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Abstract
Conservation tillage (CT) options are among the most rapidly spreading land preparation and crop establishment techniques
globally. In South Asia, CT has spread dramatically over the last decade, a result of strong policy support and increasing
availability of appropriate machinery. Although many studies have analyzed the yield and profitability of CT systems, the
technical efficiency impacts accrued by farmers utilizing CT have received considerably less attention. Employing a DEA
framework, we isolated bias-corrected meta-frontier technical efficiencies and meta-technology ratios of three CT options
adopted by wheat farmers in Bangladesh, including bed planting (BP), power tiller operated seeding (PTOS), and strip tillage
(ST), compared to a control group of farmers practicing traditional tillage (TT). Endogenous switching regression was
subsequently employed to overcome potential self-selection bias in the choice of CT, in order to robustly estimate efficiency
factors. Among the tillage options studied, PTOS was the most technically efficient, with an average meta-technology ratio
of 0.90, followed by BP (0.88), ST (0.83), and TT (0.67). The average predicted meta-frontier technical efficiency for the CT
non-adopters under a counterfactual scenario (0.80) was significantly greater (P= 0.00) than current TE scores (0.65),
indicating the potential for sizeable profitability increases with CT adoption. Conversely, the counterfactual TE of non-
adopters was 23% greater than their DEA efficiency, also indicating efficiency gains from CT adoption. Our results provide
backing for agricultural development programs in South Asia that aim to increase smallholder farmers’ income through the
application of CT as a pathway towards poverty reduction.

Keywords Bangladesh ● Bias-corrected meta-frontier ● Conservation agriculture ● Endogenous switching regression ● Meta-
technology ratio ● Technical efficiency
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1 Introduction

Over 84% of the globe’s agricultural land is managed by
farmers cultivating less than two hectares, the majority of
whom focus primarily on the production of staple cereals
such as rice, maize, and wheat (FAO 2014). In South Asia
alone, these production systems cater to the food needs of
over a billion people (cf. Aravindakshan et al. 2015). Pro-
duction inefficiencies are a particular concern for resource-
poor smallholders in South Asia’s rice-wheat rotational
systems (Rehman et al. 2014), which occupy over 14 mil-
lion hectares (Erenstein 2009), as forgone profits resulting
from high production costs can determine subsistence above
or below the poverty line. Land preparation, tillage, and
crop establishment are among the most energy consuming
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and costly agricultural operations incurred by cereal pro-
ducers (Gathala et al. 2016; Raghu et al. 2016). Consider-
able research and development efforts have consequently
been undertaken to develop and examine the potential for
conservation tillage (CT) technologies and associated crop
establishment techniques, which can reduce costs and
increase farmers’ production efficiency, while maintaining
stable yields (cf. Gathala et al. 2015).

CT is an umbrella term used to describe a portfolio of
tillage, crop establishment, and crop residue management
systems that aim to conserve soil and water resources, while
improving input use efficiency and hence productivity
(Abdalla et al. 2013). Cost-savings therefore provide a
major driver for CT adoption (Krishna and Veettil 2014).
CT examples include zero- and strip-tillage, often with
residues retained as mulch, machine-operated shallow-till
seeding, and crop establishment on minimally tilled but
raised beds reported to increase irrigation use efficiency
(Aravindakshan et al. 2015; Gathala et al. 2016), an issue of
importance given increasing water pumping costs in Ban-
gladesh (Qureshi et al. 2015). These approaches share
similarities with conservation agriculture (CA) that aims to
consistently reduce or eliminate tillage (Gathala et al. 2015).
But unlike conservation agriculture, farmers practicing CT
may not completely eliminate tillage. CT farmers may also
remove crop residues for feeding livestock or as cooking
fuel (Aravindakshan et al. 2015).

In the last decade, global area under CT has increased by
an estimated 60% (Derpsch et al. 2010). The spread of CT
has however been most rapid in North and South America,
Southern Africa, and in Australia, primarily among larger
and wealthier farmers, with less adoption by smallholder
farmers (Derpsch et al. 2010). CT is nonetheless a popular
technology favored by donors, NGOs, and research orga-
nizations in developing nations, and is consequently
increasingly promoted as a cost-efficient method of cereal
crop production. Several studies have analyzed the deter-
minants of CT adoption in South Asia, though most focus
on the western Indo-Gangetic Plains including Uttar Pra-
desh, Punjab, and Haryana in India, and the Punjab in
Pakistan, where farmers tend to be wealthier and have larger
field sizes (Krishna et al. 2012; Krishna et al. 2017). Con-
versely, the eastern Indo-Gangetic Plains (IGP), which is
composed of Bangladesh and West Bengal and Bihar in
India, tend to be more impoverished, with population den-
sities exceeding 1200 people km−2 and considerably
smaller field sizes (Erenstein and Thorpe 2011; World Bank
2016). While large production gains and reductions in rural
poverty were accrued during the Green Revolution in the
eastern IGP, a plateau in factor productivity has been
recently been observed (Lin and Huybers 2012). This has
retarded the pace of poverty reduction and signaled

environmental concerns where inputs are used inefficiently
(Erenstein and Thorpe 2011).

Alternative approaches that improve smallholder effi-
ciency, productivity, and profitability may however accel-
erate poverty reduction process in eastern IGP. CT may
therefore have a role to play, while also helping to mitigate
environmental externalities and input use inefficiencies pre-
requisite for sustainable profitability increases (Derpsch
et al. 2010; Krishna et al. 2012). The technological effi-
ciency of CT in the poverty-dense eastern IGP has only
recently begun to be studied (cf. Keil et al. 2015), although
the potential for biases resulting from self-selection in
farmers’ technology choices has been insufficiently
addressed. This paper therefore responds to this problem, by
addressing and overcoming the potential for such con-
founding artifacts in CT assessments.

Available literature reveals three major shortcomings of
CT technical efficiency studies. Firstly, previous researchers
have presented CT as a single technology, although the term
is more appropriate as an umbrella for a number of asso-
ciated tillage and crop establishment techniques (Abdalla
et al. 2013). Studies that have isolated CT into individual
tillage options have conversely indicated the risk of self-
selection bias (cf. Aravindakshan et al. 2015). Bias resulting
from the random selection of villages and households may
also be problematic (cf. Krishna and Veettil 2014), as ran-
domization may not ensure an adequate sample of CT
adopters and non-adopters for robust analysis. Measured
productivity and efficiency variances may therefore be
attributed to self-selection rather than unbiased effect
(Bravo-Ureta et al. 2012). Finally, few studies have asses-
sed counterfactual effects among CT non-adopters, for
example by estimating what efficiency gains may have been
accrued had farmers adopted CT, and vice versa for non-
adopters.

In this paper, we analyze CT wheat farmers’ technical
efficiency (TE) in a representative area of the eastern IGP in
northwestern Bangladesh, while addressing the short-
comings of previous analyses. We consider three of the
most popular CT technologies adopted by farmers, includ-
ing bed planting (BP), strip tillage (ST), and reduced tillage
machine-aided line sowing using a PTOS or power-tiller
operated seeder (see Krupnik et al. 2013 for further
description). These are contrasted with farmers’ traditional
practices of repetitive tillage, broadcast seeding and crop
establishment. The technical efficiency of CT compared to
traditional tillage (TT) is analyzed using meta-technology
ratios generated via a bootstrapped non-parametric meta-
frontier approach that corrects for sampling errors. Boot-
strapped truncated regressions are subsequently employed
on group-specific efficiency scores to identify the factors
affecting TE within tillage options. We subsequently
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employ endogenous switching regression to correct self-
selection biases and to generate counterfactual scenarios.
These are matched with meta-frontier technical efficiency
scores to reconfirm the impact of farmers’ technology
choices.

2 Conservation tillage in eastern IGP

Considering the small farm size and poverty in eastern IGP
(Erenstein 2009; Krishna et al. 2012), developments in CT
technologies have tended to focus on scale appropriate two-
rather than four-wheeled tractors, and attachable land pre-
paration and direct seeding implements (Krupnik et al.
2013). In Bangladesh, two-wheeled tractors were first
introduced in the 1980s, while widespread adoption began
in the 1990s. Today, the majority of Bangladesh’s land is
prepared by two-wheeled tractor (Mottaleb et al. 2016).
Various direct seeding and bed planter attachments have
been made commercially available for two-wheel tractors in
Bangladesh, enabling an increase in CT adoption (Krupnik
et al. 2013). Such machinery is normally supplied by
machinery service providers through fee for service
arrangements. Conversely traditional tillage (TT) techni-
ques in Bangladesh typically include a sequence of three-to-
four soil inversion operations with a two-wheel tractor
power tiller without direct seeding or bed forming attach-
ments, and with most crop residue removed. Wheat farmers
then hand broadcast seeds and incorporate them with
another tillage pass, though using similar fee-for-service
arrangements.

In this paper, practices included under the rubric of CT
include minimal (or reduced) and shallow tillage, single or
double pass ridge (or bed) planting, strip tillage, and zero
tillage, all using machine-aided direct seeding in rows
(Mitchell et al. 2009). Although residue retention is con-
sidered a core component of CT sine qua non (Heimlich
1985; Mitchell et al. 2009), many Bangladeshi farmers have

not adopted this component. Rather, residues tend to be
removed from the field and used as fodder and/or fuel
(Aravindakshan et al. 2015). Given these circumstances, we
therefore use the term CT referring to the practice of
reducing the frequency of tillage passes in conjunction with
the usage of mechanical seeding equipment (Table 1).

3 Analytical framework

3.1 Measuring tillage adoption impact on farming
efficiency

Technical efficiency (TE) improvement can be defined as
the ability of an economic unit to produce a given bundle
(fixed) of output for a maximum reduction of inputs (Färe
et al. 1994). Estimating TE of technology adoption involves
the application of either one of the two general approaches:
parametric stochastic frontier analysis (SFA) and/or non-
parametric data envelopment analysis (DEA). Rahman et al.
(2009) and Wollni and Brümmer (2012) recently employed
SFA with a selection model proposed by Greene (2010) to
analyze the TE of rice and coffee farms in Thailand and
Costa Rica, respectively. To account for observed and
unobserved variable biases in technology adoption, several
recent studies utilize propensity score matching (PSM) with
SFA frameworks to correct selection bias (Villano et al.
2015; González-Flores et al. 2014; Bravo-Ureta et al. 2012).
Although PSM eliminates a larger proportion of the baseline
differences between adopters and non-adopters, its ability to
account for unobservable factors such as farmers’ inherent
skills and individual capabilities is limited. This can add
bias and model dependence. King and Nielsen (2016)
recently showed that even when the selection model is
balanced and inclusive, PSM can increase imbalance and
bias due to approximation of a completely randomized
experiment, rather than a more efficient fully blocked ran-
domized experiment.

Table 1 Wheat tillage options considered in the study

Tillage options considered in the
studya

Description

Bed planting (BP) Beds of approximately 700–740 mm width are established using a two-wheel tractor (2WT) driven bed
planter. Wheat is established on beds by direct seeding. Beds are formed with reduced (single or double)
tillage, or are permanent requiring only pre-season reshaping

Power tiller operated seeder (PTOS) The PTOS is a 2WT seed drill attachment that allows shallow tilling and sowing simultaneously. The
width of the seeding operation is usually 1200 mm, accommodating six rows of wheat

Strip Tillage (ST) Tillage is restricted to 40 mm wide strips in 200 mm separated rows by removal of half of the tines from
the PTOS. Seed is deposited into these strips while the remainder of the soil surface is untilled. Seeding is
completed in a single pass. ST usually requires herbicide application prior to seeding to control weeds

Traditional Tillage (TT) Traditional tillage with 3–4 passes using a 2WT power tiller, occasionally followed by pre-sowing
irrigation, hand broadcast seeding, and then an additional pass to incorporate seed

aFor further details, see Krupnik et al. (2013) and Gathala et al. (2016)
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Out of the two available approaches for TE estimation,
we apply an input-oriented DEA model (Banker et al. 1984)
to estimate TE gains of wheat farmers using different CT
practices. The DEA approach has advantages as there is no
requirement to specify a functional form, which is highly
restrictive to subsistence level farming context, or to include
the prices of the factors of production (Färe et al. 1985;
Seiford and Thrall 1990). Using this approach, the frontier
is calculated through a piecewise linear envelopment of
observed input-output combinations by employing scaling
and disposability assumptions (Olesen and Petersen 1995).
A farmer qualifies as technically efficient (i.e. it lies on the
‘best practice frontier’ as suggested by Cook et al. 2014), if
he or she maintains the current output level (in our case
wheat production) using the possible minimum quantity of
labor, capital, and technology (nutrients, agrochemicals,
seeds, and tillage) inputs. In this study, while farmers
manage enterprises consisting of multiple crops—often in
rotation with a monsoon kharif season rice crop—we focus
exclusively on wheat production as wheat tends to be the
only crop in the rotation to which CT is widely employed
(Erenstein 2009; Aravindakshan et al. 2015; Keil et al.
2015).

Since CT in wheat includes different tillage and crop
establishment technology bundles, the estimate of a single
frontier for all farmers under different subsets of CT prac-
tices is inherently inferior. As such, a meta-frontier (DEA)
framework, based on the concept of the meta-production
function as an envelope of neoclassical production func-
tions (Hayami and Ruttan 1985), can be used to calculate
TE for the global technology and group-specific frontiers
for farmers using CT or TT. Technology gaps for farmers
following different tillage technologies are then estimated
by calculating meta-technology ratio following Battese et al.
(2004) and O’Donnell et al. (2008). We therefore employ a
bias-corrected DEA meta-frontier estimation, graphically
represented and detailed in Figure S1 (see supplementary
material). Both group-specific and meta-frontier efficiencies
are modeled using wheat yield as the output per farm pro-
duced with eight inputs used in wheat production alone.
Land, labor, seed, irrigation water, fertilizers, pesticides and
fuel are incorporated in physical quantities, tillage
machinery use was captured in monetary terms (Table 2).

3.1.1 Group specific frontier efficiency

We assume that farmers (DMUj, j= 1,…, n) use a vector of
m discretionary inputs X= (x1, …, xm) to produce wheat (Y)
by adopting any of the k tillage technologies. k differs with
the group we consider while comparing technical effi-
ciencies, that is k= {TT, CT} when we compare the effi-
ciency between traditional and conservation tillage of
wheat, and k= {TT,PTOS,BP,ST}while we compare

specific tillage technologies with each of the other sepa-
rately1. Wheat production can be characterized by an input
requirement set (Lovell 1993): L(Y)= {X:(Y,X) is feasible}.
Production technology can be defined as:

T ¼ ðX; YÞ : X 2 L Yð Þf g ð1Þ
The Farrell (1957) input-oriented measure of technical

efficiency of DMUj is given by:

TEj ¼ min δ : δXj 2 L Yj
� �� � ð2Þ

This input-oriented technical efficiency model in Eq. 2
depends on the definition of boundary of the observed
production of Y as:

Isoq L Yð Þ ¼ X : X 2 L Yð Þ;ϕX =2L Yð Þ;ϕ 2 0; 1Þ½f g ð3Þ
TE is calculated for the farmer j in the tillage technology

group k using piecewise linear programming approach
under the following specifications:

TEkj ¼ min
δ;λ

δ; subject to
Xn
j¼1

λkjykj � yk0;
Xn
j¼1

λkjxmkj � δxmk0 8m

ð4Þ
with the assumption of either constant return to scale (CRS)
—λkj ≥ 0 or variable return to scale (VRS)—Pn

j¼1 λkj ¼ 1; λkj � 0. The VRS assumption is better
accepted for farmers in the smallholder dominated wheat
production system of Bangladesh (this assumption is tested
later in this paper). For any individual farmer j in the group
k, 0 ≤ δkj ≤ 1 and for any technology group j, the average TE
scores, δk lie between 0 ≤ δk ≤ 1.

The DEA procedure ignores noise that can arise from
sampling or other types of errors, for example one-off
events that can impact farmers’ input use decisions and lead
to biased δkj estimates (Simar 1992). We employed a
bootstrapping technique suggested by Simar and Wilson
(2007, 2011) to correct biased TE scores (δkj), thereby
accounting for the non-zero probability mass at one in any
given sample. The bias is computed by estimating the
pseudo-efficiency estimates δ̂�ð1Þkj ; ¼ ; ¼ ; ¼ ; δ̂�ðTÞkj

� �
by

using simulated data set drawn from the original data set,
repeated for T times (t= 1, 2, …., T).

The estimated bias; b̂k ¼ 1
T

XT
t¼1

δ̂�ðTÞkj � δkj and ð5Þ

the bias-corrected technical efficiency (BC.TE) score is as
follows:

δkj ¼ δkj � b̂k: ð6Þ

1 The farmers practicing traditional tillage (TT) and ‘CT non-adopters’
are one and the same.
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3.1.2 Meta-frontier efficiency and the meta-technology
ratio

The tillage-specific efficiency model (TEk) described above
does not allow the direct comparison of TE between indi-
vidual CT options and TT because these scores are relative
to each group’s own frontier (González-Flores et al. 2014).
A meta-frontier model is therefore advantageous where
several technologies are compared. Similar to the mea-
surement of group frontier efficiency, we specified an input
oriented DEA for meta-frontier efficiency estimation (TEG).
However, instead of defining group frontiers as the
boundaries of a restricted technology set in each group (e.g.,
a given tillage option), these meta-frontier efficiency scores
are calculated relative to a global or meta-frontier (MF)
defined to be the boundary of an unrestricted technology set
(i.e. produced by pooling all the farms pertaining to the
studied tillage options).

Let TEk (xmk, yk; δk) be the input-oriented TE function for
the group-frontier representing the group benchmark tech-
nology: Tk (Tk= {TTT, TBP, TPTOS, TST}) and TEG (xm, y; δG)
be the distance function of the meta-frontier representing
global technology, TG. The gap between TEG and TEk is
represented by the meta-technology ratio (MTR), which is
defined as the ratio of output of the group-specific pro-
duction frontier relative to the potential output described by
the meta-frontier (Battese et al. 2004). That is, the MTR
measures the proximity of the tillage specific group frontier
(TTT,TBP,TPTOS,TST) to the meta-frontier (TG) with an
unrestricted technology set. The MTR between CT and TT
is given by:

MTRk :ð Þ ¼ 1� TEGð:Þ
1� TEkð:Þ ¼ 1� δG � b̂G

� �
1� δk � b̂k

� � ¼ 1� δG

1� δk
ð7Þ

Equation 7 captures productivity differences between
different tillage technologies. It is indicative of the effi-
ciency improvement potential of wheat farmers in a specific
tillage group, that would be possible if they switched to a
better tillage technology practiced by other groups of
farmers. For example, a relatively high average MTR for a
specific tillage group suggests a lower technological gap
between farmers in that tillage group in relation to the all
available set of tillage technology represented in the meta-
frontier. Significant improvements in TE can be realized by
switching to technologies that have a higher MTR, wher-
ever feasible. The feasibility of farmers switching to CT is
greatly contingent upon the capacities and capital, techno-
logical, information and other constraints of individual farm
households and on cultural, biophysical, socio-economic
and institutional contexts (Ruttan and Hayami 1984).
Nevertheless, we hypothesize that TT farmers adopting CT
will generally impart a greater gain in efficiency and shrinkTa
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the technological gap than farmers switching from one CT
technology to another CT.

3.2 Factors affecting group-frontier efficiency of
farmers

Simar and Wilson (2007) noted that DEA efficiency esti-
mates are biased and serially correlated, which invalidates
conventional inference in two-stage approaches employing
Tobit or ordinary least squares models (Ramalho et al.
2010). However, as more recently evidenced by Solís et al.
(2007) and Bravo-Ureta et al. (2012), parameter estimates
of TE may be subjected to endogeneity bias due to self-
selection. This requires correction for sample selection in
parameter estimation models. In case of estimating group-
specific efficiency effects, the samples within a particular
tillage technology are not systematically different from one
another accounting for any selection bias. Bootstrapped
truncated regression therefore appears to be pertinent in our
case, which we specified as:

δkj ¼ αþ Zjϕþ εj; j ¼ 1; ¼ ; n ð8Þ
where δkj is the bias-corrected estimate of group-specific
efficiency scores (analyzed separately for BP, PTOS, ST
and TT), εj � N 0; σ2ε

� �
with right-truncation at 1−Zjφ ; α is

a constant term and Zj is a vector of farmer/farm specific
variables. For more details, see Simar and Wilson (2007,
2011).

3.3 Factors affecting tillage adoption and meta-
frontier efficiency

Kneip et al. (1998) pointed out that DEA scores converge
slowly and are consistent estimators of true efficiency, but
biased downwards. In our approach we addressed this bias
using bootstrap procedures as explained in Section 3.1.1
and following Simar and Wilson (2007), while employing
bootstrapped truncated regression to estimate the factors
influencing group level efficiency. Although bootstrapped
truncated regression yields unbiased parameter estimates for
the determinants of group level efficiency scores, and is
therefore preferred to Tobit models, when it comes to
estimating the counterfactual effect of technology adoption
on meta-frontier efficiency scores, an endogenous switching
regression model performs better. Additionally, unlike the
traditional OLS and truncated models such as Tobit, these
models do not require the conditional distribution of DEA
scores (e.g. switching regression and fractional regression)
and can yield better estimates (Ramalho et al. 2010). The
former approaches may also lead to biased estimates
because the decision to adopt CT is voluntary, yet influ-
enced by farmers’ characteristics. For example, farmers who
adopt CT may be systematically different from those who

do not. Moreover, unobservable characteristics of a given
farmer and their farm affects both the CT adoption decision
and the resulting efficiency impacts, generating inconsistent
estimates of the effect of adoption on household welfare
(e.g., if only the most skilled or motivated farmers choose to
adopt, the failure to control for skills may result in an
upward bias). In addition, some of the factors determining
agricultural technology adoption may also influence effi-
ciency, leading to endogeneity problems.

We estimated a standard endogenous switching regres-
sion (ESR) model (Maddala and Nelson 1975; Maddala
1983) to deal with problems presented by both sample
selection bias and endogeneity (Heckman 1979; Hausman
1978), allowing for interactions between technology adop-
tion and other covariates (Alene and Manyong 2007). This
model has two parts: in the first part, endogeneity due to
self-selection is addressed using a probit selection model in
which farmers are sorted into those who have adopted
conservation tillage and those who have not. The second
part of the model focusses on the outcome equations on
factors influencing efficiency.

Drawing from Maddala (1983) and Lokshin and Sajaia
(2004), a probit selection equation for CT adoption is spe-
cified as:

CT�
j ¼ γSj þ uj; withAj ¼

1 if CT�
j >1

0 otherwise

�
ð9Þ

where CT�
j is the unobservable (or latent) variable for CT

adoption; CTj is the observable counterpart (equal to one if
the farmer j has adopted either BP, PTOS, or ST for wheat
during the cropping season studied, and zero otherwise). Sj
are non-stochastic vectors of observed farm and non-farm
characteristics determining adoption, and uj are the random
disturbances associated with CT adoption. Among Sj, a
particular concern is with the dummy variable for CT
machine drill scarcity due to its potential for endogeneity
bias in selection equation (Eq. 9). Identifying a valid
instrument having high correlation with the CT machine
scarcity variable, but with low correlation to the dependent
variable CT�

j , is important in two stage estimations. Given
this precondition, the distance from the farm to the nearest
place at which farmers can receive CT extension advice was
selected as the instrument after testing for exclusion
restriction and endogeneity.

We subsequently specified the endogenous switching
regression model of CT technical efficiency involving two
regimes as:

Regime 1 : δGj1 ¼ β1S1j þ τ1j; if CTj ¼ 0 and ð10aÞ

Regime 2 : δGj2 ¼ β2S2j þ τ2j; if CTj ¼ 1; ð10bÞ
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where δGj1 and δGj2 are the meta-frontier technical
efficiency scores in the outcome equations, and S1j and S2j
are vectors of exogenous variables assumed to influence
technical efficiency. The vectors β1, β2, and γ are coefficient
parameters to be estimated, with error terms uj, τ1j and τ2j.
The standard switching regression model assumed no
covariance between τ1 and τ2 with the following covariance
matrix:

cov τ1j; τ2j; uj
� � ¼

σ2τ1 : στ1u

: σ2τ2 στ2u

: : σ2u

2
64

3
75 ð11Þ

The covariance between τ1 and τ2 is not defined since
δGj1 and δGj2 are never observed simultaneously. In the
literature, a two-step ESR procedure involving estimation of
probit selection model and outcome equations are employed
by Perloff et al. (1998). This approach suffers from het-
eroskedastic errors when inverse mills ratios from probit
equations are inserted manually into outcome equations.
The full-information maximum likelihood (FIML) yield
consistent estimators in which both the probit selection (Eq.
9) and two regime equations (Eqs. 10a and 10b) are esti-
mated simultaneously (Lokshin and Sajaia 2004; Gkypali
and Tsekouras 2015). As noted previously, a benefit of
switching regression is the ability to consider a counter-
factual scenario by using the parameters of one regime (e.g.
10a) to predict values for the other regime (e.g., 10b), and
vice versa. Such hypothetical predictions assume that the
coefficients obtained in the switching regression for CT
adopters are unbiased estimates of the effect of CT adoption
and hence would also apply to non-adopters were they to
adopt the CT technology. Conversely, the coefficients
obtained for CT non-adopters would apply to CT adopters
to simulate disadoption.

4 Study area, sample selection, and
summary statistics

Data for the present study was collected during 2012 from
farm households (n= 140) and tillage machinery operators/
service providers (n= 35) across 15 villages of three dis-
tricts (Dinajpur, Rajshahi, and Nilphamari) in northwestern
Bangladesh. The shares of cultivable area to the total land
area in the studied districts were 63% (Rajshahi), 77%
(Dinajpur) and 74% (Nilphamari) (BBS 2014). The study
area has a sub-tropical climate characterized by mono-
modal precipitation and wide seasonal variation in rainfall,
high temperatures, and high humidity. Wheat is grown
during the cool, dry winter (November to April) “rabi”
season. At the time of survey, wheat was grown on 27,487
ha in Rajshahi, 21,096 ha in Dinajpur and 4461 ha in

Nilphamari (BBS 2014). These districts were selected pur-
posively because they represented the main areas where
different conservation tillage (BP, PTOS, and ST) methods
were being applied in Bangladesh. Neither farmers’ man-
agement practices nor soil, climatic and geographical
characteristics of these districts are radically different,
making regional grouping possible to compare between CT
adopters and non-adopters plausible.

Considering their level of CT adoption, five villages
were selected from each of the above districts. Tillage
technology adoption formed the basis of sample stratifica-
tion with farmers selected randomly within each technology
group. Lists of continuous adopters of the above three CT
options and TT farmers supplied by International Maize and
Wheat Improvement Center (CIMMYT) and Wheat
Research Centre, Bangladesh (WRC) of the Bangladesh
Agricultural Research Institute (BARI) were used for sam-
ple selection. From each village, three samples belonging to
each tillage options were randomly selected from above list
for the survey. The final dataset consists of 140 wheat
growers (n= 35 each for BP, PTOS, and ST), totaling 105
CT adopters, as well as 35 non-adopters (TT). Fifty samples
(13 BP, 12 PTOS, 12 ST and 13 TT) were from Rajshahi,
forty seven (12 BP, 12 PTOS, 12 ST and 11 TT) were from
Dinajpur, and forty three (10 BP, 11 PTOS, 11 ST and 11
TT) were from Nilphamari. Each farmer was interviewed
using a structured questionnaire. The survey was imple-
mented from April-June 2012, beginning shortly after the
wheat harvest, as this time period is most conducive for
minimizing possible recall bias on quantities of inputs used
and output obtained. Originally developed in English, the
questionnaire was translated into local language (Bangla) to
facilitate the interviews.

4.1 Summary statistics of the data

We observed significant differences between CT and TT
groups in education, training on CT, and association with
NGOs (Table 2). CT farmers had higher wheat yields with
significantly lower levels of inputs (seed, fertilizers, fuel,
irrigation and labor). On average, CT farmers applied 243
kg ha−1 of chemical fertilizers and, which is significantly
lower (P< 0.001) than TT farmers (276 kg ha−1). TT farm-
ers also had a significantly higher (P= 0.00) seed rate (179
kg ha−1) than CT adopters (128 kg ha−1). Under traditional
tillage, seeds are hand broadcasted, and therefore farmers
use a higher seed rate than recommended (125 kg ha−1) to
get even spread and coverage. Seed drills attached to the
two-wheel tractors on the other hand helps in achieving
optimum crop line spacing and better ground coverage
expending comparatively lesser amount of seeds. The
average labor used for TT operations as 942 h ha−1, which is
approximately 30% higher than CT adopters (585 h ha−1).
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CT was introduced in the IGP as a cost reducing tech-
nology with resource saving benefits, particularly for saving
water by increasing soil water holding capacity through
improvements in soil organic matter, while arresting soil
erosion (Erenstein 2009). The former characteristic of CT
could also partially mitigate the need for frequent irrigation.
In the case of BP, furrow rather than flood irrigation is
widely recognized to save irrigation water (Gathala et al.
2015, 2016). In our dataset, CT wheat farmers were found
to utilize approximately 21% less irrigation water than TT.
CT farmers were also more aware of soil and water con-
servation practices compared to the control group. We also
found evidence for earlier wheat sowing, averaging
5.25 days before non-adopters. This observation is impor-
tant because early sowing is recommended to escape from
terminal heat stress that can decrease pollen development
and stigma deposition, while also shortening wheat crop
duration (Krupnik et al. 2015a). Both reduce grain forma-
tion and yield in Bangladesh, and can be partially offset by
reduced tillage practices that accelerate crop establishment
(Krupnik et al. 2015a, Krupnik et al. 2015b). Wheat yields
ranged from 3.13 t ha−1 to 4.17 t ha−1 with traditional til-
lage, while those for CT ranged from 2.24 t ha−1 to 5.65 t ha
−1. Among the CT adopters, average yield was highest
utilizing the PTOS (4.14 t ha−1), closely followed by BP
(4.11 t ha−1). ST farmers achieved on an average 3.80 t ha
−1, lowest among the three CT options. Other variables
(e.g., size of wheat area) showed no statistical differences
between group means.

5 Results and discussion

5.1 TE of CT adoption: DEA meta-frontier framework
approach

Bias-corrected TE scores were estimated for farmers in
relation to (i) a specific group’s (BP, PTOS, ST, CT and TT)
best practice frontier, and (ii) the meta-frontier of all sam-
pled farms, irrespective of tillage and crop establishment
practice. For both frontiers, bootstrapping (10,000 itera-
tions) was conducted2. Figure 1 shows the empirical
cumulative distribution of meta-frontier DEA models under
both VRS and CRS. The Kolmogorov-Smirnov test strongly
rejected (P= 0.003) the CRS model, and hence further
discussion of efficiency analyses is based only on the VRS
model.

5.1.1 Group-specific TE

Results of the bias-corrected group frontiers for each tillage
option are reported in Table 3; they provide an indicator of
TE with which each of the farmers is operating within their
respective technological group only. For BP farmers, scores
ranged from a low of 0.52 to a maximum of 0.99 (mean=
0.88), while for PTOS farmers the range was 0.64 to 0.99
(mean= 0.85). Among ST farmers, efficiency ranged
between 0.68 and 1.00 (mean= 0.90). The wider range of
technical efficiency scores of BP farms compared to the
relatively narrow TE range for PTOS and ST indicates a
high level of operational heterogeneity among BP adopters.
The average group-specific mean TE for CT adopters
overall is 0.87.

Conversely, the mean group-specific TE for non-
adopters (i.e. TT farms) was 0.97, with scores ranging
from 0.76 to 1.00. Whereas there were sixteen (46%),
eighteen (51%) and fourteen (40%) farms under BP, PTOS
and ST operating below 90% efficiency, respectively, there
were only three (9%) TT farms operating below this level.
Group-specific TE scores can however be highly misleading
while comparing across other technology groups as this
frontier captures within group variations in technology
adoption. For example, TT has already achieved a high
level of homogeneity among practitioners as compared to
their CT counterparts, translating into a relatively higher
group-specific efficiency, part of which may result from
farmers’ longer prior experience with TT than CT. While an
examination of the average input use to per unit land ratios
of TT farmers in Table 2 revealed comparatively small
standard deviations (SD) of the mean for total (kg ha−1)
fertilizer use (SDTT=±41.44; SDBP=±58.44; SDPTOS=
±46.38; SDST=±78.38) and L ha−1 of pesticides (SDTT=
±0.48; SDBP=±1.34; SDPTOS=±1.27; SDST=±1.74),
the standard deviations of the mean for output produced to
per unit land ratios for TT were also small (SDTT= ±0.30;
SDBP=±0.69; SDPTOS=±0.60; SDST=±0.69) compared

K-S statistics
(D=0.21, p-value = 0.003)
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Fig. 1 Cumulative probability distribution function, comparing the
returns to scale assumption (constant vs. variable return) of the sample
data (Kolmogorov–Smirnov test)

2 The “rDEA package” in R (version 3.02) was used for the analysis of
group and meta-frontiers.
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to the high heterogeneity in CT. This indicates a high level
of homogeneity in inputs used and output produced by TT
followers. TT has been practiced for decades since two-
wheeled tractors became the primary tillage option in
Bangladesh (Mottaleb et al. 2016); farmers are conse-
quently already highly accustomed in this method of tillage
and wheat crop establishment.

More importantly, the group-specific TE of TT farmers
are close to the TT group-frontier, which indicates relatively
little scope of further improvement within TT. Shifting
farmers to alternative TE increasing management practices
therefore represents one potential pathway to increase wheat
productivity. Considered collectively, the potential for CT
farmers to improve is 13%. When compared to the best
practices within their own group, however, BP, PTOS, and
ST farmers could likely save on average input resources by
12, 15, and 10%, respectively, while maintaining their
current production efficiency. The wide range of group-
specific TE scores within tillage groups is also indicative of
farmers’ deviation and adaptation from recommended CT
practices while during the adoption process. Partial adop-
tion of CT has also been reported in the western IGP by
Krishna and Veettil (2014). The relative position of TT
farmers viz-a-viz the meta-frontier is important while
exploring more options, but the group-specific frontier does
not permit cross-group comparisons. The TE of individual

CT groups and the TT group must therefore be compared
based on meta-frontier estimates.

5.1.2 Meta-frontier efficiency

Bias-corrected meta-frontier TE scores of farmers relative to
the global meta-frontier are also presented in Table 3. The
scores of adopters of any CT technology ranged from as low
as 0.46 to a high of 0.95, while that of non-adopters ranged
from 0.57 to 0.74. A more informative picture is provided
by comparing density curves to illustrate the density dis-
tributions of the CT adopters and non-adopters (Fig. 2a). A
large number of the CT adopters occupy the meta-frontier
technical efficiency range of 0.74 to 0.90, while the density
of TT farms is systematically lower than CT farms.

In Fig. 2b, the “heads” of the bean density plots of
adopters and non-adopters project in opposite directions.
Approximately 97% of the non-adopters fall below the
threshold TE score of 0.74, while approximately 42% of CT
adopters are above the threshold.3This indicates the super-
iority of CT from a TE standpoint. The association between
CT adoption and TE in wheat cultivation is further exam-
ined using the adapted-Li test (cf. Simar and Zelenyuk
2006), which compares the equality of distributions of
adopters and non-adopters across TE ranges. This test
confirms significant differences (P ≤ 0.001) between the TE
distributions of CT adopters and non-adopters after 10,000
bootstrap iterations (Table 4).4

Figure 3 displays a kernel density plot of the tillage prac-
tices utilized by surveyed farmers based on Epanechnikov
kernel density estimates from Table 4. As no distributional
assumptions were made on the DEA meta-frontier TE scores
across the tillage options in this study, this plot type is
advantageous for understanding the efficiency gains from TE
under each technology. The height of the curves indicates the
probability of a farmer achieving a certain efficiency level; the
more peaked and narrow distributions indicate limited var-
iance. TT exhibits a peak density of approximately 5.23,
covering a bias corrected meta-frontier TE range of 0.57 to
0.74. The maximum density value of the underlying meta-
frontier efficiency among the CT options is achieved by PTOS
adopters (2.31), closely followed by BP (2.27) and ST (1.96).
BP adopters have the broadest distribution ranging from 0.46
to 0.92, indicating higher variance within its practices, though
all CT options are relatively similar. Though density of TT is
narrow (representing a more homogenous application of

Table 3 Meta-technology ratio (MTR) and technical efficiency (TE)
for group Frontiers and meta-Frontier

Technical efficiency and technology ratio

Mean Minimum Maximum SD

BP Group TE 0.88 0.52 0.99 0.11

Meta-frontier TE 0.76*** 0.46 0.92 0.12

MTR 0.88 0.50 1.00 0.13

PTOS Group TE 0.85 0.64 0.99 0.11

Meta-frontier TE 0.77*** 0.61 0.92 0.11

MTR 0.90 0.75 1.00 0.07

ST Group TE 0.90 0.68 1.00 0.10

Meta-frontier TE 0.74** 0.55 0.95 0.13

MTR 0.83 0.56 0.98 0.09

TT Group TE 0.97 0.76 1.00 0.05

Meta-frontier TE 0.65 0.57 0.74 0.05

MTR 0.67 0.58 0.80 0.05

CT Group TE 0.87 0.52 0.99 0.11

Meta-frontier TE 0.76*** 0.46 0.95 0.12

MTR 0.87 0.50 1.00 0.10

Note:- ‘∗∗’, and ‘∗∗∗’=mean differences between TT and CT options
are rejected at the 5, and 1% levels, respectively, by
Wilcoxon–Mann–Whitney test

BP bed planting, PTOS power tiller operated seeding, ST strip tillage,
TT traditional tillage, CTconservation tillage

3 The threshold TE score refers to the mean TE score of the entire
sample without technology differentiation; it is automatically gener-
ated in bean density plots, and is represented by a dotted line in Fig.
3B.
4 Simar and Zelenyuk (2006) demonstrated that the non-parametric
test of equality of the distribution of DEA TE between two groups is
more robust than testing means alone.
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tillage and crop management practices), peaking occurs at a
lower efficiency level (0.65), whereas the distribution of
density of CT options are wider with more flatness (indicating

heterogenous adoption). They are however skewed towards a
higher efficiency level, peaking at efficiency levels 0.80, 0.76
and 0.75 for BP, PTOS and ST, respectively.

In sum, it is apparent from the mean of bias-corrected
meta-frontier TE scores of individual CT technologies that
BP and PTOS are more efficient tillage technologies, with
average efficiency scores of 0.76 and 0.77, respectively
(Table 3), with the Epanechnikov kernel density curves
(Figure; the graphical data of Fig. 4) reinforcing this
observation. These two groups are closely followed by ST
adopters, with an average meta-frontier efficiency of 0.74,
whereas TT lags well behind at 0.65.

5.1.3 Measuring the technological gap

On average, CT adopters exhibit a meta-technology ratio
(MTR) of 0.87, which is 30% greater than CT non-adopters
(Table 3). A higher average MTR for CT relative to CT
non-adopters indicates that the former requires a lower level
of inputs relative to the latter to achieve same level of
output, ceteris paribus. If TT farmers were to switch tillage
type to either BP, PTOS, or ST, then our data indicate that
they could achieve an increase in MTR of 31, 34, and 23%,
respectively (Table 5). Concomitantly, the respective
increase in TE would be 18, 17and14%, provided that
farmers have sufficient knowledge of the alternative options
to maintain efficient management. It can be expected that
switching from one CT tillage practice to another is less
likely to provide sufficient efficiency gains to justify the
switch. Regardless of specific tillage and crop establishment
type, switching from TT to one of the CT options is how-
ever only logically feasible where CT machinery and ser-
vice provision is available.

5.2 Factors affecting the group-specific TE of
individual tillage options

The parameters for the group-specific TE estimated are
reported in Table 6. The extent of cultivable land owned
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Fig. 2 a Epanechnikov kernel density estimates of bias corrected meta-
frontier TE of CT adopters and non-adopters. ‘μ’ denotes the mean
values of bias corrected meta-frontier TE. Density curves with orange
and purple filled area show bias corrected meta-frontier TE of CT and
TT respectively. In each curve, the black dotted vertical line represents
the mean value of bias corrected meta-frontier TE. b Technical effi-
ciency of conservation tillage (CT) vs. traditional tillage (TT). Bean
shape is a mirror image of the variable’s density plot, aligned verti-
cally. The dotted line represents the threshold technical efficiency (TE)
score referring to the mean TE of the entire sample without technology
differentiation. Small horizontal lines inside the beans for each tillage
option correspond to TE of each farmer. Thin long horizontal lines
show the frontier efficiency under each tillage category, while the bold
long horizontal lines show the mean TE of farmers in each tillage
options

Table 4 Testing equality of technical efficiency distributions and density estimates

A. Test for equality of efficiency distributionsa B. Epanechnikov Kernel densityb

Null hypothesis Li Test (Tn) p-value Tillage Max. density Peak-value

Distribution (BPscores)=Distribution (TTscores) 7.91 <2.22e-16 *** BP 2.27 0.80

Distribution (PTOSscores)=Distribution (TTscores) 3.92 2e-03*** PTOS 2.31 0.76

Distribution (STscores)= Distribution (TTscores) 4.87 2e-04*** ST 1.96 0.75

Distribution (CTscores)=Distribution (TTscores) 14.51 <2.22e-16*** TT 5.23 0.65

’***’=Null of equality of distributions is rejected at the 0.1% level, “Tn” refers to test statistic

BP Bed planting, PTOS power tiller operated seeding, ST strip tillage, TT traditional tillage, CT conservation tillage
aLi test (Li et al. 2009) and bootstrap P-value from 10,000 iterations. Estimation in R using “np” package
bKernel density values of bias corrected meta-frontier technical efficiency scores
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had no significant effect on group-specific TE for any tillage
and crop establishment option, except for BP (P ≤ 0.01). TE
of the BP farmers having more than one hectare of culti-
vable land would be 13.5 percentage points higher than the
average BP farmer. With BP, irrigation is channeled
through furrows between beds (Qureshi et al. 2015; Gathala
et al. 2016). The significant and positive effect on BP may
be due to farm size, as farmers may benefit more from the
even distribution of irrigation water and ease of inter-
cultural operations offered by BP configurations, than
farmers who can provide more careful management to
smaller plots. The effect of education is positive on the
group-specific TE of CT options (BP, PTOS and ST). This
is as expected, though education was significant for CT only
(P ≤ 0.01). Efficient use of CT practices appears to be
pronounced for educated farmers. This is reflected in an
observed positive TE effect. Farmers’ age conversely
negatively affected the group specific TE of all CT options,
though significant only in case of ST (P ≤ 0.01). Perhaps
unsurprisingly, older TT farmers were more efficient as
demonstrated by a positive and significant coefficient (P ≤
0.01). This may be due to longer experience with traditional
wheat cultivation practices gained over time. While training
on conservation tillage received by BP and ST farmers
contributed significantly and positively to farmers’ group

specific TE, such training was not significant for PTOS or
TT practitioners. Preparation of beds in BP as well as strips
and furrows in ST require considerably more skill than
planting with the PTOS or broadcasting seeds under TT
(Krupnik et al. 2013). Farmers in our dataset who received
training reported acquiring skills for forming beds and strip
furrows, helping to explain the above positive and sig-
nificant association.

Memberships in groups formed by NGOs negatively
affected group frontiers, irrespective of the tillage and crop
establishment option considered, though not significant for
ST adopters. NGOs in the study area often promote off-farm
and diversified livelihood options including small business
entrepreneurship. Loans for farming activities tend to focus
on non-cereal cash crops (e.g., vegetables and oilseeds).
Farmers associated with NGOs are therefore likely con-
centrate more on these crops to repay loans, which may
influence the TE of wheat production negatively. Con-
versely, a positive impact on efficiency is expected with
farmers’ increasing involvement in agriculture. This vari-
able was positive across all tillage options with significant
coefficients for PTOS (P ≤ 0.01) and TT (P ≤ 0.001).

Fifty five percent of observed farmers sowed wheat after
the second week of November. Our data indicate that these
TT farmers sowed wheat on average 13.46 (±9.21 SD) days
after November 15th, while across CT farmers, this delay
was only 5.25 (±6.46 SD) days, resulting in significant
sowing date differences (P ≤ 0.001) observed for this
ensemble group. Krupnik et al. (2015a, 2015b) discuss the
physiological basis by which delayed sowing impairs yields
in Bangladesh. Krishna and Veettil (2014) also reported a
drastic reduction in TE due to late wheat sowing in the
western IGP, though the reasons for differences in sig-
nificance between tillage options require further research.
Remotely located farmers were found to be more inefficient,
and as the distance of their farms to sources of CT extension
advice increases with remoteness. Inefficiency therefore
increased with remote PTOS and ST farmers. On the other
hand, while off-farm income was found to significantly
(P ≤ 0.05) decrease the efficiency of ST farmers, larger
household size significantly (P ≤ 0.05) reduced efficiency of
TT. Remaining variables such as ownership of draught
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Fig. 3 Epanechnikov kernel density estimates of bias corrected meta-
frontier TE of tillage options. ‘μ’ denotes the mean values of bias
corrected meta-frontier TE. Density curves with pink, green, blue and
purple filled area show bias corrected meta-frontier TE of BP, PTOS,
ST and TT respectively (color figure online)

Table 5 Economic and Technical improvement with CT adoption

Estimated change resulting from new tillage and crop establishment methods (%)

Mean TE change Change in mean MTR Change in mean gross margin

From TT to BP 16.92 31.34 190

From TT to PTOS 18.46 34.33 212

From TT to ST 13.85 23.88 125

From TT to CT 16.92 29.85 168

BP bed planting, PTOS power tiller operated seeding, ST strip tillage, TT traditional tillage, CT conservation tillage
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animals, seed drill scarcity, and farmers’ awareness of soil
and water conservation showed no statistically significant
effect on the group-specific TE of any of the tillage options
in our data.

5.3 Sources of TE and CT adoption: endogenous
switching regression estimates

To understand why farmers adopt conservation tillage, and
what factors determine their TE, we employed endogenous
switching regression (ESR). Among the variables con-
sidered in the selection equation of ESR, the presence of
potential endogeneity of the variable “CT drill scarcity” on
CT adoption was explored by an instrumental variable viz.
distance to the nearest source of CT extension advice. The
latter was found to be strongly correlated with CT drill
scarcity (r= 0.82), but weakly correlated to adoption (r=
−0.17). A two-stage IV estimation (F> 10.0) followed by a
Hausman test rejected presence of any endogeneity bias (P
= 0.39), suggesting the validity of the selection model used.
The results of the probit selection equation and the two
outcome equations of the switching regression analysis are
reported in Table 6. The former examines the determinants
of conservation tillage adoption, while the determinants of
technical efficiency for the TT (non-adopters) and CT
(adopters) are analyzed by the outcome Equations 1 (Eq.
10a) and 2 (Eq. 10b), respectively.

While education had no effect on the tillage adoption
behavior, it had a positive and statistically significant effect
on the TE of wheat farmers surveyed, for both CT and TT, at
the 1 and 5% level respectively. Compared to a non-literate
farmer to a farmer with university education, the TE of til-
lage adoption differs by 9%. Wadud (2003) reported that
literate and more educated farmers are able to better utilize
farmer social information and communication networks.
This suggests that farmers’ ability to use new technologies
and choose optimal input combinations is likely to improve
with education. It also indicates the need for developing
effective interventions that can improve farmers’ capability
to effectively adapt and utilize novel technologies, since the
education level of farmers cannot be easily improved over
short time periods. Older farmers tended not to favor CT
adoption (P ≤ 0.05). Those who did adopt CT were also
inefficient compared to younger farmers (P ≤ 0.05).

Like educational level, agricultural training had a posi-
tive and significant effect (P ≤ 0.01) on CT adoption.
Inference from the marginal effects was also significant
(P ≤ 0.05); this shows that each time a farmer attends
training, the probability of CT adoption increased by 5.3%.
Among CT adopters, training had a positive and significant
impact (P ≤ 0.001) on TE, with a reported increase of 2.4%
efficiency per training undergone. Note that such high
contribution of training is primarily because of the existingTa
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heterogeneous and partial adoption of CT technologies
prevalent in the region. Increased proximity to a source of
extension information on CT favored CT adoption. These
variables show a clear evidence of the impact on adoption
of ongoing extension efforts in the study area. The prob-
ability of a household located nearby a source of CT
extension advice adopting CT was conversely 3% higher
than a household located 10 km away from the CT exten-
sion source. In contrast, farmers’ engagements with NGOs
were found to significantly (P ≤ 0.001) and negatively affect
CT adoption. A change from non-member to an active
member of an NGO reduced the probability of CT adoption
by 28%. One potential reason for this observation may be
NGO disbursement of microfinance loans linked to specific
programs unrelated to agriculture. Conversely, if agri-
cultural loans are available, they are often of limited in size
and scope, with an emphasis on cash crop production and at
levels too small to enable CT machinery purchase.

Although a positive relationship with TE was expected if
farmer owns their cultivated land, the variable cultivable
land owned was however insignificant in all switching
regression estimations. On average, farmers belonged to
similar land class groups (small farms) and hence TE esti-
mates were unable to capture the efficiency gained due to
optimal operation size of tillage. Household size and off-
farm income also had statistically insignificant influences on
CT adoption and the TE scores of CT and TT farmers. A
delay in the wheat sowing date was found to have a nega-
tive and significant effect on efficiency, exemplified by the
fact that a 2–4 day delay in sowing was found to negatively
affect TE by approximately 10% points. Our data therefore
provide backing for studies supporting the potential of CT
to accelerate sowing by reducing time-consuming tillage
and crop establishment operations, with potential knock-on
positive effects on yield and efficiency (cf. Keil et al. 2015;
Krupnik et al. 2015a, 2015b). The effect of early sowing

achieved with zero-tillage on the TE of wheat farmers in the
western IGP was also reported by Krishna and Veettil
(2014). However, delays in sowing may can also be
experienced be due to the relative scarcity of CT machinery,
which was widely reported by surveyed farmers in the study
area. This can inadvertently limit the potential efficiency
gains offered by CT. On the other hand, ownership of
draught animals had a negatively and significant impact
(P ≤ 0.05) on the TE of CT. With each additional number of
draught animals owned, the probability of CT adoption
reduces by 3.2%. This could be due to the fact that draught
animals, which are mainly used for primary tillage, become
comparatively less economically relevant if wheat sowing is
performed by alternative machinery. Crop residues are also
commonly removed to feed draught animals throughout the
year, further reducing the incentive for ST adoption that
relies on the maintenance of a mulch of crop residues
(Gathala et al. 2015).

5.3.1 Counterfactual effect of CT adoption on technical
efficiency

Switching regression allows the use of estimated coefficients
for the CT adopters (outcome Eq. 2) to predict the meta-
frontier TE values for CT non-adopters, if the latter were to
adopt the CT, and vice versa. Table 7 presents the predicted
values from the regression, and the estimated counterfactual
average meta-frontier TE. This table also compares the
predicted values from the regression with the actual TE
scores obtained from the DEA meta-frontier estimation.
Further, the counterfactual scenarios for CT and TT are
visually displayed using density plots (Figs. 4 and 5). These
results indicate that the average predicted meta-frontier
technical efficiency for TT farmers in their hypothetical
regime (0.80) is significantly higher (P= 0.00) than their
observed TE. CT adopters would likely lose TE (−10%) if

Table 7 Counterfactual effect of CT adoption on TE and gross margin

Nature of farmers and
estimation approach

(1) Mean
(SD)

(2) Min (3) Max (4) Counterfactual economic loss/gain
(±USD ha−1)

TE of adopters if not adopteda 0.66 (0.05) 0.43 0.75 −21 USD ha−1 (−13%)

TE of adopters predictedb 0.76 (0.09) 0.50 0.94 No change

TE of adopters from DEA
estimationc

0.76 (0.12) 0.46 0.95 No change

TE of non-adopters if adopteda 0.80 (0.05) 0.72 0.89 +13.8 USD ha−1 (+23%)

TE of non-adopters predictedb 0.65 (0.05) 0.57 0.74 No change

TE of non-adopters from DEA
estimationc

0.65 (0.05) 0.57 0.74 No change

Notes: In column 1, values in parenthesis show standard deviations of mean, while those in column 4 shows % increase or decrease in gross margin
aHypothetical counterfactual situation
bPredicted from switching regression outcome equation
cEstimated from the input-output DEA model
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they disadopt the technology, a point reinforced by the
estimate that the counterfactual TE of CT adopters is 13%
lower than their estimated DEA efficiency. Conversely,
counterfactual TE of non-adopters is 23% greater than their
DEA efficiency. In monetary terms, the additional profit due
to efficiency gain had TT farmers adopted CT was estimated
to be 14 USD ha−1 or 21 USD ha−1 had the adopters con-
versely not adopted CT. Importantly, without the effect of
CT, the counterfactual TE of CT adopters is 1.54% higher
than the estimated DEA efficiency of TT farmers, suggesting
that adopters may be better wheat farmers, ceteris paribus.
This finding is consistent with the general technology
adoption literature indicating that initial adopters may have
better farming abilities (Sunding and Zilberman 2001).

Finally, we also examined the impact of individual tillage
options on the profitability of wheat farmers. The average
gross margin for wheat production under CT adoption and
TT was estimated to be approximately USD 161 ha−1 and
USD 60 ha−1, respectively (Table 8), indicating important
production cost advantages as also observed by Krishna and
Veettil (2014) and Keil et al. (2015). The former value is an
average of the estimated gross margin from the three CT
options studied. When segregated, adoption of CT could
achieve additional profits from wheat farming by USD 114,
127 and 75 ha−1, respectively for BP, PTOS and ST. By
removing the inefficiencies in production, farmers can
potentially operate at the frontier with projected gross
margins of USD 229, 243,182 and 92 ha−1, respectively for
BP, PTOS, ST and TT farmers. The corresponding pro-
jected gross margin for CT with efficiency improvement
would be USD 212 ha−1. These results reveal the high
potential impact of CT on the profitability of wheat farmers
in the eastern IGP, and are evidenced by a 91% in com-
mercial sales of the PTOS in Bangladesh since 2014
(CSISA-MI 2016). The corresponding benefit cost ratios
(BCR) for BP, PTOS and ST are 1.81, 1.95, and 1.64
respectively; compared to 1.20 for TT. As one would expect
from the TE scores, farmers who continue cultivating wheat
under TT, instead of adopting one of the CT practices, will
tend to underperform in terms of their BCR, with important
implications for poverty reduction.

6 Study limitations

Though CT technologies are currently being promoted in
many developing countries, it should be noted that the
results of this study are likely most applicable to smallholder
rice-wheat systems in the eastern IGP. This is due to the
comparable agro-climate and similarities with regard to
agricultural practices, demographics, and other socio-

Table 8 Efficiency and productivity impacts of tillage options on
wheat farm income

Tillage Technical
efficiency
(Mean meta-
frontier)

Agronomic
productivity (t
ha−1)

Gross
margin
(USD ha
−1)a

Benefit
cost ratio
(BCR)

BP 0.76 4.11 174.00 1.81

PTOS 0.77 4.14 187.00 1.95

ST 0.74 3.79 135.00 1.64

CT 0.76 4.01 161.00 1.78

TT 0.65 3.68 60.00 1.20

a1 US$= 81.66 BDT as per the exchange rates during the time of the
survey (April 2012)

BPBed planting, PTOS Power tiller operated seeding, ST Strip tillage,
TT Traditional tillage, CT Conservation tillage
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economic factors. In addition, since the application of CT by
Bangladeshi farmers is still in its infancy, our sample size
was relatively small, which may to some extent decrease the
precision of the estimation of various parameters, although
controlling for endogeneity, potential selection bias, and bias
in efficiency estimates partially mitigated this effect.
Another limitation was the single-season nature of our study,
and that labor market imperfections and various constraining
biophysical factors in wheat production that exist in the
eastern IGP were not explicitly introduced in the TE model.
As such, future research that investigates these factors with
panel data and in conjunction with a larger sample as more
farmers adopt CT is desirable.

7 Conclusions

Viewed as an attractive option to break the current stag-
nation in productivity increases for the major cereal crops,
while also addressing the negative environmental con-
sequences of agriculture, interest in conservation tillage is
growing globally and in South Asia. Using farmer survey
data from three districts in northwest Bangladesh, we
evaluated the impact of adopting three CT and machine-
aided crop establishment options compared to traditional
tillage with seed broadcasting by hand, in terms of their
technical efficiency. Our results clearly indicate positive
impacts of CT adoption on wheat farmers’ level of technical
efficiency. Based on the average meta-frontier technical
efficiency scores of CT adopters (0.76) and non-adopters
(0.65), input use could be reduced by 24 and 35%,
respectively, while maintaining the current wheat output,
given that farmers are able to access the respective CT
machineries. This suggests that significant gains in technical
efficiency can be realized by TT farmers by switching to CT
practices. Of the four tillage types studied (including TT),
the PTOS was observed to be the most technically efficient
option, with an average meta-technology ratio of 0.90. This
was closely followed by BP (0.88) and ST (0.83), with TT
lagging well behind (0.67). The results indicate that the shift
from TT to PTOS may be the best option for wheat farmers
from the technical efficiency perspective, though further
research is needed to evaluate these findings in considera-
tion of potential environmental trade-offs and with respect
to yield and TE stability over multiple seasons.

A major advantage of CT appears to be the facilitation of
early wheat sowing, which can assist farmers in escaping
from terminal heat stress that adversely impacts yield and
hence efficiency. Delays in sowing among CT wheat
farmers is still nonetheless common, as machinery is only
recently becoming commercially available at a scale that
can propel rapid increases in adoption. Our results also
indicate importance of farmers’ proximity and access to

extension advice, and of adequate training on CT practices
to improve technical efficiency. As expected, farmers dis-
adopting CT are also likely to lose technical efficiency by
10% given their counterfactual scenario. It is also interest-
ing to observe that without the effect of CT, the counter-
factual TE of CT adopters is 1.5% higher than the estimated
DEA efficiency of the TT farmers, suggesting that adopters
may be better wheat farmers, ceteris paribus.

Perhaps most importantly from the perspective of farm-
ers, CT adoption is potentially more profitable (gross margin
USD 161 ha−1, on average) than TT (mean of 60 ha−1).
Thus, farmers adopting CT could realize substantial increa-
ses in profits: on average, a 190% increase in gross margin
($174 ha−1) was estimated by switching to BP, with 212%
(USD187 ha−1) and 125% (USD135 ha−1) by switching to
PTOS and ST, respectively. These results provide support to
on-going research and development initiatives that encou-
rage farmers to experiment with CT options in the eastern
Indo-Gangetic Plains, since the three CT options analyzed in
our study appear to offer large opportunities for agricultural
productivity growth among smallholder farmers.
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