multiple 
species and different taxonomic groups and ecosystems. For example, novel 
sensors that allow high-resolution monitoring of the physiology and behaviour 
of interacting individuals (e.g., high-throughput animal tracking systems, Nathan 
et al. 2022; Roeleke et al. 2022), multi-omics and (meta-) barcoding approaches 
to identify intraspecific and cryptic diversity (Schmitz et al. 2024) and to assess 
the distribution of community traits (Clark et al. 2023), as well as in situ animal 

Box 1. Individual-based ecology (IBE).

IBE aims to understand population, community and ecosystem dynamics arising from 
the variation among individual organisms, their response to, and variable interactions 
with, the biotic and abiotic environment. This approach is applicable to all forms of life, 
from bacteria to plants, fungi, invertebrates and vertebrates, to reveal emergent eco-
evolutionary phenomena and feedbacks across different levels of organisation. While 
individuals in many macrobial species are relatively easy to identify, distinguishing 
individuals in modular macrobes, such as filamentous fungi and clonal plants, or in 
microbial species, is more challenging but increasingly feasible.

Box 2. Individual-Based Global Change Ecology (IBGCE).

IBGCE aims to capture, understand and predict the emergent response of ecological 
systems to key drivers of global change using individual-based ecological approaches 
(Box 1).

Taking full account of the role of individual variation, this framework assesses the 
impact of key anthropogenic drivers of global change on ecological and evolutionary 
dynamics. The IBGCE approach places particular emphasis on resilience, non-linear 
transitions and emergent properties of ecosystems, functions and services.
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personality tests, advanced remote observations (including the remote detection 
of unique patterns of individual organisms, Clapham et al. 2022), and meso- and 
microcosm experiments of experimental evolution (e.g. Agha et al. 2018; Mazza 
et al. 2020; Lustenhouwer et al) will play a key role in providing an empirical foun-
dation for IBGCE. Machine learning and other advanced analytical approaches 
now provide the ability to process and interpret ‘big’ datasets, linking data from 
large numbers of interacting individuals with high-resolution environmental data 
and system-level information (Heppenstall et al. 2021; Nathan et al. 2022; Wie-
gand et al. 2025). These advances can provide the basis for refining existing 
concepts and developing new theories, and offer unprecedented insights into 
the underlying dynamics that structure ecological systems through the lens of in-
dividual organisms. Systematic recognition of the importance of individual vari-
ation, plastic behavioural responses or rapidly evolving behaviours in ecological 
systems will transform our fundamental understanding of how biodiversity and 
its components emerge from individual responses and interactions, and how the 
emerging levels of organisation will respond to changing environments (Fig. 2). 
Much-needed future scenario analyses and predictions, as a critical basis for 
management and mitigation, run the risk of being short-sighted and potentially 
biased if they ignore individual responses and rapid adaptations of organisms 
and the cascading eco-evolutionary processes that shape communities.

The road ahead

Unravelling and predicting biodiversity dynamics in the Anthropocene, taking 
into account the individuality of organisms, their variability, and ecological inter-
actions, requires an empirical-experimental and conceptual foundation based 
on comparable data analyses, experiments and modelling approaches across 

Figure 2. Hierarchical organisation from genes to ecosystems. Individuals are the elementary particles of ecological sys-
tems, meaning that variation and interactions between individuals can scale up to emergent properties at the population, 
community and ecosystem levels. The different ecological levels are highly interconnected through both bottom-up and 
top-down processes. Elucidating these feedback loops through an individual-based lens is a prerequisite for understand-
ing ecosystem resilience and response to global change.
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species groups and systems to identify overarching principles and develop a 
synthesis theory. Extensive field and experimental work on trait variation, for 
example in movement and decision making in animals or in functional traits in 
plants or microbial communities, coupled with data science approaches, have 
already allowed the development and testing of new hypotheses on emergent 
phenomena and provided first insights into their underlying mechanisms (e.g. 
Bolius et al. 2020; Ceulemans et al. 2021; Vanvelk et al. 2021; Wesener et al. 
2021; Eccard et al. 2022; Stiegler et al. 2022). Consequently, an important next 
step will be to systematically investigate how individual-level variation trans-
lates into community and ecosystem-level processes across organisational, 
taxonomic and ecological scales, and across different ecosystems (Fig. 2). For 
example, the study of emergent properties at different levels of organisation for 
different taxonomic groups should consider the co-evolution and network for-
mation of communities (from microbes to top predators in terrestrial and aquat-
ic systems), the formation and dynamics of metapopulations and metacommu-
nities, and the relationships between biodiversity and ecosystem functioning.

Building on a causal, individual-based understanding of the driving mech-
anisms underlying ecological and evolutionary dynamics, an important step 
of IBGCE will be to further explore the role of individual variability in mediat-
ing ecological responses to global change drivers and improving mechanistic 
predictions of biodiversity changes (Grimm et al. 2017; Railsback et al. 2020; 
Musters et al. 2023). While a growing number of studies highlight the potential 
role of individual variation in global change impact analyses, systematic em-
pirical, experimental and modelling studies across ecosystems that consider 
multiple global change drivers and their characteristics (e.g. gradual or abrupt, 
predictable or stochastic) are still largely lacking. In addition, a more system-
atic consideration of individual variability in predictive modelling remains to be 
achieved (Musters et al. 2023), in particular with a focus on transient eco-evo-
lutionary dynamics under global change and the (mediating or cascading) ef-
fects of individual variation on them.

While predictive modelling is crucial for assessing future impacts of global 
change, a shift towards IBGCE also requires a solid theoretical and method-
ological foundation (Grimm et al. 2024). This includes the systematic testing 
and adaptation of prevailing ecological theories and concepts to the IBGCE par-
adigm. Recent examples include the integration of individual-based concepts 
from movement ecology into broader biodiversity theory (Schlägel et al. 2020), 
the integration of eco-evolutionary dynamics into community assembly (De 
Meester et al. 2016), the refinement of foraging theory to include adaptive be-
haviour (Railsback 2022), or the extension of modern coexistence theory by the 
complementary concept of coviability (Jeltsch et al. 2019). Recent research has 
also significantly advanced the field by highlighting the importance of individual 
variation for understanding community dynamics and biodiversity conservation 
(Merrick and Koprowski 2017; Crawford et al. 2021; Rohwäder and Jeltsch 2022; 
Eccard et al. 2022; Rohwäder et al. 2024; Szangolies et al. 2024), which is partic-
ularly important for non-equilibrium and non-stationary conditions associated 
with global change (Jeltsch et al. 2019; Schlägel et al. 2020; Zurell et al. 2022).

Future theory and method refinement will clearly benefit from bench-
mark models and a common toolset to advance individual-based theory and 
cross-fertilise with whole-system experiments (e.g., Radinger et al. 2023) and 
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empirical studies (Berger et al. 2024). Recent predictive tools include a gener-
ic platform for individual-based eco-evolutionary modelling (Malchow et al. 
2021), statistical frameworks for estimating dispersal from heterogeneous and 
biased data (Fandos et al. 2023), accounting for phenotypic variation in disper-
sal to determine ecological dynamics during range shifts (Urban et al. 2022; 
Zurell et al. 2022; Eccard et al. 2023), and inferring species interactions from 
individual movement data (Schlägel et al. 2019). New advances in integrating 
individual-based modelling with big data approaches will facilitate wider use 
of complex model-data fusion (Malchow et al. 2024), and deep and machine 
learning approaches will facilitate data acquisition and complex analysis (Ryo 
and Rillig 2017; Fuller et al. 2020; Heppenstall et al. 2021; Ryo et al. 2021). 
An important next step will be to systematically address issues of necessary 
model complexity vs. parsimony. This will include considerations of computa-
tional efficiency and providing efficient solutions for synergistic combinations 
of individual-based approaches with more aggregating numerical and analyt-
ical methods (Fahse et al. 1998; Radchuk et al. 2016; Wiegand et al. 2021). 
Promising approaches include adiabatic approximations (Fahse et al. 1998), a 
well-established method in physics for studying self-organisation in systems. 
It allows quantitative assessments of how individual-level parameters and dy-
namics affect aggregated population-level parameters, which can be used to 
explore community dynamics (e.g. Wiegand et al. 2021, 2025). Alternatively, 
model surrogates can be generated by genetic algorithms that evolve simpli-
fied, robust rules for individual decision making that can reproduce observed 
spatial and temporal patterns (‘reinforcement learning’, Fuller et al. 2020; An 
et al. 2021). Such patterns can be uncovered by machine learning techniques, 
including neural networks and deep learning (Heppenstall et al. 2021). In any 
case, the question remains whether model parsimony should be the central 
consideration, or whether the accuracy of predictions (capturing key patterns) 
overrides parsimony?

Finally, it will be crucial to better understand how we can manage individ-
ual variation and behaviour for conservation and sustainable management, 
taking into account individual-to-ecosystem pathways and feedbacks. A better 
understanding of the feedbacks between individual variation and ecosystem 
management will help to refine existing approaches to biodiversity conser-
vation and management of ecosystem services, which still largely focus on 
populations, communities or other aggregated measures at the ecosystem or 
landscape level. Currently, individual variation is rarely explicitly considered in 
conservation and management decisions (DeAngelis et al. 2021), and research 
on how these decisions affect system stability is largely lacking (but see Wach-
ter et al. 2023; Hajiesmaeili et al. 2024). Implicitly, however, this variability is 
highly relevant to stakeholders, biodiversity conservation and ecosystem ser-
vices. For example, large-scale harvest experiments coupled with high-reso-
lution monitoring have shown how populations and ecosystem functions and 
services respond to trait-selective fishing (Monk et al. 2021; Sbragaglia et al. 
2022), and how changes in behavioural traits can feed back to limit catchabili-
ty, harvest and monitoring (Arlinghaus et al. 2017). Initial model-based results 
also highlight the importance of accounting for differences in animal behaviour 
in biodiversity conservation (Andersen et al. 2018; Rohwäder and Jeltsch 2022; 
Szangolies et al. 2022; Rohwäder et al. 2024), particularly in reintroductions 
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with limited numbers of released individuals (Premier et al. 2020). It will be im-
portant to extend such research to a wide range of ecosystems and taxonomic 
groups to gain general insights and understand the feedbacks between individ-
ual variability and ecosystem services and management.

In the long term, the new individual-based perspective should also be applied 
to outreach activities, for example in museums and schools. For example, the 
emerging individual-based perspective in the IBGCE data, models and simula-
tions can make an important contribution to interactive educational multimedia 
that can be used for inquiry-based learning approaches (de Jong 2006) and 
data-driven dialogue formats that involve the wider public in the process of ac-
quiring knowledge and help to raise awareness of the societal value of science 
(Nisbet and Scheufele 2009).

Conclusion

Individual-Based Global Change Ecology (IBGCE) offers a transformative frame-
work for addressing the challenges of biodiversity loss and ecosystem degra-
dation in the Anthropocene. By explicitly focusing on individual variation and its 
mediating role, IBGCE complements traditional ecological research. It also has 
the potential to unite diverse research fields by linking ecology and evolution, 
aquatic and terrestrial systems, micro- and macroscales, and urban and rural 
landscapes (see Grimm et al. 2025, this issue). This integrative approach can 
elucidate the underlying structure of ecological systems and the forces that gov-
ern them, from individual adaptation to population maintenance, community as-
sembly and ecosystem functioning. Focusing on multiple (possibly interacting) 
drivers of global change, IBGCE research will need to combine empirical studies, 
ex- and in-situ experiments, novel eco-informatics approaches, advanced meta-
data analysis, artificial intelligence and deep learning, and analytical, numerical 
and agent-based modelling. By synthesising knowledge across systems and 
scales, IBGCE will foster novel theory development and provide a unique basis 
for predicting the impacts of global change on biodiversity and ecosystem func-
tioning across scales. A causal understanding of the mechanisms underlying 
eco-evolutionary dynamics and the role of individual variation in these process-
es will offer a new foundation for adaptive and sustainable management in the 
context of non-equilibrium and non-stationary environmental conditions.
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