Science of the Total Environment 949 (2024) 174995

AW i Contents lists available at ScienceDirect

Science orre
Total Environment

Science of the Total Environment

P =
ELSEVIER journal homepage: www.elsevier.com/locate/scitotenv

Check for

Evaluating MONICA's capability to simulate water, carbon and nitrogen e
fluxes in a wet grassland at contrasting water tables

Valeh Khaledi ™", Roland Baatz”, Danica Antonijevi¢*, Mathias Hoffmann *,
Ottfried Dietrich®, Gunnar Lischeid ¢, Mariel F. Davies®, Christoph Merz®, Claas Nendel *"¢

& Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Miincheberg, Germany

® Institute of Biochemistry and Biology, University of Potsdam, Am Miihlenberg 3, 14476 Potsdam, Germany

¢ Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germarny
4 Global Change Research Institute, Czech Academy of Sciences, Belidla 986/4a, 603 00 Brno, Czech Republic

HIGHLIGHTS GRAPHICAL ABSTRACT

e Wet grasslands are hotspots for biodi-
versity, nutrient turn-over and gas
emissions. Evaluating MONICA'’s capability to simulate water, carbon and nitrogen fluxes in a wet grassland at

o Groundwater level dynamics determine e
water, carbon and nitrogen cycles.

The MONICA agroecosystem model simulates emissions of wet grasslands under drainage and rewetting

Motivation Challenge Approach Conclusion
d We used the MONICA agroecosystem Wet grasslands > Carbon Agriculture = Drainage may risk C Simulation model to inform .
. . sink losses of wet grassland rewetting strategies MONICA reproduces
model to simulate grassland lysimeter ST TE
nitrogen dynamics
rocesses. Method & Results Process-based agro- Simultaneous simulation of a
2 . Grassland lysimeters with variable  ecosystem model range of process variables = MONICA s fit for

water table , evaluating emissions
P et ‘ L of wet grasslands
(drainage and
rewetting)

e MONICA was tested against COy ex-
change, evapotranspiration and nitro-
gen emissions.

o MONICA captures well the groundwater

= Wet grasslands can
now be included in
large-area climate
change impact

influence on the biogeochemical e rRMSE sssessments
processes. | | ‘ | ﬂ|
ARTICLE INFO ABSTRACT
Editor: Jurgen Mahlknecht Wet grasslands, which are vital for water and nutrient regulation, are characterised by distinct water, carbon (C)
and nitrogen (N) dynamics, and their interactions. Due to their shallow groundwater table, wet grasslands
Keywords: promote a strong interconnection between diverse vegetation and soil water. Researchers have investigated how
Wet grasslands wet grasslands respond to environmental changes, using various simulation models to understand how these sites
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contribute to water, C and N dynamics. However, a comprehensive, simultaneous study of all three of these
dynamics is still lacking. This study makes use of a grassland lysimeter study with differently managed
groundwater levels and employs the process-based MOdel for NItrogen and Carbon dynamics in Agroecosystems
(MONICA) to simulate these dynamics. By using SPOTPY (Statistical Parameter Optimization Tool) to optimise
the relevant parameters, we find that MONICA performs well in simulating vegetation growth (aboveground
biomass), and elements of the water (evapotranspiration), C (gross primary productivity, ecosystem respiration)
and N (N in aboveground biomass, nitrate in soil solution, Nitrous oxide emissions) balance, with Willmott's
Refined Index of Agreement always larger than 0.35. This level of accuracy demonstrates that MONICA is ready
to be applied for scenario simulations of groundwater management and climate change to evaluate their impact
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on greenhouse gas emissions and long-term carbon storage, as well as water and nitrogen losses in wet

grasslands.

1. Introduction

Grasslands provide up to 40 % of renewable ecosystem services
globally (Zedler and Kercher, 2005), including as a significant source of
food for livestock, and habitat space for a wide range of animal and
vegetation species (Bengtsson et al., 2019). Grasslands sites encompass a
wide spectrum of hydrological conditions, ranging from permanently
inundated wetlands (e.g. reed swamps) to dry grasslands with insuffi-
cient water availability. These hydrological conditions define the
vegetation (Joyce et al., 2016). Wet grasslands are defined as permanent
grasslands that experience groundwater influence or significant pre-
cipitation input throughout the year that leads to predominantly moist
(i.e. up to or beyond field capacity) topsoil and occasional flooding
(Joyce et al., 2016). Wet grasslands have a continuously changing soil
moisture content, ranging from dry to completely saturated, resulting in
heterogeneity in anoxic and oxic conditions at aggregate scale in the
soil. For these reasons, they are hotspots for biogeochemical trans-
formations, allowing for a wide range of biochemical reactions (Ram-
sar_Convention_Secretariat, ~2010).  Furthermore, the species
composition in wet grasslands responds very quickly to fluctuations in
the groundwater table (Khaledi et al., 2024), with additional implica-
tions for the soil's chemistry. In Europe, wet grassland accounts for a
most vulnerable fraction of the organic carbon (C) stored in soils under
agricultural use, which has been subjected to massive degradation as a
consequence of draining in recent years. In the search for potential C
sequestration options to meet the climate protection goals of the Paris
Agreement under the United Nations Framework Convention on Climate
Change (UNFCCC, 2015), wet grasslands have recently come into focus
(UNFCCC, 2022).

In wet grassland ecosystems, the dynamics of the diverse vegetation
plays an essential role in regulating the cycles of water, C and nitrogen
(N) (Wassen et al., 2013). The composition and productivity of plant
biomass influences the water budget through evapotranspiration (ET),
and the water supply, in turn, impacts productivity. Soil moisture is an
important regulator of the C and N turnover in soil, and N availability to
vegetation (Lohse et al., 2009; Oleson et al., 2008; Rodriguez-Iturbe
et al.,, 2001). Litterfall from vegetation returns nutrients to the soil,
making the grassland ecosystem a comparably rapid nutrient cycle
(Cong et al., 2014), if not interrupted as a result of biomass offtake, e.g.
haymaking on meadows. Understanding how wet grassland ecosystems
respond to changes in environmental conditions is key to comprehend-
ing (i) their contribution to water losses, greenhouse gas (GHG) emis-
sions, and nitrate (NO3) leaching, and (ii) how these responses can be
controlled through appropriate groundwater management (Mitsch and
Gosselink, 2015; Wang et al., 2020). Currently, the groundwater table
(and thus the water supply) of a major proportion of wet grasslands
under agricultural production is managed using weirs and dams (Die-
trich et al., 2012).

The balance and cycle of the water, C and N components at wet
grassland sites has already been covered in a wide range of studies. Most
of them have addressed the importance of the soil's biogeochemical
processes in storing and releasing C and N (Raich and Nadelhoffer, 1989;
Schimel, 2013; Schmidt et al., 2011; Trumbore and Czimczik, 2008). In
addition, the influence of factors such as agricultural and water man-
agement (Edwards et al., 2023; Li et al., 2017) and climate (Gibson and
Newman, 2019), as well as the presence of specific plant species (Mayel
et al.,, 2021) has been extensively explored. Most of these studies,
however, have looked at the aforementioned aspects in isolation. What
is still missing at this point is a comprehensive study that thoroughly
examines the interconnectivity of water, C and N fluxes in wet grassland
ecosystems.

Process-based simulation models simulate the dynamics of agro-
ecosystems and their underlying biogeochemical processes. They have
been acknowledged to be potent tools for investigating C and N cycles
(Abramoff et al., 2018; Chang et al., 2015; Fatichi et al., 2019; Wang
et al., 2013). Process-based models are built from differential equations
that describe the water, C and N fluxes in an agroecosystem, and sub-
sequently their interaction through plant and soil. The majority of
models have employed the pool concept (Hénin and Dupuis, 1945;
Jenkinson and Rayner, 1977), as it is implemented in the CENTURY
(Parton et al., 1987), RothC (Jenkinson et al., 1990) or DAISY (Hansen
et al., 1990) model. In these models, soil organic matter (SOM) is typi-
cally represented by two or more distinct conceptual C pools, which are
characterised by varying rates of first-order decomposition (Yu et al.,
2020). In these models, fluxes related to nutrient mineralisation and
immobilisation are determined by the efficiency of C transfer between
different SOM pools and their specified C-to-N (C: N) stoichiometry
(Zhang et al., 2021). While many of the specialised models for soil
processes have retained the soil itself as the primary focus of research
(soil models), other models have added plant physiological processes
(crop models) and have simulated the matter and energy turnover of the
entire soil-crop-atmosphere nexus in a balanced manner (agro-
ecosystem models; Laniak et al. (2013)). These models play an impor-
tant role in assessing the consequences of particular management
practices, plant characteristics, or environmental variables on agricul-
tural production and its related ecosystem services and disservices
(Kirschbaum et al., 2017; Nendel et al., 2014).

Over the last few decades, significant developments have been made
in modelling water, C and N fluxes in grassland ecosystems (Huntzinger
et al., 2012; Sandor et al., 2016; Warszawski et al., 2014). These studies
utilise specialised models tailored to consider a specific range of factors,
such as vegetation, soil characteristics, weather conditions, and man-
agement strategies that might influence energy and matter exchange
within grassland ecosystems (Sandor et al., 2016). Examples have
included investigating C cycling in and N leaching from grasslands
under various management practices using the DayCent model (Parton
et al., 1994), simulating GHG emissions from grazed grasslands using
the grassland-specific PaSim model (Riedo et al., 1998), or more broadly
investigating feedback regulations in grassland systems under a wide
range of management activities and environmental conditions using the
STICS model (Brisson et al., 1998). However, none of the existing
grassland modelling studies have addressed the interplay of water, C and
N cycles in light of fluctuating groundwater tables.

There are still many inconsistencies and gaps in our knowledge of
how water, C and N interact in grassland ecosystems, as well as the
mechanisms that regulate these interactions (Fatichi and Pappas, 2017;
Jung et al., 2017; Katul et al., 2012). As a result, the models used to
simulate these interactions are characterised by substantial un-
certainties at all scales (Sandor et al., 2017; Van Oijen et al., 2020). This
holds especially true for wet grasslands, where the shallow water table
causes intensive turnover of water, C and N (Chen et al., 2019; Frolking
et al., 2011; Waddington and Price, 2000). In such situations, the
resulting fluxes may exhibit high spatial and temporal variability when
site conditions are heterogeneous and groundwater levels fluctuate
(Frolking et al., 2011). In the context of climate change mitigation,
drained wetlands, including bogs and fens, can serve as C sinks after
being rewetted and returned to their original state (Giinther et al.,
2020).

Nevertheless, using mechanistic simulation models to predict the
potential sink strength of wet grasslands requires two important func-
tionalities: First, they need to be capable of capturing the response of
SOM turnover to the absence of oxygen that occurs under saturated
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conditions. Second, they need to reproduce the resumption of decom-
position when oxygen becomes available again, e.g. as a result of
drainage or evaporation. The MOdel for NItrogen and Carbon dynamics
in Agroecosystems (MONICA; Nendel et al., 2011) is one model that is
indeed capable of simulating such a response (Khaledi et al., 2024).
Before using the model for climate change impact assessments and
mitigation scenarios for wet grasslands in future studies, our primary
objective here is to demonstrate that MONICA is able to simulate in-
teractions between water, C and N fluxes, and the produced GHG
emission in a typical wet grassland ecosystem - including its charac-
teristic fluctuating water table depth (WTD). Water, C and N observa-
tions for this demonstration (including gas flux measurements, nitrate
concentration measurements in the soil solution, and biomass cuts) were
obtained from a grassland lysimeter station with controllable water ta-
bles. It was against this data that we tested the model.

2. Materials and methods
2.1. Study site and lysimeter management
The experimental dataset was obtained from an advanced weighable

groundwater lysimeter station equipped with chamber system for gas
flux measurements. The station, established in 2009, is located in the
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Spreewald wetlands of Germany (51°52'N, 14°02'E, Fig. 1; Dietrich
et al., 2016). Four cylindrical soil monoliths, each with a surface area of
1 m? a depth of 2 m, and an existing permanent grassland vegetation
cover were placed in the lysimeters in such a way that the soil profile
was not disturbed. Dominant species in grass cover were Carex acuta,
Festuca arundinacea, Festuca rubra, Holcus lanatus, Plantago lanceolata,
and Poa pratensis. Each lysimeter contains a different soil type (Table S1
in the Supplementary Material). The station recorded meteorological
conditions (Table S2) including net radiation (CNR 4, Kipp & Zonen),
soil heat flux (HFP01SC, Huxeflux), air temperature, relative humidity 2
m above the surface (PC-ME, Galltec + mela), wind speed and wind
direction (classic, Thies) (Dietrich et al., 2016). In addition, a precipi-
tation gauge (Hellmann RG 50, Thies) was positioned at a height of 1 m
above the ground. All data has been aggregated to daily values to meet
the requirements of the model. The lysimeters were fenced in to protect
against animal incursions, and were not additionally fertilised. A
detailed description of the technical equipment at the lysimeter station,
the associated weather station, data acquisition and data evaluation can
be found in Dietrich et al. (2016).

WTD was measured daily in each lysimeter. Unlike conventional
groundwater lysimeters that maintain a constant WID by controlling
inflow and outflow, this station used an automatic WTD control system,
allowing natural WTD cycles and their impact on water chemistry and

Elevation
[m above sea level]
| <=50
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| 81-120
T1120- 160
1> 160

B Grassland
o Lysimeter station
[ Spreewald area

Germany

Fig. 1. Location of the lysimeter station within the Spreewald wetlands. Grassland areas are highlighted in dark green colour in an elevation map of the Federal State

of Brandenburg, Germany.
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vegetation to be studied. Two different groundwater treatments were
applied in 2021, leading to low variation in biogeochemical processes
and related GHG and water fluxes; in 2022, four treatments were applied
to trigger greater variation (Table 1). Lysimeter 1 maintained a
groundwater level equal to the local conditions for 24 months (2021,
2022; Local Water Table LWT). In Lysimeter 2, the local ground water
table was maintained for 12 months, then a water table of 50 cm below
the local conditions was set for the following 12 months (Local + Dry
Water Table LDWT). Lysimeter 3 and Lysimeter 4 treatments involved
water levels exceeding the soil surface by 4 cm, with L4 experiencing
flooded conditions for 24 months (High Water Table HWT) and L3 for
18 months, followed by 6 months at the local ground water table (High
+ Local Water Table HLWT) (Table 1).

With the four different water regimes and soil types, each of the ly-
simeters presented a unique setting, which was not replicated in the
design of the station. From the modelling perspective, any model must
be capable in reproducing the target variables in all soil moisture x soil
type combinations, and the four lysimeters represent samples out this
pool of possible combinations. We may assume that the error in repro-
ducing the target variables was similar to the error that the model has
produced in previous analyses (e.g. Specka et al., 2016), and that the
measurement errors were similar to other lysimeter studies of this kind
(Dietrich, 2023; Forstner et al., 2021).

2.1.1. Evapotranspiration

In all four lysimeters, the first step was to determine the water bal-
ance components. The volume of inflow and outflow was calculated
from the hourly change in water level in a compensation tank. We then
calculated actual evapotranspiration from the water balance as the dif-
ference in total soil core mass between observations (Eq. (1)):

ETy =P — AS+Rin — Rour (€9)

where ET, is the actual evapotranspiration, P the precipitation input, AS
the change in soil core mass, R;, the inflow into the lysimeter from the
compensation tank and R,y the outflow from the lysimeter into the
compensation tank.

An overview of the water table and actual evapotranspiration dy-
namics throughout the study period is presented in Fig. 2. It includes the
potential evapotranspiration (ETp) for reference (Allen et al., 1998). In
the first year, the ET, of all lysimeters was lower than their ET}, in all
months except for August. Also, in July 2021, the ET, of Lysimeter
LDWT and Lysimeter HWT was the same as their ET},. In 2022, the ET; of
LWT and HWT was higher than their ET, in the same months. In LWT,
the ET, was significantly higher than its ET}, in May, due to extensive
growth of deep-rooting red clover in that lysimeter. Generally, the year
2021 was wetter and colder than 2022 (Fig. 2).

2.1.2. Aboveground biomass

Mowing occurred twice within the growing season, generally in mid-
June and early September. Fresh and dry aboveground biomass (AGB)
measurements were taken after each mowing event (Dietrich et al.,
2021). Results are later reported as dry matter in [t ha~']. Prior to the
first cut each year, we conducted a vegetation composition assessment
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using Miihlenberg (1989) version of the Braun-Blanquet approach,
which employs an extended rating scale. This method assesses changes
in vegetation by considering species frequency and a range of vegetation
indicators, as detailed in (Ellenberg and Leuschner, 2010). The
appearance and domination of Trifolium pratense (red clover) in LWT
during 2022 required serious attention, due to the special characteristics
of this species. With its ability to fix N from the atmosphere through
Rhizobium bacteria in the root nodules, and its deep-reaching root
system (Kutschera et al., 1982), red clover finds optimum growing
conditions in LWT and produces much higher biomass than any other
species present; this is accompanied by significantly higher transpiration
rates.

2.1.3. COg flux measurement

Fluxes of CO5 were measured using a dynamic flow-through non-
steady-state closed chamber system with both opaque (ecosystem
respiration (Reco) flux measurements) and transparent chambers (NEE
(net ecosystem exchange) flux measurements; Livingston and Hutch-
inson, 1995). To measure CO; exchange over chamber deployment time
(4 min), we connected an infrared gas analyser (LI-850, LI-COR Bio-
sciences, Lincoln, USA) to a data logging unit. During each 4 min of
chamber measurement, the CO, concentration change in chamber
headspace was measured in a frequency of 3 s. CO; fluxes were subse-
quently calculated according to the ideal gas equation (Eq. (2)) as:

pV dc
= RTA G (2)
where F denotes the CO5 flux [mol m—2 s’l], p denotes the ambient air
pressure [Pa], V is the chamber volume [m3], R refers to the gas constant
[8.314 m® J K~ ! mol™1], T denotes chamber air temperature [K], A is the
basal area [m?] and dc dt™? is the assumed linear CO, concentration
change in chamber headspace over time in [mol mol~! s71. dc/dt was
determined by applying a linear regressions to multiple data subsets
generated by a variable moving window with a minimum length of 30 s
(10 consecutive data points). Thus, multiple fluxes per flux measure-
ment were obtained and further on reduced using a list of quality
criteria: (i) fulfilled prerequisites for applying a linear regression
(normality, variance homogeneity, linearity); (ii) temperature variation
within data subset < +1.5 K (Reco and NEE flux measurements); (iii)
PAR variation within data subset < +20 % (NEE). Calculated multiple
fluxes per measurement that did not meet all quality criteria were dis-
carded. The Flux measurements were conducted twice a month during
the growing season and on average once a month during the off-season
in both 2021 and 2022. Throughout every campaign, 20-25 measure-
ments were conducted within a span of 1-2 predominantly sunny days
(from early morning to late afternoon) to encompass the full spectrum of
air and soil temperatures as well as photosynthetic active radiation. The
measured CO- fluxes were separated into their respective flux compo-
nents — the R, as the sum of the respired CO; from the soil organisms
and the plant, and the gross primary productivity (GPP) as the rate at
which vegetation captures COs in its biomass through photosynthesis
(Hoffmann et al., 2015; Hoffmann et al., 2017). To obtain daily NEE,
Reco and GPP fluxes, a flux separation was performed following Hoff-
mann et al. (2015); Hoffmann et al. (2018), using empirically derived

Table 1
Water table management in the lysimeters.
Lysimeter 2021 2022
Jan — Jun Jul — Dec Jan — Jun Jul - Dec
LWT Local water table depth Local water table depth
LDWT Local water table depth Deep water table

HLWT
HWT Water table above surface

Water table above surface

Water table above surface  Local water table depth

Water table above surface
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Fig. 2. An overview of (a) the daily average of minimum air temperature (Tpi) and maximum air temperature (Tmax) for each month, (b) measured actual
evapotranspiration (ET,) (note a 20-day data gap in April 2022) and calculated potential evapotranspiration (ET,), and (c) the observed water table depth dynamics
in 2021 and 2022 for the four lysimeters LWT (local water table), LDWT (local and dry water table), HLWT (high and local water table) and HWT (high water table).

temperature (Reco; Lloyd and Taylor (1994)) and PAR (GPP; Gilmanov
et al. (2013); Moffat et al. (2007)) dependency functions. In case of Reco,
measured Reco fluxes were fitted against measured air and soil temper-
atures using an Arrhenius type model (Lloyd and Taylor, 1994). Thus,
Reco parameters, describing the temperature dependency of the
measured R, fluxes, were derived for each measurement day. As sug-
gested by Huth et al. (2017), GPP fluxes (for measured NEE fluxes) were
subsequently calculated indirectly by subtracting Re., fluxes calculated
for measured NEE fluxes using derived Rec, parameters and tempera-
tures measured during transparent chamber measurements. Thus ob-
tained GPP fluxes were fitted against measured PAR using a non-
rectangular hyperbolic light response function. Finally campaign-wise
daily Reco, GPP and NEE fluxes were obtained using derived Reco and
GPP parameters to calculate and sum half-hourly Reco, GPP and NEE
fluxes per measurement day.

2.1.4. Nitrogen content measurement

Grassland soils contain pools of inorganic N (nitrate and/or
ammonia) derived from various sources. The lysimeter station that we
used was fenced in, preventing animals from entering the area. Conse-
quently, there was no significant decomposition of animal waste. There
was also no N from fertilisation, as we did not apply fertiliser. As a result,
N was primarily produced through the decomposition of plant residues.
In addition, we observed the symbiotic fixation effect of red clover in
one of the lysimeters in 2022. The N that was not taken up by plants and
was lost as a result of the denitrification process (N3, N2O) or by N
leaching (nitrification) was measured at the lysimeter station; the
amount of N produced through biomass was measured in the lab after
each cutting, using a TruSpec CNS elementary analyser (Leco In-
struments GmbH) with dried and ground plant material.

2.1.4.1. Nitrous oxide flux measurement. To measure Nitrous oxide

(N20), non-flow-through a non-steady-state (NFT-NSS) cylinder-shaped,
opaque chamber was used (Livingston and Hutchinson, 1995). The
chamber was equipped with a vent on the top to connect beforehand-
evacuated glass vials (60 ml) for taking air samples. Glass vials were
regularly checked for air storage capabilities using calibration gasses
and showed no change in analysed gas concentration for at least two
weeks (Loftfield et al., 1997). The first sample of each measurement was
taken directly after chamber placement as a zero measurement and was
followed by four more samples every 5 min resulting in a total mea-
surement time of 20 min. Air filled glass vials were subsequently ana-
lysed for the respective N2O gas concentration the week after sampling
using a gas chromatograph at ZALF (GC-14A and GC-14B, Shimadzu
Scientific Instruments, Japan) equipped with an electron capture de-
tector (ECD) for N2O analyses. The ECD operated under a temperature of
280 °C and used pure N as a carrier gas to determine N,O concentration
from the sampled glass vials (Loftfield et al., 1997).

2.1.4.2. Nitrate concentration measurement. Inside each lysimeter, three
ceramic suction probes of 20 mm diameter, with an acrylic glass
standpipe as a collecting space (Umwelt-Gerate-Technik, 1992), were
installed at different depths (30 cm, 60 cm and 90 cm) for soil water
extraction, thus providing three samples per lysimeter. We investigated
the NO3 in the soil water extracted from the lysimeters in the laboratory.
Sampling frequency was fortnightly within the vegetation period, or else
every 4 weeks.

2.2. The structure of the model

MONICA (Version 3.3.1; Aiteew et al. (2024); Nendel et al. (2011)) is
a process-based agroecosystem model simulating crop growth as well as
the corresponding water, C and N dynamics for soil-crop—atmosphere
systems in a daily time step. MONICA allows to parametrise a soil profile
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up to a maximum depth of 2 m, with 10 cm intervals. Soil water dy-
namics in MONICA is simulated using a capacity approach, including
capacity parameters derived from soil texture classes (Eckelmann et al.,
2005). While the capacity approach only allows a model to simulate the
downward movement of water, MONICA uses an empirical approach
that calculates ascending water in the capillary fringe above the water
table (Khaledi et al., 2024), employing daily rise rates from the German
soil survey manual (Eckelmann et al., 2005). The calculation of ET},
follows the Penman-Monteith approach (Allen et al., 1998), which in-
volves the use of crop-specific factors (K.) for particular crops and their
phenological stages throughout the growing season, and bare-soil fac-
tors during the period between harvest and crop emergence (Nendel
et al., 2011).

Organic matter turnover is calculated based on routines from the
DAISY (Danish Agricultural and Interdisciplinary Simulation System)
agro-ecosystem model (Hansen et al., 1990), in which C dynamics is
described via three pairs (slow and fast decomposition) of conceptual
pools, including added organic matter (AOM), soil microbial biomass
(SMB) and soil organic matter (SOM) (Abrahamsen and Hansen, 2000).
Decomposition rates, influenced by temperature and moisture, mirror
the environmental conditions of the simulated site. The clay content of
the soil further affects the rates of decay and respiration in soil microbial
biomass. Information about crop residues, provided by MONICA's crop
module, is used in the mineralisation routine, where the residue amount
and total N content together help determine the C/N ratio (Jensen et al.,
2005). MONICA's ability to accurately reproduce the short-term COq
exchange and long-term dynamics of C in agricultural soils has been
intensively tested by Specka et al. (2016), Farina et al. (2021) and
Aiteew et al. (2024).

2.2.1. Model calibration
The simulation setup for all lysimeter treatments used crop

Table 2
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parameters for ryegrass (Kamali et al., 2022), except for LWT in the
second year. Due to the appearance and rapid domination of red clover,
simulations for this lysimeter needed to utilise the parameter set for
clover grass, which is characterised by a greater rooting depth and
higher levels of biological N fixation. The following observed variables
were available for the calibration process: ET, AGB, GPP, Reco, N in AGB,
NOg3 leaching and N2O production. The study period spanned from 2021
to 2022. However, to convey the fact that sowing was not initiated in
2021, we also incorporated the two years preceding 2021 as a backup
period. Therefore, the model setup was based on site information from
2019 to 2022, but the simulation in this study focused solely on the years
2021 and 2022.

2.2.2. Parameter selection

An important step in the calibration process was to select the pa-
rameters for each specific variable. We classified the parameter selection
into four categories: the first group includes the parameters for cali-
brating the ET simulations, the second group for calibrating AGB sim-
ulations, the third for calibrating GPP and Rec,, and the fourth for
calibrating N in biomass, NO3 and N»O simulations (Table 2). To cali-
brate ET, we conducted a manual sensitivity analysis and subsequently
selected the crop coefficient Kc as a relevant parameter. The AGB
parameter set was taken from Kamali et al. (2022) for intensively used
grasslands. The GPP and Rec, parameters were identified from a local
sensitivity analysis. For the parameters of the N components, we
referred to the sensitivity analysis performed by Specka et al. (2015).

2.2.3. SPOTPY optimisation using the SCE-UA algorithm

We calibrated MONICA using the Statistical Parameter Optimisation
Tool (SPOTPY) Python package (Houska et al., 2015, 2018), employing
the shuffled complex evolution algorithm (SCE-UA) (Duan et al., 1993;
Duan et al., 1994). The first step was to determine the parameter sets

The parameters selected to optimise the simulated variables: aboveground biomass (AGB), evapotranspiration (ET), gross primary productivity (GPP), ecosystem
respiration (Reco), Nitrogen content in AGB, nitrate concentration in the soil water (NO3) and Nitrous oxide (N20) gas flux (N»O) simulation results. Stages 1-6 denote

the phenological stages defined in MONICA for each individual crop.

Category Parameter Description Unit Initial values Optimal values
ET InitialKcFactor Initial crop coefficient factor 0.4 0.4
StageKcFactor Crop coefficient factor for 6 different [0.46, 0.93, 1.00, [0.5,0.93, 1, 1, 0.94, 0.85]
stages 1.00, 0.96, 0.84]
AGB AssimilatePartitioningCoeff Assimilate portion assigned for growth % Stagel [0.7, 0.3, 0, 0] Stagel [0.61,0.39,0,0]
at six stages and for four organs Stage2 [0, 0.4, 0.6, 0] Stage2 [0, 0.48, 0.52, 0]
Stage3 [0, 0.5, 0.5, 0] Stage3 [0, 0.42, 0.58,0]
Stage4 [0, 0.5, 0.5, 0]  Stage4 [0, 0.4,0.6,0]
Stage5 [0, 0.5, 0.5,0]  Stage5 [0,0.25,0.7,0.05]
Stage6 [0,0,0,0] Stage6 [0,0.01,0.01,0]
BaseTemperature Base temperature for growth at six [1,2, 4,4, 4, 4] [0.7,1.2,3.19,3.37,4.1,3.7]
stages
SpecificLeafArea Specific leaf area index at six stages m2 kg — [0.002, 0.002, 0.002, [0.0031, 0.0022, 0.0021, 0.0026,
1 0.002, 0.002, 0.002] 0.003, 0.0032]
CuttingDelayDays Number of delayed days in growth after ~ day 10 7.89
cutting
MaxAssimilationRate Maximum assimilation rate kg CO2 15.3 18.5
ha -1
GPP, Reco SMB_UtilizationEfficiency Substrate utilisation efficiency of soil 0.6 0.45
microbes
SOM _FastUtilizationEfficiency Microbial utilisation efficiency for 0.8 0.71
rapidly decomposing soil organic matter
pool
MinimumTemperatureForAssimilation Minimum temperature for assimilation 8 8
OptimumTemperatureForAssimilation Optimum temperature for assimilation 25 27
MaximumTemperatureForAssimilation =~ Maximum temperature for assimilation 35 34
N in biomass, NConcentrationBO Curvature of the critical N concentration 0.001 0.001
NO3-, N20 curve
NConcentrationPN Shape factor of the critical N curve 2.6 2.51
NConcentrationRoot Initialisation value for root kgm-3  0.02 0.019
concentration
NitriteOxidationRateCoeffStandard Nitrite oxidation rate coefficient day-1 0.2 0.2

standard
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and their upper and lower boundaries. These parameters and limits
created the parameter space. The measurements served as the target for
optimisation. For the parameters, a guess vector was generated and
evaluated based on its fit to the target, determined by calculating the
root mean square error (RMSE). The goal was to achieve the lowest
RMSE. The optimisation algorithm reached convergence when the
stopping criteria with the lowest RMSE were met. Finally, after 1100
repetitions, we ultimately employed the combination of parameters that
provided the best performance throughout the entire calibration
procedure.

2.2.4. Computation of the model performance

We then compared the simulation results against the observed values
for the selected variables to evaluate MONICA's performance. The
evaluation was conducted separately for each lysimeter and each year.
Two indicators were used for this purpose. First, we used the relative
root mean square error (fRMSE) based on Bellocchi et al. (2002); Loague
and Green (1991) to quantify the difference between individual pairs of
simulated and observed values for each variable relative to the mean of
the observed values (Eq. (3)). An rRMSE of 0 describes a perfect model.
Second, we used the refined version of Willmott's Index of Agreement
(d,), based on Willmott et al. (2012), which assesses the statistical co-
variation between observed and estimated values (Eq. (4)). Willmott's
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d; ranges between 1.0 (perfect model) and —1.0 (poor model).
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where P;;i = 1,2, ...,n, denotes the predictions, with pairwise matching
observations O; ;i = 1, 2... n, O stands for the mean of observed values,
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Fig. 3. Simulated (—) versus observed (@) daily evapotranspiration in 2021 and 2022 of the four lysimeters (a) LWT (local water table), (b) LDWT (local and dry
water table), (c) HLWT (high and local water table) and (d) HWT (high water table). Model performance indicators: relative root mean square error (rRMSE) and

Willmott's refined index of agreement (d,).
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and c represents a constant in the equation (¢ = 2; Willmott et al.
(2012)).

3. Results
3.1. Evapotranspiration simulation

We assessed the daily simulated ET against the daily observed ET for
2021 and 2022 (Fig. 3). The simulations were slightly better in the
second year, with the exception of HLWT, which exhibited over-
estimation in the second year, and LWT, which demonstrated underes-
timation. Across the lysimeters, the simulations were always slightly
better for LDWT and HWT (rRMSE: 0.40-0.41; d,: 0.80-0.78) than for
LWT and HLWT (rRMSE: 0.50-0.54; d;: 0.75-0.72).

3.2. Aboveground biomass and gross primary productivity simulation

Fig. 4 shows the simulation results for AGB and GPP in 2021 and
2022, respectively, alongside the observational values for all lysimeters.
The most consistent agreement between observations and AGB simula-
tions was observed for LDWT (rRMSE: 0.18; d,: 0.76) and the least
consistent agreement for HWT (rRMSE: 0.25; d,: 0.69); however, this
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improved in the second year. While the simulation results for HWT
showed improvement in the second year, the simulated AGB peaks for
HLWT exhibited a more significant deviation from the observed data
points in the second year compared to the first year.

The GPP simulations across all lysimeters demonstrated closer con-
formity with observations during the second year than during the first
year. The rRMSE ranged between 0.57 and 0.67, and d, ranged between
0.62 and 0.69. The expansion of red clover is observed in LWT in the
second year through the high amount of AGB production, which was
captured by the model by using a specific parameter set for red clover.

3.3. Ecosystem respiration simulation

Fig. 5 shows simulated ecosystem respiration plotted against
observed ecosystem respiration. rRMSE values ranged between 0.54 and
0.68, and d; ranged between 0.36 and 0.55, with no notable difference
between years and treatments. One notable aspect is that, in some cases,
the model did not capture the rapid Reco recovery in July, after a strong
reduction due to the first cut.
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Fig. 4. Simulated (—) versus observed (@) daily aboveground biomass (orange) and gross primary productivity (purple) for 2021 and 2022 of the four lysimeters
(a) LWT (local water table), (b) LDWT (local and dry water table), (c) HLWT (high and local water table) and (d) HWT (high water table). Model performance
indicators: relative root mean square error (rRMSE) and Willmott's refined index of agreement (d,).
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Fig. 5. Simulated (—) versus observed (@) daily ecosystem respiration, in 2021 and 2022, of the four lysimeters (a) LWT (local water table), (b) LDWT (local and
dry water table), (c) HLWT (high and local water table) and (d) HWT (high water table). Model performance indicators: relative root mean square error (rRMSE) and

Willmott's refined index of agreement (d,).

3.4. Nitrogen in aboveground biomass

Fig. 6 shows the nitrogen content in the AGB plotted against the
simulated N in biomass from MONICA. The model captured the N uptake
dynamics well in the different lysimeters, ranging from 189 kg N/ha in
L1 (first cut, second year) to 24 kg N/ha in LDWT (second cut, second
year). TRMSE values ranged between 0.20 and 0.31, and d; values
ranged between 0.66 and 0.74, with no significant difference between
years or lysimeters.

3.5. Nitrate concentration simulation

The nitrate concentration in the soil measured at a depth of 30 cm
was used in this study to compare it with the nitrate concentrations
simulated using MONICA. Since there was no additional N fertiliser
added to the lysimeters, the total amount of N cycling in the system and
the measured nitrate concentration in soil water extracts from the ly-
simeters was very low, but the model reproduced this level well (Fig. 7).
Due to the consistently low concentrations, the rRMSE values

(0.47-0.57) may potentially misconstrue the model's performance, but
the d; values (0.44-0.64) nevertheless confirm the strong statistical as-
sociation between simulations and observations. MONICA not only
accurately reproduced the minimal temporal variance, but also depicted
the correct nitrate concentration levels. Due to a technical problem with
the suction probe in the LDWT lysimeter in the second year, we were
only able to secure two measurements.

3.6. Nitrous oxide simulation

Similar to NO3, the absence of fertilisation meant that the measured
quantity of N2O produced and released into the atmosphere was very
small (Fig. 8), including slightly negative fluxes that may occur under
waterlogging conditions or in the presence of N-fixing species or simply
as a result of the measurement error when values are close to the
detection limit (Berendt et al., 2023). This was also accurately repro-
duced in the simulation. Given that MONICA consistently assumed N>O
to be zero, the rRMSE primarily reflects the proximity of the measured
N2O values to zero. Consequently, for this segment of the simulation, we
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Fig. 6. Simulated (—) versus observed (@) daily accumulated nitrogen content in the aboveground biomass (Nbiom) in 2021 and 2022 of the four lysimeters (a)
LWT (local water table), (b) LDWT (local and dry water table), (¢c) HLWT (high and local water table) and (d) HWT (high water table). Model performance indicators:
relative root mean square error (rRMSE) and Willmott's refined index of agreement (d,).

can infer that MONICA effectively captured the observation that, in the
absence of N resources such as fertilisation and without contributions
from animals in grasslands, the N,O levels would be negligible.

3.7. Summary of simulation performance

Table 3 shows the overall comparison of rRMSE for all lysimeters in
2021 and 2022. Across all variables, the simulation showed acceptable
and even very good results. While some performance indices suffer from
a small number of observations (AGB, N in biomass (Nbiom)), others
suggest a low performance rather because they were designed to func-
tion with more symmetric error distributions. This precondition was not
always met due to the seasonal dynamics that includes periods of very
low values where deviations between the simulated and the observed
values easily become larger than the average observation in that
particular period (ET, GPP, Reco). From additional visual inspection, it is
also critical to note that both the level and the temporal dynamics of all
observed variables was well reproduced by the model.
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4. Discussion
4.1. The lysimeter experiment

Wet grassland ecosystems are inherently complex, given the large
range of very different species involved, the fluctuations in water and
nutrient availability, and the diverse range of management practices
applied. These inherent complexities, together with the direct and in-
direct effects of climate change, present numerous challenges to
modelling the behaviour of the system; researchers have grappled with
these challenges for years (Kipling et al., 2016). While simulation model
applications to cropping systems can look back on a longer history of
success (Bergez et al., 2023), the simulation of temperate grassland
systems is not as developed. However, temperate grasslands are
responsible for a range of climate-relevant emissions, and can be seen as
targetable options for C sequestration (Van Oijen et al., 2020; Yang
et al., 2019). In particular, wet grasslands can be very vivid examples of
how agricultural management can lead to massive C losses in soils that
had been filled with water for millennia before they were drained
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Fig. 7. Simulated (—) versus observed (@) daily nitrate concentrations (NO3) in the soil water extracts in 2021 and 2022 of the four lysimeters (a) LWT (local
water table), (b) LDWT (local and dry water table), (¢) HLWT (high and local water table) and (d) HWT (high water table). Model performance indicators: relative
root mean square error (rRMSE) and Willmott's refined index of agreement (d,).

(Freeman et al., 2022). Here, field observations and reliable simulations
are both urgently lacking; they would underscore the importance of
proper management of such systems and could test current rewetting
hypotheses.

4.2. Model performance

4.2.1. Evapotranspiration

Wet grassland sites with a shallow groundwater table usually exhibit
different ET patterns compared to other grasslands with a deeper
groundwater level (Dietrich and Kaiser., 2017; Huo et al., 2012; Kar-
imov et al., 2014). Simultaneously, studies have found that certain
vegetation species transpire significantly more than others (Anda et al.,
2014; Dietrich et al., 2021; Queluz et al., 2018; Triana et al., 2015). The
MONICA model, employed in simulating ET across all lysimeters, suc-
cessfully captured the ET, response to changes in the WTD. In the case of
the rapid expansion of red clover in LWT during 2022, this required
changing the vegetation parameter set to “clover grass” to ensure the
proper simulation of this effect. If we had remained with the calibrated
parameter set for “grass”, MONICA would have missed this ET, peak. In
assessing the model's sensitivity to WTD management, we observed that
the model appropriately reflected conditions unfavourable for high ET
(e.g. low soil moisture and the absence of plants for transpiration) by
simulating accordingly low ET fluxes. This included evaporation from
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open water surfaces during periods when the lysimeters were flooded. In
general, both the level and the temporal dynamics of ET, were well
reproduced by MONICA.

4.2.2. Aboveground biomass

AGB exhibits a strong correlation with water availability in the soil
(Yinglan et al., 2019). An optimal quantity of water promotes enhanced
growth, whereas deviations from this optimum, such as excessive or
insufficient water, can have adverse effects (Wan et al., 2022). Even
though a range of different optima may exist in a mixed-species com-
munity, it was obvious that for the species in HLWT and HWT, supra-
optimal amounts of water were present. Consequently, the AGB grown
in HLWT and HWT produced lower yields than in the other two lysim-
eters in the first year. The MONICA model successfully reproduced this
pattern, but had notable difficulties in the second year. Another
remaining challenge is the change in the species composition as a
response to changes in water supply (Khaledi et al., 2024). Here again,
as mentioned before for ET, the accurate capture of the significant surge
in AGB in LWT caused by the expansion of red clover was only possible
by changing the crop parameter sets. There is no automatic routine
available in MONICA that would enable the simulation of such a tran-
sition, but the tool does include a clover grass setup with existing
phenology stages and plant behaviour. Red clover can fix nitrogen from
the atmosphere and develop deeper roots compared to the other species
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Table 3

Relative root mean square error (rRMSE) and Willmott's refined index of agreement (d,) of simulated evapotranspiration (ET), aboveground biomass (AGB), gross
primary productivity (GPP), ecosystem respiration (Reco), nitrogen in biomass (Nbiom), nitrate concentration in the soil solution (NO3) and Nitrous oxide (N3O) in
2021 and 2022 for the four lysimeter treatments; LWT (local water table), LDWT (local and dry water table), HLWT (high and local water table) and HWT (high water
table).

Lysimeter ET AGB GPP Reco Nbiom NO3 N,O
rRMSE d, rRMSE d, rRMSE d, rRMSE d, tRMSE d, rRMSE d, rRMSE d,

LWT 0.50 0.75 0.22 0.62 0.57 0.66 0.54 0.51 0.22 0.72 0.47 0.56 0.76 0.50

LDWT 0.40 0.80 0.18 0.76 0.60 0.64 0.58 0.50 0.24 0.74 0.48 0.51 0.60 0.52

HLWT 0.54 0.72 0.39 0.71 0.64 0.62 0.55 0.55 0.20 0.66 0.57 0.64 0.60 0.56

HWT 0.41 0.78 0.19 0.69 0.67 0.69 0.68 0.36 0.31 0.73 0.57 0.44 0.68 0.47
that grow in the lysimeters, and, with better access to nitrogen and much greater effort and is therefore not a standard observation available
water, can produce much higher AGB. for model development, calibration or testing. Belowground biomass
was also not available for this study. Instead, our lysimeter experiment
4.2.3. Gross primary productivity delivered CO; fluxes into and out of the system, expressed as GPP. GPP
The C budget is the foundation for simulations of biomass growth. in ecosystems serves as a crucial link between soil, plants, atmosphere
While AGB is easy to observe, measuring belowground biomass requires and the global C cycle (Beer et al., 2010; Liao et al., 2023). Reproducing
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GPP and AGB growth at the same time strengthens the assumption that
the model simulates biomass correctly on the basis of the C budget
(being right for the right reason). In our case, MONICA simulated GPP
well, i.e. with a similar error range as compared to the AGB simulations,
and with d; values well above +0.6 (for n = 57). This includes the case of
the unusual expansion of red clover observed in LWT, where we
equipped MONICA with parameters for clover grass. The increased plant
coverage observed with the proliferation of red clover, and a resulting
increase in GPP, corresponds to findings by Eckhardt et al. (2018). The
increase in both AGB and GPP was successfully reproduced by MONICA
for this case.

4.2.4. Ecosystem respiration

Given the proximity of the water table to the surface in wet grass-
lands, it is imperative that the influence of soil water content as a result
of the ground water table distance is considered in the simulation
(Bellocchi et al., 2023; Li et al., 2022; Sandor et al., 2016; Smith et al.,
2016). Water availability not only governs the growth of vegetation; the
level of water that fills the pore space (and displaces oxygen-rich air)
also has a major effect on the activity of soil microorganisms and their
respiration. Measured ecosystem respiration can act as a lump variable,
combining the CO; respiration from vegetation and soil microorgan-
isms. MONICA simulates both processes independently in response to
temperature and water availability (or water-filled pore space). Here,
the model successfully reproduced the seasonal pattern of Rec, Over the
two years, with d; values well above 0.35 (for n = 57). Even though at d;
values between 0.0 and 0.5, the observed mean O would become a better
predictor, it still indicates that the sum of the prediction error magni-
tudes is lower than the sum of the perfect-model-deviation and
observed-deviation magnitudes (Willmott et al., 2012). Furthermore,
against the background that O would be unknown, the model visually
captured well the overall dynamics of the target variable. This demon-
strates that MONICA indeed added realistic CO fluxes through respi-
ration to the previously tested CO, fluxes through photosynthesis at the
plant level, and also plausible CO5 fluxes driven by the respiration of soil
microorganisms. This strengthens the hypothesis that MONICA can
accurately reproduce the complete C budget of the ecosystem, which
makes it appropriate for simulating scenarios of environmental or
management impact on the C balance in wet grasslands.

4.2.5. Nitrogen content in biomass

The cycling of N in the soil-plant-atmosphere system is inherently
linked to the cycling of C, as both are stoichiometrically bound in
organic matter. Now that we have confirmed that the model can cope
with C, we can look at the model's performance in simulating N. Simu-
lating the N dynamics accurately has been recognised as a challenge in
various modelling studies, in terms of vegetation competition (Faverjon
etal., 2019; Grassein et al., 2015) and in terms of soil biology (Hoffmann
et al., 2018). To achieve the precise representation of N dynamics in an
ecosystem, a process-based model should be capable of simultaneously
simulating all N fluxes in the system (Hoffmann et al., 2018). This in-
cludes N inputs from fertilisers, the release of N from the turnover of
organic matter, and direct N fixation from the air in the roots of legumes,
but also N losses through gaseous emissions or leaching.

The easiest to measure and simulate is the N content in AGB, which
was well reproduced by MONICA. Again, the red clover expansion in
LWT caused a particular challenge, as the plant accumulates much more
N in its tissue than the other species in the lysimeter community. The
rRMSE for N in biomass prediction in this study aligns with the findings
of Dueri et al. (2023), who also used the MONICA model to reproduce N
levels in crops.

Lysimeter HLWT in the second year, started out under a wet man-
agement regime, and the model showed higher error compared to the
first year in the same lysimeter. The model needed an additional year to
adjust to the growing and pool-dividing pattern, as observed in HWT. In
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HWT, the first year showed higher error compared to the second year, as
the model adjusted to the submerged condition, exhibiting an oxygen-
deficit signal. Therefore, the lower N content in biomass better aligns
with reality after the first year.

4.2.6. Nitrate

In the absence of additional N inputs from animals or fertilisation,
nitrate concentrations in the soil remained at notably low levels (Hou
et al., 2023). In contrasting cropland environments, where significantly
higher concentrations of N occur following high mineral fertiliser ad-
ditions, MONICA previously demonstrated the ability to reproduce the
temporal dynamics of soil mineral nitrogen dynamics (Nendel et al.,
2011). Contributing factors, such as the prevalence of shallow-rooted
species (Hooper and Vitousek, 1998; Scherer-Lorenzen et al., 2003), as
well as considerations of species richness (Leimer et al., 2014), result in
diminished downward water flux, consequently reducing nitrate leach-
ing in wet grasslands. The positive correlation observed between water
and nutrient availability and plant growth, coupled with increased di-
versity, contributes to elevated biomass production, ultimately miti-
gating nitrate losses through leaching (Tilman et al., 1996). In addition,
under submerged conditions such as those observed in HLWT during the
second year and HWT, limited oxygen availability impeded both soil
organic matter (SOM) decomposition and nitrification processes,
thereby reducing NO3 leaching. Notably, the grass species investigated
in this study have been noted for their propensity to generate low nitrate
leaching during the growing season (Bgrgesen et al., 2022).

The application of the MONICA model proved successful in accu-
rately reproducing low N levels, facilitated by the concurrent provision
of fertilisation information and the meticulous parameterisation; all of
this ensured a comprehensive representation of the plant life cycle. The
model effectively categorised organic matter pools, accurately attrib-
uting them to nitrification and denitrification processes, and thereby
corresponding to its commendable overall performance in simulta-
neously simulating water, C and N content dynamics.

4.2.7. Nitrous oxide

In this study, N»O simulation was consistently zero throughout the
investigation period, as the N input to the lysimeters was solely from
plant residues, while high inputs of N fertiliser and other trigger events
are missing. The weakest performance of MONICA in simulating N>O
was observed in LWT during the second year, when the expansion of red
clover occurred. This led to a higher production of NoO compared to
other lysimeters in different years which the model did not capture.
Overall, the measured N,O fluxes were very low, close to the measure-
ment error of the system. A part of the N2O produced was even assim-
ilated again by the vegetation, which led to negative fluxes being
observed. If much higher concentrations of mineral nitrogen in the soil
were present, e.g. added through fertilisation, much higher NoO levels
would have been recorded, as previously shown in many N»O emission
studies (Abalos et al., 2022; Jerray et al., 2024; Olesen et al., 2023).
MONICA has previously demonstrated to pick up NoO emission peaks
two orders of magnitude higher under conditions favourable for deni-
trification (Dueri et al., 2023), In the light of the previous performance,
we consider it a very good result that the model predicted no significant
N2O emissions in the present study. At this level, the performance in-
dicators are misleading, as the total scale of possible NyO emissions has
not been observed in this experiment.

5. Conclusion

The Spreewald lysimeter station provides an excellent dataset to test
process-based models, with varying soil types and comprehensive data
on interconnected variables under different groundwater management
levels. This is important, as models often provide very good results for a
few tested variables, but potentially fail for others that cannot be tested
due to a lack of data (Houska et al., 2017; Kersebaum, 2007).
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Recognising that water availability is integral to vegetation growth,
which, in turn, feeds back into the nutrient cycle, the Spreewald ly-
simeters allow for holistic model calibration and testing by covering all
relevant variables and studying their interconnectedness.

A process-based model, MONICA, has demonstrated its prowess in
accurately reproducing key state variables within wet grassland eco-
systems and their feedback relationships. This attests to its suitability for
simulating environmental and management impacts, particularly those
associated with near-surface groundwater changes. MONICA's capabil-
ities extend to encompassing various aspects such as C sequestration (in
rewetting scenarios), GHG emissions, nitrate leaching, productive and
unproductive water loss, and agronomic productivity. Consequently, the
model addresses numerous pressing questions associated with the role of
wet grasslands in the future agriculture of temperate Europe. Now that
its fitness has been demonstrated, a range of different applications can
be envisioned, which include scenarios of future climatic conditions, of
groundwater level decline, and of groundwater level control via weir
management. Most importantly in the context of the most recent dis-
cussion on climate mitigation and the agreed targets on net zero emis-
sions, MONICA is now capable of analysing the C sequestration potential
of rewetting previously drained fens and bogs. What sets MONICA apart
from specialised grassland models is its ability to simulate both lowland
and upland grasslands, as well as cropland. This versatility allows
MONICA to cover almost the entire short-term managed agricultural
landscape (excluding forests), making it particularly valuable for large-
scale assessments.
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