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Abstract
Leaf area index (LAI) is a key variable in understanding and modeling crop-environment 
interactions. With the advent of increasingly higher spatial resolution satellites and sen-
sors mounted on remotely piloted aircrafts (RPAs), the use of remote sensing in precision 
agriculture is becoming more common. Since also the availability of methods to retrieve 
LAI from image data have also drastically expanded, it is necessary to test simultaneously 
as many methods as possible to understand the advantages and disadvantages of each 
approach. Ground-based LAI data from three years of barley experiments were related 
to remote sensing information using vegetation indices (VI), machine learning (ML) and 
radiative transfer models (RTM), to assess the relative accuracy and efficacy of these meth-
ods. The optimized soil adjusted vegetation index and a modified version of the Weighted 
Difference Vegetation Index performed slightly better than any other retrieval method. 
However, all methods yielded coefficients of determination of around 0.7 to 0.9. The best 
performing machine learning algorithms achieved higher accuracies when four Sentinel-2 
bands instead of 12 were used. Also, the good performance of VIs and the satisfactory per-
formance of the 4-band RTM, strongly support the synergistic use of satellites and RPAs 
in precision agriculture. One of the methods used, Sen2-Agri, an open source ML-RTM-
based operational system, was also able to accurately retrieve LAI, although it is restricted 
to Sentinel-2 and Landsat data. This study shows the benefits of testing simultaneously a 
broad range of retrieval methods to monitor crops for precision agriculture.

Keywords Leaf area index · Vegetation indices · Machine learning · Radiative transfer 
models

Introduction

Precision agriculture, as a crop management practice based on differential resource 
application at highly resolved space and time, requires readily available information 
about the crop status at a resolution that corresponds to its goals. Leaf area index (LAI), 
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defined as the amount of (the upper side) of foliar area per unit of projected ground 
area, is one of the crop biophysical parameters that convey the most valuable informa-
tion on plant status. The amount of LAI is directly linked to quantitative aspects of pho-
tosynthesis, respiration and canopy water exchange and, therefore, any change in LAI 
can be associated with changes in vegetation productivity (Bréda, 2003) resulting from 
plant health issues or nutritional status, which in turn, makes LAI an effective diagnos-
tic parameter of crop status (Huang et al., 2019).

LAI is a key variable in process-based crop growth models (Abrahamsen & Hansen, 
2000; Kersebaum, 2011; Li et al., 2015; Nendel et al., 2014) because it represents the 
interface between plant growth and radiation, water and gas exchange with the environ-
ment (Asam, 2014; Kasampalis et  al., 2018). At the same time, LAI being a param-
eter with typical light interception and reflectance properties (Zheng & Moskal, 2009) 
and a dominant surface area component, it is particularly suitable to be characterized 
and measured by remote sensing. LAI quantification through remote sensing, therefore, 
offers a unique opportunity to incorporate measured reference values of this biophysi-
cal parameter into modeling routines to improve the accuracy of model predictions, in a 
process called data assimilation (Huang et al., 2019; Jin et al., 2018).

LAI is one of the most common canopy parameters that have been estimated, meas-
ured or mapped with remote sensing (Fang et  al., 2019). Satellite remote sensing in 
comparison with other platforms has the advantage of offering readily available, some-
times free of charge, reflectance data over large areas. Satellites can also support moni-
toring programs through time spans of several years, ensuring long term information 
continuity through global LAI products (Defourny et al., 2019; Fang et al., 2019; Sinha 
et  al., 2020). Most available global LAI products such as “LAI 300  m”, “LAI 1  km” 
(both from Copernicus Global Land Service), and “MODIS Leaf Area Index” (NASA), 
however, cannot offer LAI estimates at a spatial resolution higher than 300  m, which 
makes them unsuitable for precision agriculture. Nevertheless, low spatial and temporal 
resolutions (typical satellite limitations) are gradually being overcome with the develop-
ment of recent satellites (Kooistra et al., 2012; Mulla, 2013), to the point that satellite-
driven site-specific planning is now possible for larger crop fields.

European Space Agency’s Sentinel-2 mission represents the most effective combi-
nation of high to moderate spatial resolution, high multispectral resolution and data 
accessibility. These characteristics made Sentinel a perfect candidate to test different 
approaches to estimate LAI at a spatial scale appropriate for within-field differential 
crop management. Therefore, in the study presented here, a broad array of methods to 
estimate LAI in barley (Hordeum vulgare) before flowering stages, at relatively high 
resolution using Sentinel-2 data, was examined. The context of this study was provided 
by a European project with the focus on Barley fertilization and productivity.

There are several methods to estimate crop biophysical parameters using remote 
sensing information. Two main basic approaches are commonly available: empirical (or 
statistical) and physical (Richter et al., 2012b; Sadeh et al., 2021; Verrelst et al., 2019). 
In the first case, a direct statistical relationship between the reference vegetation param-
eter (for example, LAI measured in the field) and the remote sensing reflectance data is 
established. Reflectance information from sensor bands can be combined into vegeta-
tion indices (VIs) (Leonenko et al., 2013) or used directly without a priori considera-
tions of band combination (Upreti et al., 2019). In the second case, typically machine 
learning is used (Dahms et  al., 2016; Mao et  al., 2019) given its ability to deal with 
high-dimensionality complex data structures and non-parametric distributions (Maxwell 
et al., 2018).



1451Precision Agriculture (2022) 23:1449–1472 

1 3

The physical approach uses light-plant interaction models (also known as radiative 
transfer models, or RTM) to relate vegetation spectra (model output) to the target biophysi-
cal parameter (model input; e.g. LAI). This relationship can be inverted by means of a 
model inversion to retrieve the target biophysical parameter (Asam, 2014; Boegh et  al., 
2013; Fang et al., 2019; Verrelst et al., 2019). Look-up tables (LUT) are one of the most 
common methods to generalize reflectance-LAI relationships to, then, be used to retrieve 
LAI from image reflectance (Richter et al., 2012b; Upreti et al., 2019). A physical model or 
RTM can also be used to train a neural network to establish reflectance-LAI relationships, 
in what is called a hybrid modeling-statistic approach (Weiss et al., 2002), as in the case of 
the Sentinel-2 for Agriculture system (Defourny et al., 2019).

Despite the vast number of studies applying and comparing any possible combination 
of these methods, and despite numerous review studies, there is still a fragmentary view of 
the advantages and disadvantages of each method in the context of what can be achieved 
with respect to the user’s goals and needs. Moreover, since these methods can be applied 
on different sensors and platforms and with different objectives, judgement on the relative 
efficacy and appropriateness of any of these methods has become more and more difficult. 
At the same time, the availability of tools for applying all these methods has been increas-
ing dramatically in recent years. Therefore, it is suggested that testing many methods 
simultaneously on specific situations seems an apt way of achieving the necessary over-
view to assess the applicability of any potential method on precision agriculture.

Even though the availability of Sentinel-2 products has significantly expanded the moni-
toring capabilities for precision agriculture (Segarra et al., 2020), the prevalence of clouds 
and the need for precise timing, sensor flexibility and higher spatial resolution often makes 
it necessary to resource remotely piloted aircrafts (RPA) (Hunt et  al., 2013; Schirrmann 
et al., 2016; Tsouros et al., 2019; Yang et al., 2017). This means that methods of retrieving 
key biophysical parameters need to be tested also for RPA-born sensors, which often have 
fewer bands than Sentinel-2. To account for this issue, most of the methods tested in this 
study were also applied, when possible, to a simpler multispectral configuration of four 
bands, RGB (Red, Green, Blue) + NIR (Near Infrared), with the hypothesis that simpler 
configurations can be as effective as more complex ones to retrieve LAI.

The goals of this study were: (a) to test a broad array of methods to estimate LAI in 
barley using Sentinel-2 data, (b) to determine the transferability of the methods to simpler 
RPA systems, and (c) to provide a comprehensive account of remote sensing-based LAI 
retrieval methods and compare them in terms of both, usability and performance.

Methods

Field data

Between the years 2018 and 2020, a total of nine barley experimental fields were estab-
lished near Müncheberg and Dedelow (Brandenburg, Germany), and Gembloux (Wallonia, 
Belgium) (Table 1). Each field was subdivided into subplots (treatment units; TUs) where 
different levels of nitrogen fertilization were applied to produce crop growth variability. 
TUs in the Dedelow and Müncheberg fields were designed to be 10–25 times larger than 
10 × 10 m to allow the inclusion of at least 2–3 Sentinel-2 pixels well centered in the field. 
TUs in Gembloux were designed for a different experiment, and were just 6 × 2 m.
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At Müncheberg (M) and Dedelow (D), crop leaf area index (LAI) was measured with 
a SunScan device (SS1 Canopy Analysis System, Delta-T Devices Ltd, Cambridge, UK.), 
following the company’s instructions. At each TU, depending on its size, 1–3 points were 
established and marked with a flag. Three SunScan readings were made within a radius of 
1 m from the point flag at a microsite with uniform canopy characteristics. Readings were 
then averaged for each point and then averaged for each TU. At least one LAI measurement 
was taken between the time plants grew taller than 0.15–0.2 m (to obtain a LAI larger than 
0.3, which was considered to be the SunScan sensitivity threshold) and the emergence of 
awns (at which point it was presumed that the reflectance of awns could significantly mask 
the physiological status of the blades in the canopy).

At Gembloux (G), the green leaf area index (GLAI) was measured by removing all 
plants from a 1 × 1 m sampling quadrat and measuring the projected area of each green 
barley blade and stem. The total sum of the green area was related to the biomass of the 
sample, and the relationship green area/biomass was used to extrapolate GLAI to the entire 
treatment plot. The distinction between GLAI (which is based only on green leaves) and 
LAI (which includes also senescent leaves) in a destructive method is experimentally pos-
sible because individual leaves can be discriminated by color and measured separately.

In the case of SunScan, since the effect of non-green leaves on the measurements is not 
well understood, it is not known whether the device measures LAI or GLAI. For this rea-
son, in this study, it was decided to use the term LAI in the broad sense, as a generic term 
for the amount of plant tissue to be recorded by remote sensors.

Remote sensing data

Sentinel-2 satellites are part of a constellation of the European Space Agency satellites 
characterized by high frequency (3–5 days) and high resolution (10 m in the visual-NIR 
range) ground imaging (ESA, 2015). Their sensors are active in 13 spectral bands: 4 visible 
and 9 infra-red. Level 2A (L2A) data, representing reflectance at the bottom of atmosphere 
(BOA) in cartographic geometry, were used for the analyses. A series of Sentinel-2 images 

Table 1  Field experiment characteristics

Dates of measurement correspond to stages 30–49 from the BBCH development scale (Meier, 2018)
SB Spring barley, WB Winter barley

Site Years Crop type Variety Number of 
treatment 
units

Nitrogen 
fertilization 
levels
(kg N/ha)

Number 
of dates 
measured

Dedelow (D)
(53.372924°, 

13.801732°)

2018
2019

SB
WB
SB

RGT Planet
KWS Kosmos
RGT Planet

14
3
9

0, 30, 60, 90
0
0, 50, 100

1
1
1

Gembloux (G)
(50.568013°,
4.711415°)

2019 SB RGT Planet 8 0, 120 2

Müncheberg (M)
(52.521203°, 

14.129940°)

2018
2019
2020

SB
WB
SB
WB
SB

Salome
Lomerit
Salome
Meridian
RGT Planet

4
4
4
8
6

0, 30, 60, 90
0, 40, 80, 120
0, 30, 60, 90
0, 40, 80, 120
0

2
3
1
1
3
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around the dates of LAI measurements at Dedelow and Müncheberg were downloaded and 
tested for cloud cover over the experimental fields.

Other remote sensing data, whose availability was restricted to a few images, was used 
to test the applicability of the LAI models to other sensors. These sensors comprised Rapi-
dEye and PlanetScope satellites, from the Dedelow and Müncheberg sites, and a remotely 
piloted aircraft (RPA) at Gembloux.

RapidEye data consist of five bands in the blue, green, red, red-edge and near-infrared 
ranges with a spatial resolution of 5 m. Images were acquired at Level 3A and then trans-
lated from DN into top-of-atmosphere reflectance with the method suggested in its image 
specification documentation (Planet webpage, Products, Planet archive: assets.planet.com 
/docs/ Planet_Combined_Imagery_Product_Specs_letter_screen.pdf). RapidEye satellites 
were decommissioned in 2020. PlanetScope data consist of four bands in the blue, green, 
red and near-infrared ranges with a spatial resolution of 3 m. The images used in this study 
corresponded to a Level 3B product type, containing surface reflectance values.

The RPA, equipped with a Sony RX100-MK II (Sony Corporation, Tokyo, Japan; 
bands: RGB) and a Micasense RedEdge-MX (MicaSense, AgEagle Sensor Systems Inc., 
Seattle, WA, USA; bands: BGR, Red Edge and NIR) cameras was flown at 50 m, produc-
ing images at 0.05 m pixel size. The software PIX4DMapper (Pix4D SA, Switzerland) was 
used for radiometric pre-processing and mosaicking.

Analyses

Vegetation indices

A total of 12 Sentinel, one RapidEye and one PlanetScope satellite images were selected 
for the analyses. TUs at Dedelow and Müncheberg were located on the images and 2–3 
pixels were selected at the center of each TU and at least 10 m away from the plot limit to 
avoid mixed pixels. Values of these pixels were averaged per TU to be used in the analyses.

Vegetation indices (VIs) chosen from the current literature (Clevers et al., 2017; Framp-
ton et al., 2013; Haboudane et al., 2002; Kross et al., 2015; Prabhakara et al., 2015) were 
tested to explore the possibility of predicting LAI with satellite data using selected band 
combinations (Table 2).

The parameter S in the WDVI was calculated with pixels that could be visually identi-
fied as bare soil on the images. Whenever possible, pixels of varied brightness were chosen 
to better represent the red-near-infrared (NIR) soil line.

The relationship between the measured LAI and the satellite indices was initially 
explored using Sentinel images from 2018 and 2019, which corresponded to field experi-
ments designed for this purpose. VI-LAI functional relationship was described by a 
non-linear least squares curve fitting approach (Shattuck, 2015). Index performance as a 
predictor of LAI was assessed by measuring the tightness of the fit. Plots established at 
Müncheberg in 2020 were later used to test the index performance.

Additional satellite images (RapidEye and PlanetScope) were radiometrically normal-
ized to Sentinel data to make sensor reflectance values comparable. Invariant features of 
different brightness intensities were visually identified, and their pixel values plotted in 
a red-NIR space to obtain a linear function to be applied to recalculate the target image 
pixels. The best performing indices were then calculated with the normalized reflectance 
values to assess the stability of the indices across sensors.
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The site at Gembloux was used to test the appropriateness of using RPA reflectance 
information on the best performing VIs. Out of the 6-m of length of each TU, 2 m were 
reserved for destructive sampling, leaving a TU effective area of 2 × 4  m. A polygon of 
1 × 2 m was overlaid on the RPA images at the center of each TU effective area and the 
pixels enclosed were used to obtain an average reflectance value for each of the five bands. 
The VI values calculated with this information and the LAI measured were compared with 
the already built VI models described above.

The VI-based models that best correlated with measured LAI were further validated 
with a leave-one-out cross-validation approach using the ARTMO (Automated Radia-
tive Transfer Model Operator) tool (Rivera et al., 2013) on the same dataset used for the 
VIs. Predicted LAI values from each of the selected indices were used as variables to be 
processed in ARTMO with a series of machine learning algorithms described below (See 
Machine learning regression section).

Machine learning regression

A series of machine learning regression algorithms (MLRA) from the ARTMO tool 
(Rivera et al. 2014), version 3.28, was used for selecting potential models to predict LAI 
from Sentinel bands. In principle, MLRAs can be applied using all the 12 Sentinel-2 
bands. However, since most high to very high resolution satellites and drones are equipped 
with sensors in the visible-NIR spectrum only, the applicability of the regression models 
to these sensors, made it necessary to analyze the possibility of using only the four most 
prevalent bands, which are the bands blue, green, red and NIR.

Pixel values of the TUs from the 12 Sentinel-2 images (years 2018–2020, 76 measure-
ments) used for the indices analyses, together with the field LAI measurements were com-
bined in a database to apply the following MLRAs: Bagging Trees (BaT), Boosting Trees 
(BoT), Gaussian process regression (GPR), least squares linear regression (LSLR), partial 
least square regression (PLSR), principal components regression (PCR), random forest fit 
ensemble (RFFE), random forest tree bagger (RFTB), regression tree (RT), relevance vec-
tor machine (RVM) and support vector regression (SVR). Regression performance as a 
predictor of LAI was assessed by measuring the tightness of the fit. Model validation was 
performed using the k-fold cross-validation method on the same dataset. This method ran-
domly divides the observations into subsamples according to the number “k” provided by 
the user (in this study k = 10). All subsamples minus one (k-1) are then used to train the 
dataset and the excluded subsample is used to validate the results. This process is repeated 
as many times (k times) as subsets exist.

PROSAIL inverse modeling and look up tables

PROSAIL, a tool to predict the reflection spectra of plant canopies as measured by remote 
sensing (Jacquemoud et  al., 2009), uses the interaction of two models: PROSPECT and 
SAIL. PROSPECT is a radiative transfer model of a leaf, based on a simple representation 
of its physical and chemical structure (Jacquemoud & Baret, 1990); and SAIL is a canopy 
reflectance model that produces reflectance values (Verhoef, 1984). When the reflectance 
is known (as measured by a satellite, for instance), inverting PROSAIL allows estimation 
of the crop target variable, in the present case LAI, by creating possible scenarios that can 
be represented in the form of look up tables (LUT).
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The entire process was performed with the ARTMO tool. The model versions Pros-
pect 4 (leaf model) and 4Sail (canopy model) were chosen for the forward modeling. Input 
parameters for both models were taken from known value ranges from wheat (Berger et al., 
2018), in  situ measurements and authors’ experience (Table  3). Soil reflectance spectra 
were obtained from bare soil pixels on the corresponding images.

The Latin Hypercube Sampling (LHS) option was chosen to generate a sample of 5000 
model outputs (forward modeling). Each of these outputs represents a “scenario”, that is, a 
spectrum originated from a given, possible value of leaf area index. LHS generates a near-
random sampling of parameters while ensuring a good representation (full stratification) of 
the sample variability (McKay et al., 2000).

In the following step, the ARTMO tool utilizes a cost function (or merit function) (Ver-
relst et al., 2013), to compare satellite input spectra to the spectra generated with the for-
ward modeling, with the aim of retrieving candidate LAI values from the inverse modeling 
(Verrelst et  al., 2019). Out of more than 60, seven cost functions were selected: RMSE, 
Geman and McClure, K(x) = log(x) + x, K(x) = (log(x))2, least absolute error, power diver-
gence measure, and trigonometric (Leonenko et  al., 2013; Rivera et  al., 2013; Verrelst 
et al., 2013). In the next step, Gaussian noise of 5% and 10% were introduced and the pos-
sibility of choosing two multiple best solutions were selected.

To test the possibility that the inversion process can be accurate enough if done with 
four bands in the visible-NIR range (as in a typical drone camera), as opposed to the 12 
Sentinel bands, the entire analysis was repeated with the Sentinel B, G, R and NIR (2, 3, 4 
and 8) bands.

Sentinel‑2 for agriculture

Sen2-Agri is an open-source operational system consisting of a processing chain that 
generates a set of products for agriculture monitoring from Sentinel-2 and Landsat 8 
satellite data. Products include image composites of cloud-free surface reflectance data 

Table 3  Parameter value used in the forward PROSAIL run to generate the LUT

Name Description Range/step

PROSPECT
N Leaf structure index, or number of physical layers of the leaf 

(unitless)
1–2/0.25

Cab Leaf chlorophyll a + b content (µg/cm2) 10–80/20
Cw Equivalent water thickness (cm) 0.001–0.05/0.005
Cm Dry matter content (g/cm2) 0.001–0.03/0.002
SAIL
LAI Leaf area index  (m2/m2) 0.5–5.5/0.05
Ala Average leaf inclination angle (°) 20–80/10
Hse Hot spot effect parameter (0–1) 0.25
Diffuse/direct radiation Relationship between the diffuse and the direct radiation (%) 40–60/5
Sbc Soil brightness coefficient (0–1) 0.4–0.8/0.1
Sza, Oza, Raa Sun zenith angle, Observer zenith angle, Relative azimuth 

angle
0–30/5, 0, 0

Vc Vegetation cover fraction (0–1) 0.4–0.8/0.1
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(L3A), cropland masks (L4A) and crop type maps (L4B), and layers with normalized 
difference vegetation index (NDVI) and leaf area index (LAI) (L3B) (Defourny et al., 
2019).

An important feature of Sen2-Agri is that once installed, it can automatically con-
nect to a set of configurable data sources, download the necessary satellite level 1 or 
level 2 products and generate all the desired products from a chosen area at a selected 
season. Since the system uses Sentinel-2 data, products can be delivered at 10-m resolu-
tion. LAI layer retrieval is performed from the Sentinel-2 bands 3–9, 12 and 13 using 
machine learning to build a non-linear regression model. The regression model is esti-
mated using reflectance values simulated with the PROSAIL model (see 0).

About 100 Sentinel-2 images covering the barley growing seasons at the Dedelow 
and Müncheberg sites in 2018, 2019 and 2020 were processed with the Sen2-Agri sys-
tem to produce the corresponding LAI maps. TUs were identified and 2–3 pixels were 
selected at the center of each TU and at least 10 m away from the plot limit to avoid 
mixed pixels. Estimated LAI values from these pixels were averaged per TU at selected 
image dates to be compared with the ground LAI data.

Results

Field data

LAI values measured on the field ranged from 0.53 to 5.15, with an average of 1.86. 
Averages by site were 1.82, 2.45 and 1.85 for Dedelow, Gembloux and Müncheberg 
respectively (Fig. 1). Averages by crop were 1.84 and 2.38 for spring and winter barley 
respectively (Fig. 1).

The Gembloux site showed a more symmetrical distribution of LAI compared to the 
other sites. WB developed a significantly higher LAI than SB.

Fig. 1  Distribution of LAI measured on the field according to A site and B crop type. SB Spring barley, WB 
Winter barley. Cross marker indicates the mean value
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Analyses

Vegetation indices

A preliminary analysis of the correlation between indices and LAI revealed the presence 
of some obvious outliers. Images from two dates in Müncheberg 2018 had hazy pixels over 
the spring barley fields and needed to be discarded. A visual inspection of the WDVI per-
formance suggested that a standardization analogous to NDVI would improve its correla-
tion to LAI, and therefore a normalized WDVI (NWDVI) was created using Eq. 1:

where WDVI is the weighted differential vegetation index as defined in Table 2, and B8 
and B4 are the Sentinel bands 8 and 4 respectively.

The closest fit to LAI was observed for OSAVI, NWDVI and NDVI84 (i.e. the conven-
tional NDVI with bands NIR and red) with a coefficient of determination  (r2) of 0.905, 
0.894 and 0.893 respectively (Table 4). If a fixed value of the constant S in NWDVI is 
used, then the overall relationship of this VI to LAI is almost identical to NDVI.

The results of applying the fitted models to the two best performing indices show that 
the predictions can adequately replace the observations, even when 2020 survey data are 
included (Fig. 2). This inclusion did not constitute a true validation test, but just a prelimi-
nary test. A rigorous validation was done by cross-validation as described in Methods. 

The same OSAVI and NWDVI models were applied to PlanetScope and Rapi-
dEye images, which resulted in a slight reduction of the coefficient of determination 
(Table 5), from 0.905 to 0.857 in the case of OSAVI (Fig. 3) and from 0.894 to 0.852 
in the case of NWDVI  (Fig. 4, left). However, when the S parameter in NWDVI (see 
definition in Table 2) was obtained from each sensor separately, the overall fit increased 

(1)NDWVI = WDVI∕(B8 + B4)

Table 4  VI-LAI curve fitting

Index definition is shown in Methods. MCARI was considered to perform too poorly to provide further 
information
NWDVI normalized weighted vegetation index, VI vegetation index

Vegetation Index RMSE r2 Model Parameters

OSAVI 0.297 0.905 LAI = a*exp(b*VI) a = 0.103, b = 5.53
NWDVI 0.314 0.894 LAI = a*exp(b*VI) a = 0.210, b = 3.39
NDVI84 0.314 0.893 LAI = a*exp(b*VI) a = 0.107, b = 4.06
NDVI74 0.320 0.889 LAI = a*exp(b*VI) a = 0.118, b = 3.97
SR84 0.340 0.875 LAI = a*ln(VI) − b a = 1.718, b =  − 1.073
NDVI75 0.346 0.871 LAI = a*exp(b*VI) a = 0.29, b = 3.36
SR75 0.349 0.868 LAI = a*VI + b a = 0.912, b = 0.77
WDVI 0.446 0.785 LAI = a*exp(b*VI) a = 0.348, b = 5.7
IRECI 0.449 0.782 LAI = a*exp(b*VI) a = 0.812, b = 1.053
EVI 0.501 0.728 LAI = a*exp(b*VI) a = 0.267, b = 3.36
NDVI54 0.508 0.723 LAI = a*exp(b*VI) a = 0.532, b = 3.8
WDVI74 0.526 0.701 LAI = a*exp(b*VI) a = 0.432, b = 5.28
MCARI – 0.063 – –
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to 0.881  (Fig.  4, right). The improvement can be seen clearly when focusing on the 
changes in squares and empty circles on Fig. 4.  

Data extracted from RPA at the Gembloux site was included in the LAI-NWDVI 
relationship. A new exponential function was fitted with the data, achieving a  r2 of 
0.794 with a RMSE of 0.324 (Fig. 5).

As described in Methods, the VI-based models that best correlated with measured 
LAI were processed with the ARTMO tool to validate the predictions. Using the same 
dataset (years 2018 and 2019), predicted LAI with OSAVI and NWDVI were used (sep-
arately) as variables to be processed in ARTMO with a series of machine learning algo-
rithms and validated with a leave-one-out cross-validation approach. Cross validation 

Fig. 2  Prediction accuracy of the indices OSAVI and NWDVI. Black points represent values from 2018 and 
2019, used to build the models; grey points are values from 2020

Fig. 3  Prediction accuracy of 
OSAVI for three satellite sensors
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Fig. 4  NWDVI prediction accuracy for three satellite sensors. Left, with the same soil parameter value for 
all sensors. Right, with soil parameters extracted for each sensor

Fig. 5  NWDVI prediction accu-
racy for all sensors

Table 5  VI prediction accuracy 
for all satellite sensors (Sentinel, 
PlanetScope and RapidEye) 
together using the models 
described in Table 4

“S constant” means that the same parameter S was used for all sen-
sors. “S sensor” means that a different S parameter from the corre-
sponding images was estimated for each sensor

Vegetation index RMSE r2

OSAVI 0.323 0.857
NWDVI, S constant 0.323 0.852
NWDVI, S sensor 0.281 0.881
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between the VIs and observed LAI with the machine learning algorithm least squares 
linear regression (LSLR) resulted in RMSEs of 0.32–0.34 (Table  6). Coefficients of 
determination resulted in similar values (0.88–0.89; Table  6) to those obtained in the 
curve fitting procedure (Table 5).

Machine learning regression

Unlike the VI approach where only 2018 and 2019 were used to build the model, for the 
machine learning regressions, it was necessary to increase the database size and therefore, 
all three years were included.

Relevance vector machine (RVM) and Gaussian process regression (GPR) were the best 
performing algorithms for both 12- and 4-band configurations, with RMSEs of 0.34–0.37 
and coefficients of determination of 0.80–0.83 (Table 7). Both in terms of RMSE and  r2, 
the 4-band configuration performed slightly better than the 12 bands (Table 7). Predicted-
observed relationships look very similar for both 12- and 4-band configurations (Figs. 6 
and 7) with a tendency to diverge from the observations at higher values of LAI.

PROSAIL inverse modeling and look up tables

In an initial step, PROSAIL generated reflectance data (canopy spectra) using the 
range of plant parameters, including LAI, proposed in Table 3. Spectra generated with 
the forward modeling showed a pattern consistent with the expected spectra shape for 

Table 6  Cross validation results 
of the best performing vegetation 
indices processed with the LSLR 
algorithm

VI RMSE r2

OSAVI 0.317 0.891
NWDVI 0.338 0.876

Table 7  Performance of the machine learning regression algorithms (ordered by accuracy with 12 bands) 
with all 12 Sentinel bands and with the four 10-m visual-NIR bands

Machine learning algorithm Acronym 12 Sentinel bands 4 Visual-NIR Senti-
nel bands

RMSE r2 RMSE r2

Relevance vector machine RVM 0.369 0.801 0.337 0.833
Gaussian process regression GPR 0.371 0.800 0.338 0.834
Principal components regression PCR 0.386 0.783 0.415 0.749
Partial least square regression PLSR 0.391 0.779 0.382 0.788
Support vector regression SVR 0.395 0.778 0.389 0.777
Least squares linear regression LSLR 0.404 0.767 0.371 0.799
Bagging trees BaT 0.408 0.761 0.340 0.769
Random forest tree bagger RFTB 0.408 0.755 0.355 0.821
Boosting trees BoT 0.486 0.683 0.395 0.773
Regression tree RT 0.494 0.659 0.467 0.696
Random forest fit ensemble RFFE 0.499 0.657 0.471 0.690
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canopies ranging from low to high LAI (Fig. 8), where low LAI spectra displayed high 
reflectance in red and blue wavelengths (depicted with orange-yellow tones), typical of 
sparse, less green canopies.

The two cost functions resulting in best fits, Geman and McClure and least absolute 
error, showed RMSEs of around 0.5 and 0.6 for the tests with 12 Sentinel bands and 
the four visible-NIR bands, respectively (Table 8). The coefficient of determination  (r2) 
was somewhat higher in the case of the 4-band configuration (0.84) than the 12 bands 
(0.81), for the two best performing cost functions (Table 8).

When plotting the predicted versus the observed LAI, it can be seen that the rela-
tively high RMSE (in comparison with the RMSE of other methods in previous and 
subsequent sections) was due to a bias in the prediction towards the underestimation of 
LAI, more noticeable in the 4-band configuration (Fig. 9).

Fig. 6  LAI prediction accuracy of the machine learning algorithms using all 12 Sentinel bands

Fig. 7  LAI prediction accuracy of the machine learning algorithms using 4 visual-NIR Sentinel bands
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Sentinel‑2 for agriculture

Sen2-Agri was able to generate more than 100 LAI products from Müncheberg and 
Dedelow for the 2018–2020 period. These included products with missing information due 
to clouds and other image quality issues.

The relationship between values extracted from the LAI products and the ground sur-
veys reached a coefficient of determination  (r2) of 0.856 with a RMSE of 0.304 (Fig. 10). 
One LAI product from April 19, 2019, few days away from a ground LAI measurement of 
winter barley at Müncheberg was missing. Sen2-Agri’s quality control system most likely 

Fig. 8  Look-up table (LUT) vegetation spectra (N = 5000) generated by PROSAIL in the forward modeling 
process. Colors represent the value of leaf area index (LAI) corresponding to each spectrum

Table 8  Validation of retrieved 
LAI from the simulated spectra 
in PROSAIL with respect to 
measured LAI, for tests with 12 
and 4 satellite bands

Cost function algorithm RMSE r2

12 bands
Geman and McClure 0.425 0.811
Least absolute error 0.463 0.801
RMSE 0.540 0.779
4 bands
Geman and McClure 0.558 0.836
Least absolute error 0.578 0.823
RMSE 0.606 0.754
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discarded the entire image, even though the information on this particular experimental 
plot was suitable for the analysis.

Comparison between methods

The two best performing VI-based models constructed with the NLSCF tool were processed 
with ARTMO to see if both tools would provide comparable RMSE and  r2 values. To do 
this, OSAVI and NWDVI were used separately in place of satellite bands as variables to be 
processed in ARTMO with the LSLR algorithm and validated with a leave-one-out cross-
validation approach. OSAVI and NWDVI statistics were very similar (maximum difference 

Fig. 9  Inverse modeling. LAI retrieval using the Geman and McClure (G&M) cost function with 12 Senti-
nel bands (left) and 4 visual-NIR bands (right)

Fig. 10  Sen2-Agri model accu-
racy. D Dedelow, M Müncheberg
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of ± 0.024) with both ARTMO and NLSCF methods (Table 9) indicating that the fitting proce-
dures and the resulting predictions were comparable.

Sen2-Agri is the only method that did not use data from this study to develop the predic-
tive model. A comparison between predictions from Sen2-Agri and any of the other meth-
ods provides an estimation of the extent at which predicted LAI correspond to physical vari-
ables related to one another. A comparison between predictions from Sen2-Agri and OSAVI 
(Fig. 11), for example, showed a very tight linear relationship, suggesting that both methods 
truly describe the same crop parameter.

Table 9  Comparison between 
model fitting methods

Root mean square errors (RMSE) and coefficient of determination 
 (r2) are provided from both ARTMO toolbox and the non-linear least 
square curve fitting (NLSCF) tool (see indices and algorithm acro-
nyms and descriptions in Methods section)

VI/Algorithm RMSE r2

OSAVI ARTMO: 0.317 NLSCF: 0.297 ARTMO: 
0.891 
NLSCF: 
0.905

NWDVI ARTMO: 0.338 NLSCF: 0.314 ARTMO: 
0.876 
NLSCF: 
0.894

Fig. 11  Comparison between 
OSAVI and Sen2-Agri LAI 
prediction models
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Discussion

Most of the indices tested, that is NDVIs using bands 7 or 8, simple ratios (SR), OSAVI 
and the normalized WDVI, resulted in RMSEs lower than 0.4 and  r2 higher than 0.8. This 
is consistent with previous studies on VIs on crops, using satellites (Asam, 2014; Boegh 
et al., 2013; Clevers et al., 2017; Dong et al., 2019; Reisi Gahrouei et al., 2020) and RPAs 
(Marino & Alvino, 2019; Yao et al., 2017). The vegetation indices that showed the highest 
accuracy to measure LAI in barley seem particularly convenient because they only require 
red and NIR bands, the two most common bands in all multispectral platforms.

In almost all VIs, there was an exponential-type relationship to LAI with a clear ten-
dency to underestimate LAI values around 5 (Figs.  2, 3, 4, 5). This saturation effect of 
indices at higher values of LAI continues to be a drawback of many indices (Cao et al., 
2017; Dong et al., 2019; Gu et al., 2013), however, in cases such as model data assimilation 
in which often LAI estimates are needed at early stages of crop development, indices can 
still be useful.

Another common limitation of indices is the effect of soil reflectance at low levels of 
plant cover, a problem intended to be solved by OSAVI (Steven, 1998) and WDVI (Clev-
ers, 1989). Adding a normalization term to WDVI improved the prediction substantially 
(compare WDVI with NWDVI in Table  4). Moreover, the possibility of being able to 
adjust the soil parameter can improve further its performance when using different sensors. 
It is suggested that this index is tested in other situations where a strong soil reflectance 
influence is suspected.

Canopy properties at different development stages are also relevant in LAI estimation 
with RS. In this work, it was attempted to encompass the widest range of stages possible 
with the limitation of plants being too small for LAI measurements (before the beginning 
of stem elongation) or the canopy reflectance being strongly affected by the appearance of 
ear awns (beginning of the heading stage).

In general, the best performing machine learning algorithms did slightly worse than the 
best VIs and had higher RMSE values. Relevance vector machine (RVM) and Gaussian 
process regression (GPR), the best performers at both 12- and 4-band combinations, repre-
sent two different approaches.

RVM is based on the concept of support vector machines but placed in a Bayesian con-
text and using Gaussian-type mechanisms (Samui & Dixon, 2012). RVM has been found 
to perform as well as support vector machines, while requiring fewer model terms (Elarab 
et al., 2015). GPR, an approach based on a Bayesian framework and a Gaussian probability 
distribution, performs well when spectral data reduction is needed, and has been applied 
with success to estimate plant biophysical parameters (Verrelst et al., 2012), but showed 
a poor performance compared to other methods in another study (Mao et  al., 2019) and 
mixed results in another (Upreti et al., 2019). Both GPR and SVM were also among the 
best performing machine learning regression algorithms in a study to estimate crop LAI 
in Spain (Verrelst et al., 2015). However, since many top performers in that study did not 
show good results in the present study and vice versa, it is possible that the performance of 
particular algorithms can vary with site, crop and sensor. Rather than the choice of one or 
another algorithm, the main intention behind this exercise was to assess the general perfor-
mance of machine learning in the context of other methods. In this respect, ML seems to 
be at least as powerful as the use of Vis, with the advantage over the latter that no previous 
knowledge about the canopy-light interaction is needed to decide on what band combina-
tion and relationship is more appropriate for parameter retrieval.
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Surprisingly, the 4-band configuration showed better results than when using 12 
bands. One possible explanation is that discarding bands functions as a sort of band 
selection and a consequent dimensionality reduction. In a study to determine the min-
imum number of satellite bands to achieve the optimal LAI retrieval accuracy (Mao 
et al., 2019), results indicated this number to be between 6 and 5, but in no case using 
more bands than the minimal number resulted in lower accuracies, as it did in the pre-
sentr study. In some studies with RPAs predicting plant biophysical parameters, a small 
number of bands was increased by adding band combinations (VIs) (Romero et  al., 
2018) and plant height metrics (Han et al., 2019) but none of them considered the pos-
sibility of few bands in its original form. If these results can be verified in other situ-
ations, it follows that relatively simple sensor spectral configurations are sufficient for 
monitoring crop development and productivity.

The inverse modeling approach produced less accurate LAI predictions than the 
machine learning algorithms. Even though the coefficient of determination may still indi-
cate that model is satisfactory, RMSE values are much higher than the two previous meth-
ods, and most were higher than 0.5, indicating a below-excellent status according to Rich-
ter et al. (2012a). In the predicted vs. observed plots from the inverse modeling with 12 
bands (Fig. 9, left), all points in general are farther away around the one-to-one line com-
pared to the other methods. In the case of the 4 bands (Fig. 9, right), there is also a bias 
towards the underestimation of LAI.

The performance of the inverse modeling can in theory be improved by testing different 
values or ranges of input parameters. This flexibility typical from models, however, is also 
a disadvantage, because the method of parameter estimation can become very complicated. 
Besides this, canopy and leaf radiative transfer models are specific to species and need to 
be adjusted accordingly. Despite the intrinsic complexity of models and their inversion, in 
the present study, this process was relatively simplified by ARTMO. Among other features, 
the possibility of using many cost functions simultaneously reduced the number of uncer-
tainties in the process.

Sen2-Agri also achieved an accuracy comparable to the VIs, with a coefficient of deter-
mination slightly lower than the best performing indices. Part of its accuracy is due to the 
fact that Sen2-Agri uses the information from previous dates in an explicitly multitemporal 
data frame (Defourny et al., 2019). This method requires all bands of Sentinel-2 images, 
and it is unsuitable for other platforms at higher spatial resolution (e.g. Planet or RPAs), 
which typically also have less spectral bands. Unlike the methods based on indices pre-
sented here, Sen2-Agri is able to estimate LAI of many crop types and species simultane-
ously, which makes it particularly appropriate for global surveys.

Of all the methods considered, VIs were among the best performers, which is an impor-
tant result given their simplicity. Additionally, VIs do not require more than two or three 
bands and a minimum training data size. VIs’ simplicity, however, make them prone to be 
affected by confounding variables other than leaf and canopy reflectance properties, which 
in turn affects VIs’ applicability to other conditions (Mourad et al., 2020). Based on these 
considerations, the use of VIs is suggested when the training data is scarce, and their appli-
cation is restricted to a narrow range of varying conditions. Among all the possible VIs 
available, it is recommended to favor indices that include a soil correction factor.

Machine learning regressions can handle multivariate problems much better than VI 
models, eliminating the need to decide for one or another band. Whether ML is able to 
manage information from different sensors, as VIs did in this study, is something that needs 
to be investigated, although this study suggests that sensors with few bands, such as RPAs, 
are well suited for ML methods. In general, the application of ML can be useful, provided 
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that enough information is available. In that case, instead of using ML as an alternative to 
VIs, it can be used parallel to VIs while rapidly exploring different input variables.

LAI retrieval with RTMs has also produced relatively accurate results. However, even 
though tools like ARTMO are user friendly, the inherent complexity of RTMs still requires 
a level of expertise and experience that makes this approach less useful for finding simple 
solutions, and probably much more suitable for a deeper understanding of light-canopy 
interactions in different circumstances and with different crops.

Sen2-Agri also showed that it can perform satisfactorily with barley, which means that it 
could be effective for other crops. However, since this tool depends on Sentinel-2 and can-
not use higher spatial resolution sensors, the spatial resolution of the biophysical parameter 
to be retrieved cannot be improved. Therefore, Sen2-Agri is more suited for global studies 
rather than for precision agriculture.

Conclusions

A normalized version of the weighted difference vegetation index tested for the first time 
proved to be very accurate for the estimation of LAI in barley. This VI is almost equivalent 
to the widespread NDVI, except for a soil correction factor that can be directly extracted 
from the target image.

The fact that LAI measured in this study was consistent with an independent estimation 
method such as the Sen2-Agri system, indicates that both are measuring the same param-
eter and that this quantity can reliably assist crop models.

This study stresses on the importance of assessing the appropriateness of most current 
approaches for retrieving crop biophysical parameters, by placing these methods on an 
equal footing. This task has become simpler with the increasing availability of statistical 
algorithms and tools.

Here it is suggested that the precision agriculture community could truly profit from 
these broad comparisons, because the relative performance of retrieval methods varies 
greatly among production systems and environments. For example, in this study, some 
VIs showed a remarkable accuracy, but because VIs have a strong empirical component, 
their application in most cases needs the availability of in situ or specific data. Also, the 
rapid development of both far- and close remote sensing data sources constantly challenges 
established criteria and makes it more and more necessary having at hand efficient assess-
ment tools.

Remotely piloted aircrafts (RPAs) probably constitute the fastest growing remote sens-
ing industry. RPAs are becoming increasingly available, they are easy to use, accurate, and 
their high spatial resolution is particularly suited for precision farming. In addition, as this 
study suggests, LAI can be effectively retrieved with few sensor bands, which further sup-
ports the use of drones. Nevertheless, and exactly for that reason, more comprehensive test-
ing is still necessary to further appraise the convenience and effectivity of RPAs.

The proliferation and diversification of remote sensing tools seems to be pointing 
towards cooperation between sensors rather than deciding which tool is more appropriate 
than the other. In this respect, remote sensing data integration or fusion seems to be a valid 
path to explore in future research.

Acknowledgements The authors want to thank Jochem Verrelst for his technical and conceptual support; 
and Ralf Wieland and Gohar Ghazaryan for their valuable manuscript reviews.



1469Precision Agriculture (2022) 23:1449–1472 

1 3

Author contributions PR: Conceptualization, Formal analysis, Investigation, Writing—Original draft, Data 
curation. CN: Conceptualization, Writing—Review & Editing, Supervision, Project administration, Funding 
acquisition. NG: Conceptualization, Writing—Review & Editing, Software, Formal analysis, Project admin-
istration, Funding acquisition. CU: Writing—Review & Editing, Methodology, Software, Formal analysis, 
Resources. FC: Writing—Review & Editing, Investigation, Data curation.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was funded by EIT 
Climate-KIC [Grant ID: 190499 Barley-IT; KAVA Reference: 2.8.3].

Data availability The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations 

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this 
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abrahamsen, P., & Hansen, S. (2000). Daisy: An open soil-crop-atmosphere system model. Environmental 
Modelling & Software, 15, 313.

Asam, S. (2014). Potential of high resolution remote sensing data for leaf area index derivation using statis-
tical and physical models. Würzburg University.

Berger, K., Atzberger, C., Danner, M., D’Urso, G., Mauser, W., Vuolo, F., et al. (2018). Evaluation of the 
PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote 
Sensing, 10(1), 85.

Boegh, E., Houborg, R., Bienkowski, J., Braban, C. F., Dalgaard, T., van Dijk, N., et  al. (2013). Remote 
sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European land-
scapes. Biogeosciences, 10(10), 6279–6307. https:// doi. org/ 10. 5194/ bg- 10- 6279- 2013

Bréda, N.J.J. (2003). Ground‐based measurements of leaf area index: A review of methods, instruments and 
current controversies. Journal of Experimental Botany, 54(392), 2403–2417. https:// doi. org/ 10. 1093/ 
jxb/ erg263

Cao, Z., Cheng, T., Ma, X., Tian, Y., Zhu, Y., Yao, X., et al. (2017). A new three-band spectral index for 
mitigating the saturation in the estimation of leaf area index in wheat. International Journal of Remote 
Sensing, 38(13), 3865–3885. https:// doi. org/ 10. 1080/ 01431 161. 2017. 13061 41

Clevers, J., Kooistra, L., & van den Brande, M. (2017). Using Sentinel-2 data for retrieving LAI and leaf 
and canopy chlorophyll content of a potato crop. Remote Sensing, 9(5), 405. https:// doi. org/ 10. 3390/ 
rs905 0405

Clevers, J. G. P. W. (1989). Application of a weighted infrared-red vegetation index for estimating leaf area 
index by correcting for soil moisture. Remote Sensing of Environment, 29(1), 25–37. https:// doi. org/ 10. 
1016/ 0034- 4257(89) 90076-X

Dahms, T., Seissiger, S., Borg, E., & Conrad, C. (2016). Modelling biophysical parameters of maize using 
Landsat 8 time series. International Archive of Photogrammetry, Remote Sensing and Spatial Informa-
tion Science, XLI-B2, 171-175. https:// doi. org/ 10. 5194/ isprs- archi ves- XLI- B2- 171- 2016

Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., et al. (2019). Near real-time 
agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5194/bg-10-6279-2013
https://doi.org/10.1093/jxb/erg263
https://doi.org/10.1093/jxb/erg263
https://doi.org/10.1080/01431161.2017.1306141
https://doi.org/10.3390/rs9050405
https://doi.org/10.3390/rs9050405
https://doi.org/10.1016/0034-4257(89)90076-X
https://doi.org/10.1016/0034-4257(89)90076-X
https://doi.org/10.5194/isprs-archives-XLI-B2-171-2016


1470 Precision Agriculture (2022) 23:1449–1472

1 3

automated system in various cropping systems around the world. Remote Sensing of Environment, 221, 
551–568. https:// doi. org/ 10. 1016/j. rse. 2018. 11. 007

Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J. M., et al. (2019). Assessment of red-edge vegeta-
tion indices for crop leaf area index estimation. Remote Sensing of Environment, 222, 133–143. https:// 
doi. org/ 10. 1016/j. rse. 2018. 12. 032

Elarab, M., Ticlavilca, A. M., Torres-Rua, A. F., Maslova, I., & McKee, M. (2015). Estimating chlorophyll 
with thermal and broadband multispectral high resolution imagery from an unmanned aerial system 
using relevance vector machines for precision agriculture. International Journal of Applied Earth 
Observation and Geoinformation, 43, 32–42. https:// doi. org/ 10. 1016/j. jag. 2015. 03. 017

ESA (2015). Sentinel-2 User Handbook (p. 64). Eurpean Space Agency.
Fang, H., Baret, F., Plummer, S., & Schaepman-Strub, G. (2019). An Overview of global Leaf Area Index 

(LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57(3), 739–799. 
https:// doi. org/ 10. 1029/ 2018R G0006 08

Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 
for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry 
and Remote Sensing, 82, 83–92. https:// doi. org/ 10. 1016/j. isprs jprs. 2013. 04. 007

Gu, Y., Wylie, B. K., Howard, D. M., Phuyal, K. P., & Ji, L. (2013). NDVI saturation adjustment: A new 
approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Eco-
logical Indicators, 30, 1–6. https:// doi. org/ 10. 1016/j. ecoli nd. 2013. 01. 041

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-
band vegetation indices for prediction of crop chlorophyll content for application to precision agricul-
ture. Remote Sensing of Environment, 81(2–3), 416–426.

Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., et al. (2019). Modeling maize above-ground bio-
mass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 15(1), 
10. https:// doi. org/ 10. 1186/ s13007- 019- 0394-z

Huang, J., Gómez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E., et al. (2019). Assimilation of remote 
sensing into crop growth models: Current status and perspectives. Agricultural and Forest Meteorol-
ogy, 276, 107609. https:// doi. org/ 10. 1016/j. agrfo rmet. 2019. 06. 008

Hunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., & Akhmedov, B. (2013). 
A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International 
Journal of Applied Earth Observation and Geoinformation, 21, 103–112. https:// doi. org/ 10. 1016/j. jag. 
2012. 07. 020

Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sens-
ing of Environment, 34(2), 75–91. https:// doi. org/ 10. 1016/ 0034- 4257(90) 90100-Z

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., et  al. (2009). 
PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sensing of Envi-
ronment, 113, S56–S66. https:// doi. org/ 10. 1016/j. rse. 2008. 01. 026

Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., et al. (2018). A review of data assimilation of remote 
sensing and crop models. European Journal of Agronomy, 92, 141–152. https:// doi. org/ 10. 1016/j. eja. 
2017. 11. 002

Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., & Zalidis, G. (2018). Contri-
bution of remote sensing on crop models: A review. Journal of Imaging, 4(4), 52.

Kersebaum, K. C. (2011). Special features of the HERMES model and additional procedures for param-
eterization, calibration, validation, and applications. In L. R. Ahuja and L. Ma (Ed.), Methods of intro-
ducing system models into agricultural research (pp. 65–94). ASA. https:// doi. org/ 10. 2134/ advag ricsy 
stmod el2. c2

Kooistra, L., Beza, E., Verbesselt, J., van den Borne, J., & van der Velde, W. (2012). Integrating remote-, 
close range-and in-situ sensing for high-frequency observation of crop status to support precision 
agriculture. In Proceedings sensing a changing world. Wageningen University, Wageningen, The 
Netherlands.

Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye veg-
etation indices for estimation of leaf area index and biomass in corn and soybean crops. International 
Journal of Applied Earth Observation and Geoinformation, 34, 235–248. https:// doi. org/ 10. 1016/j. jag. 
2014. 08. 002

Leonenko, G., Los, S. O., & North, P. R. J. (2013). Statistical distances and their applications to biophysi-
cal parameter estimation: Information measures, M-estimates, and minimum contrast methods. Remote 
Sensing, 5(3), 1355–1388. https:// doi. org/ 10. 3390/ rs503 1355

Li, Z., Jin, X., Zhao, C., Wang, J., Xu, X., Yang, G., et al. (2015). Estimating wheat yield and quality by 
coupling the DSSAT-CERES model and proximal remote sensing. European Journal of Agronomy, 71, 
53–62. https:// doi. org/ 10. 1016/j. eja. 2015. 08. 006

https://doi.org/10.1016/j.rse.2018.11.007
https://doi.org/10.1016/j.rse.2018.12.032
https://doi.org/10.1016/j.rse.2018.12.032
https://doi.org/10.1016/j.jag.2015.03.017
https://doi.org/10.1029/2018RG000608
https://doi.org/10.1016/j.isprsjprs.2013.04.007
https://doi.org/10.1016/j.ecolind.2013.01.041
https://doi.org/10.1186/s13007-019-0394-z
https://doi.org/10.1016/j.agrformet.2019.06.008
https://doi.org/10.1016/j.jag.2012.07.020
https://doi.org/10.1016/j.jag.2012.07.020
https://doi.org/10.1016/0034-4257(90)90100-Z
https://doi.org/10.1016/j.rse.2008.01.026
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.2134/advagricsystmodel2.c2
https://doi.org/10.2134/advagricsystmodel2.c2
https://doi.org/10.1016/j.jag.2014.08.002
https://doi.org/10.1016/j.jag.2014.08.002
https://doi.org/10.3390/rs5031355
https://doi.org/10.1016/j.eja.2015.08.006


1471Precision Agriculture (2022) 23:1449–1472 

1 3

Mao, H., Meng, J., Ji, F., Zhang, Q., & Fang, H. (2019). Comparison of machine learning regression algo-
rithms for cotton leaf area index retrieval using Sentinel-2 spectral bands. Applied Sciences, 9(7), 1459.

Marino, S., & Alvino, A. (2019). Detection of spatial and temporal variability of wheat cultivars by high-
resolution vegetation indices. Agronomy, 9(5), 226.

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in 
remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. 
https:// doi. org/ 10. 1080/ 01431 161. 2018. 14333 43

McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting 
values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55–61.

Meier, U. (2018). Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Open Agrar 
Repositorium. https:// doi. org/ 10. 5073/ 20180 906- 074619

Mourad, R., Jaafar, H., Anderson, M., & Gao, F. (2020). Assessment of leaf area index models using 
harmonized landsat and Sentinel-2 surface reflectance data over a semi-arid irrigated landscape. 
Remote Sensing, 12(19), 3121.

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and 
remaining knowledge gaps. Biosystems Engineering, 114(4), 358–371. https:// doi. org/ 10. 1016/j. 
biosy stems eng. 2012. 08. 009

Nendel, C., Kersebaum, K. C., Mirschel, W., & Wenkel, K. O. (2014). Testing farm management options 
as climate change adaptation strategies using the MONICA model. European Journal of Agronomy, 
52, 47–56. https:// doi. org/ 10. 1016/j. eja. 2012. 09. 005

Prabhakara, K., Hively, W. D., & McCarty, G. W. (2015). Evaluating the relationship between biomass, 
percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, 
United States. International Journal of Applied Earth Observation and Geoinformation, 39, 
88–102. https:// doi. org/ 10. 1016/j. jag. 2015. 03. 002

Reisi Gahrouei, O., McNairn, H., Hosseini, M., & Homayouni, S. (2020). Estimation of crop bio-
mass and leaf area index from multitemporal and multispectral imagery using machine learning 
approaches. Canadian Journal of Remote Sensing, 46(1), 84–99. https:// doi. org/ 10. 1080/ 07038 992. 
2020. 17405 84

Richter, K., Hank, T.B., Mauser, W., & Atzberger, C. (2012a). Derivation of biophysical variables from 
Earth observation data: validation and statistical measures. Journal of Applied Remote Sensing, 
6(1), 063557.

Richter, K., Hank, T. B., Vuolo, F., Mauser, W., & D’Urso, G. (2012b). Optimal exploitation of the Sen-
tinel-2 spectral capabilities for crop leaf area index mapping. Remote Sensing, 4(3), 561–582.

Rivera, J. P., Verrelst, J., Leonenko, G., & Moreno, J. (2013). Multiple cost functions and regularization 
options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PRO-
SAIL model. Remote Sensing, 5(7), 3280–3304.

Romero, M., Luo, Y., Su, B., & Fuentes, S. (2018). Vineyard water status estimation using multispectral 
imagery from an UAV platform and machine learning algorithms for irrigation scheduling manage-
ment. Computers and Electronics in Agriculture, 147, 109–117. https:// doi. org/ 10. 1016/j. compag. 
2018. 02. 013

Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J. P., Zhang, Y., Rozenstein, O., et al. (2021). Fusion of Sen-
tinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitor-
ing. International Journal of Applied Earth Observation and Geoinformation, 96, 102260. https:// 
doi. org/ 10. 1016/j. jag. 2020. 102260

Samui, P., & Dixon, B. (2012). Application of support vector machine and relevance vector machine to 
determine evaporative losses in reservoirs. Hydrological Processes, 26(9), 1361–1369. https:// doi. 
org/ 10. 1002/ hyp. 8278

Schirrmann, M., Giebel, A., Gleiniger, F., Pflanz, M., Lentschke, J., & Dammer, K.-H. (2016). Monitoring 
agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sensing, 8(9), 706.

Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agri-
culture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641.

Shattuck, T.W. (2015), Nonlinear least squares curve fitting, Colby College, https:// www. colby. edu/ 
chemi stry/ PChem/ scrip ts/ lsfit pl. html

Sinha, S. K., Padalia, H., Dasgupta, A., Verrelst, J., & Rivera, J. P. (2020). Estimation of leaf area index 
using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical 
deciduous forest plantation, North India. International Journal of Applied Earth Observation and 
Geoinformation. https:// doi. org/ 10. 1016/j. jag. 2019. 102027

Steven, M. D. (1998). The sensitivity of the OSAVI vegetation index to observational parameters. 
Remote Sensing of Environment, 63(1), 49–60.

https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.5073/20180906-074619
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://doi.org/10.1016/j.eja.2012.09.005
https://doi.org/10.1016/j.jag.2015.03.002
https://doi.org/10.1080/07038992.2020.1740584
https://doi.org/10.1080/07038992.2020.1740584
https://doi.org/10.1016/j.compag.2018.02.013
https://doi.org/10.1016/j.compag.2018.02.013
https://doi.org/10.1016/j.jag.2020.102260
https://doi.org/10.1016/j.jag.2020.102260
https://doi.org/10.1002/hyp.8278
https://doi.org/10.1002/hyp.8278
https://www.colby.edu/chemistry/PChem/scripts/lsfitpl.html
https://www.colby.edu/chemistry/PChem/scripts/lsfitpl.html
https://doi.org/10.1016/j.jag.2019.102027


1472 Precision Agriculture (2022) 23:1449–1472

1 3

Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for preci-
sion agriculture. Information, 10(11), 349. https:// doi. org/ 10. 3390/ info1 01103 49

Upreti, D., Huang, W., Kong, W., Pascucci, S., Pignatti, S., Zhou, X., et  al. (2019). A comparison of 
hybrid machine learning algorithms for the retrieval of wheat biophysical variables from Senti-
nel-2. Remote Sensing, 11(5), 481.

Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: The 
SAIL model. Remote Sensing of Environment, 16(2), 125–141.

Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., & Moreno, J. (2012). Retrieval of vegetation 
biophysical parameters using Gaussian process techniques. IEEE Transactions on Geoscience and 
Remote Sensing, 50(5), 1832–1843. https:// doi. org/ 10. 1109/ TGRS. 2011. 21689 62

Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., et al. 
(2019). Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on 
retrieval methods. Surveys in Geophysics, 40(3), 589–629. https:// doi. org/ 10. 1007/ s10712- 018- 9478-y

Verrelst, J., Rivera, J. P., Leonenko, G., Alonso, L., & Moreno, J. (2013). Optimizing LUT-based RTM 
inversion for semiautomatic mapping of crop biophysical parameters from Sentinel-2 and-3 data: Role 
of cost functions. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 257–269.

Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G.P.W., Camps-Valls, G., et al. (2015). 
Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval meth-
ods—A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 260–272. https:// 
doi. org/ 10. 1016/j. isprs jprs. 2015. 04. 013

Weiss, M., Baret, F., Leroy, M., Hautecœur, O., Bacour, C., Prevol, L., et al. (2002). Validation of neural net 
techniques to estimate canopy biophysical variables from remote sensing data. Agronomie-Sciences 
Des Productions Vegetales Et De L’environnement, 22(6), 547–554.

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial vehicle remote sensing 
for field-based crop phenotyping: Current status and perspectives. Frontiers in Plant Science, 8(1111), 
1–26. https:// doi. org/ 10. 3389/ fpls. 2017. 01111

Yao, X., Wang, N., Liu, Y., Cheng, T., Tian, Y., Chen, Q., et al. (2017). Estimation of wheat LAI at mid-
dle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sensing, 
9(12), 1304.

Zheng, G., & Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) using remote sensing: Theories, 
methods and sensors. Sensors (basel), 9(4), 2719–2745. https:// doi. org/ 10. 3390/ s9040 2719

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Pablo Rosso1  · Claas Nendel1,5,6,7 · Nicolas Gilardi2 · Cosmin Udroiu3 · 
Florent Chlebowski4

1 Data Analysis and Simulation Research Platform, Leibniz Center for Agricultural Landscape 
Research (German: ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany

2 CybeleTech, 2 rue Chaintron, 92120 Montrouge, France
3 Software Solutions for Applied Science, CS GROUP – ROMANIA, 29 Pacii street, 

200692 Craiova, Dolj, Romania
4 BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Picardie Jules Verne, 

Pôle du Griffon, 180 rue Pierre-Gilles de Gennes, 02000 Barenton-Bugny, France
5 Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, 14476 Potsdam, 

Germany
6 Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), 

Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
7 Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, 

Czech Republic

https://doi.org/10.3390/info10110349
https://doi.org/10.1109/TGRS.2011.2168962
https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.3390/s90402719
http://orcid.org/0000-0002-0184-2723

	Processing of remote sensing information to retrieve leaf area index in barley: a comparison of methods
	Abstract
	Introduction
	Methods
	Field data
	Remote sensing data
	Analyses
	Vegetation indices
	Machine learning regression
	PROSAIL inverse modeling and look up tables
	Sentinel-2 for agriculture


	Results
	Field data
	Analyses
	Vegetation indices
	Machine learning regression
	PROSAIL inverse modeling and look up tables
	Sentinel-2 for agriculture
	Comparison between methods


	Discussion
	Conclusions
	Acknowledgements 
	References




