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A B S T R A C T

We tested four machine learning methods for their performance in the classification of mosquito species oc-
currence related to weather variables: support vector machine, random forest, logistic regression and decision
tree. The objective was to find a method which showed the most accurate model for the prediction of the
potential geographical distribution of Aedes japonicus japonicus, an invasive mosquito species in Germany.

The evaluation of the model trainings was conducted using derivations of a confusion matrix. Furthermore,
we introduced two quality indices, ‘selectivity’ and ‘exactness’, for the evaluation of the spatial simulation,
visualised through the Hasse diagram technique.

From the evaluation results we can conclude that a specific combination of two to three models performs
better in predicting the potential distribution of the mosquito species than a single model or the random
combination of models.

1. Introduction

Over the last two decades, the use of machine learning methods has
become standard for the classification of species distribution. A lot of
algorithms are available for modelling species distribution, and more
models are continuously being developed (Guisan and Zimmermann,
2000; Fernández-Delgado et al., 2014). Against this background, the
choice of the most accurate method can be challenging.

Modelling the distribution of an invasive species is a sensitive issue,
especially when it is a potential vector of human pathogens (Fischer
et al., 2014). Therefore, it is important to evaluate and compare the
output of various modelling methods to learn which one produces the
best results (Hastie et al., 2009). From a biological perspective, it is also
necessary to check how different models predict the distribution of
populations on a regional scale, i.e. if they are able to show regions
through a spatial simulation that are more or less suitable for coloni-
sation than others.

By now, a lot of different machine learning methods are applicable
to biological questions (e.g. Tarca et al., 2007; Olden et al., 2008;

Wieland and Mirschel, 2008; Kampichler et al., 2010; Fernández-
Delgado et al., 2014). Recently, the combination of several modelling
methods has become popular when classifying species distribution (e.g.
Thomson et al., 2006; Grenouillet et al., 2011; Solazzo and Galmarini,
2014; Martre et al., 2015). Modelling climatically dependent potential
distribution is lately done for various invasive mosquito species, e.g.
Aedes albopictus and Ae. japonicus japonicus, showing potentially sui-
table habitats (Fischer et al., 2014; Kraemer et al., 2015; Melaun et al.,
2015; Cunze et al., 2016). Aedes j. japonicus is an invasive mosquito
species which has entered the USA and Europe through globalised trade
from eastern Asia (Kampen and Werner, 2014). Monitoring in Germany
showed occurrences in Baden-Wuerttemberg (Huber et al., 2012),
North Rhine-Westphalia/Rhineland-Palatinate, Lower Saxony/North
Rhine-Westphalia (Kampen et al., 2012; Werner and Kampen, 2013)
and Bavaria (Zielke et al., 2016). The potential of the species as a vector
of viruses (Takashima and Rosen, 1989; Sardelis et al., 2002a, 2002b,
2003; Schaffner et al., 2011; Huber et al., 2014) requires thorough
surveillance.

Evaluating the training results of machine learning methods is
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usually done through performance indices, e.g. ‘precision’ and ‘recall’,
which are derived from a confusion matrix (Buckland and Elston, 1993;
Lobo et al., 2008; Bennett et al., 2013). Another approach to test the
predictive power of a model can be done by analysing the spatial si-
mulation of the occurrence of the species. The resulting performance
indices consist in a partially ordered set (Halfon, 1985) which can be
visualised using the Hasse diagram technique (HDT) (Hasse, 1952;
Brüggemann et al., 1994). The HDT has been proven useful in many
environmental studies, such as ecotoxicological assessments of pollu-
tants and comparisons of land use strategies (Brüggemann et al., 1995;
Voigt et al., 2006; Tsonkova et al., 2015).

Some models only work well with a certain dataset while others
produce overly complex, overfitted models with default settings (Rodda
et al., 2011). For the prediction of the potential distribution of Ae. j.
japonicus it is unknown which model or combination of models is the
most suitable. The previous ensemble forecasting method for the pre-
diction of the potential distribution of Ae. j. japonicus in Europe used a
poor dataset and without differentiating between the step-by-step
combination of models (Cunze et al., 2016). Instead of this combination
of all used models, a combination of selected methods should be tested
(Solazzo and Galmarini, 2014; Martre et al., 2015). This study is part of
a joint research project and aims to test the suitability of different
models for a specific dataset of mosquito occurrence points. One of the
goals of the joint research project is to provide maps of occurrence and
dispersal of Ae. j. japonicus in Germany, based on ecological and geo-
logical factors. The primary objective of the present study is to find the
model with the most accurate prediction of the potential distribution of
Ae. j. japonicus in Germany related to weather variables, as these seem
to be most important in modelling the occurrence of an invasive mos-
quito species (Fischer et al., 2011, 2014, Cunze et al., 2016).

For ranking the performance, the indices ‘recall’, ‘precision’, ‘se-
lectivity’, ‘exactness’, time for training, adjustability and comprehen-
sibility were compared. Through specific combinations of models, an
improvement of the performance is expected to be achieved (Martre
et al., 2015). The application of the HDT should clarify the order of the
evaluation output of the single models and their combinations, re-
spectively; i.e. the HDT should show if a single model or a combination
of certain models yields the best results for predicting the potential
distribution of Ae. j. japonicus.

2. Methods

2.1. Selection of predictors

We accessed mosquito collection data via the German national
mosquito database ‘Culbase’, which included data from the citizen
science project “Mueckenatlas” (Werner et al., 2014; Walther and
Kampen, 2017) and from active monitoring activities (Kampen et al.,
2016). Collection data of Ae. j. japonicus and three native mosquito
species were extracted from the ‘Culbase’ database.

We followed the approach of Kerkow et al. (unpublished), who as-
sumed that environmental variables favour one species more than

others. Thus, we were able to perform a classification of mosquito
species presence, including weather variables as predictors, with the
following assumption, which was based on the probability of the oc-
currence of a mosquito species (p) as a function (f) of weather (w) (Eq.
(1)):

=p f w( ) (1)

An analysis of publicly available weather variables in adequate re-
solution (1 km²; Deutscher Wetterdienst, https://cdc.dwd.de/) ac-
cording to the method by Wieland et al. (2017) to correlate with the
potential occurrence of Ae. j. japonicus in Germany in 2014, produced
the following variables to be most predictive: mean precipitation in
February, April and June; mean temperature in September, October and
December; mean temperature in March, April and May, and drought
index in September, October and November.

Handling the dataset was done by the Python modules ‘pandas’ and
‘numpy’.

2.2. Model selection

From the many models available we focused on those which have
been evaluated with the highest ranks by Fernández-Delgado et al.
(2014). Some classifier families have been excluded from the pre-
selection because they produce better results in a different application
area, e.g. neural networks are more suitable for deep learning
(Kampichler et al., 2010). Other classifiers had to be rejected due to
poor results in pre-tests (e.g. AdaBoost). The following models were
selected: decision tree (DT), which is easy to comprehend and to in-
terpret (Breiman et al., 1984), logistic regression (LR), a very popular
and fast classifier (Cox, 1958), random forest (RF), the most powerful
classifier at the moment (Breiman, 2001; Fernández-Delgado et al.,
2014), and support vector machine (SVM), which works well even with
small datasets (Cortes and Vapnik, 1995).

2.3. Modelling

The dataset of mosquito collection points was split into training data
(years 2011–2014) and test data (year 2015). We used data of the years
2011–2014 (n= 2988), with a random selection of max. 1000 sampling
points for each training step and weather data from 2014.

The Python module ‘scikit-learn’ integrated a bunch of modern
machine learning algorithms that could be used for fast and efficient
supervised classification (Pedregosa et al., 2011). It was accompanied
by a precise and comprehensive documentation (Garreta and
Moncecchi, 2013). We chose the four supervised algorithms from the
models available in the ‘scikit-learn’ module (see Table 1).

For each model, we changed the default settings (e.g. the depth of
the tree for DT; see Table 1) to fit the model to our data until the score
of the confusion matrix could not be improved anymore. Each model
passed ten training steps to decrease the risk of choosing an un-
representative selection of the dataset. Visualisation of the results with
boxplots was implemented via the Python module ‘matplotlib’. To avoid

Table 1
Name, settings, originators and application examples of the selected classifiers. The specified settings improved the evaluation results, compared to results gained
through default settings.

Model Classifier Settings Originator Application examples

DT DecisionTreeClassifier criterion='entropy', max_depth= 5 Breiman et al. (1984) Podgorelec et al. (2002), Kampichler et al. (2010)
LR LogisticRegression C=1.0, penalty='l2', tol= 0.01 Cox (1958) Hosmer and Lemeshow (2000),

Fischer et al. (2011)
RF RandomForestClassifier min_samples_split = 10,

random_state= 0
Breiman (2001) Pino-Mejías et al. (2010),

Vezza et al. (2015)
SVM svm.SVC gamma=0.00008,

tol= 1e-10,
probability= True

Cortes and Vapnik (1995) Kampichler et al. (2010), Pino-Mejías et al. (2010)
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retraining the models in case of future applications, we used the Python
built-in persistence module ‘pickle’.

An averaging multi-model approach was used by combining the four
models. The binomial coefficient could calculate the number of possible
combinations (Eq. (2)):
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By subtracting the four single models, we got 11 combinations.
For spatial simulation, the potential distribution of Ae. j. japonicus

was compiled in an ASCII grid file and visualised in maps through
‘Spatial Analysis and Modeling Tool Version 2’ (SAMT2, Wieland et al.,
2006, 2015) and QGIS 2.16.3. Ensemble models were produced by
adding the output of specific single models and dividing the result by
the number of the models in the ensemble through SAMT2.

2.4. Evaluation

The evaluation of the training was done with sampling data from
2015.

2.4.1. Training
For statistical evaluation of the single models, we took the confusion

matrix (Buckland and Elston, 1993) from the training and used the
Python ‘metrics’ module to show a report with the performance indices
‘precision’ and ‘recall’. We considered collection points of Ae. j. japo-
nicus as a positive condition and handled the exclusive occurrence of
other species as a negative condition for Ae. j. japonicus.

2.4.2. Spatial simulation
Due to the lack of absence data we decided to develop an own

evaluation measure to quantify the prediction performance of the
spatial simulation. We assumed that the lowest 10% of the predicted
values can be subtracted from the prediction map, since they must be
expected to represent climatically unsuitable locations, resulting in
instable populations (if they provided habitable areas at all). The model
should be able to predict regions with low probabilities of potential
distribution. Predicting large areas with high occurrence probabilities
resulting from false positives makes a model vague and unreliable. For
this reason we introduced the index ‘selectivity’ (S) as a measure to
explain the robustness of the model against false predictions of occur-
rence. It was calculated by using the collection data from 2015, taking
into account the predicted probability of each point. The lowest 10% of
these points were subtracted from the area of Germany (A0), giving a
smaller area where the predicted probability (p) was greater than 10%
of the lowest values of all points: Area(p > 10%). Afterwards, the
index was calculated by the following equation (Eq. (3)):

=
− >

S
A0 Area p

A0
( ( 10%))

(3)

The smaller the Area(p > 10%), i.e. the higher the index S, the more
selective is the model, which means that the model is able to predict
accurate areas of occurrence of Ae. j. japonicus and to minimise false
predictions of occurrence of the species.

The index E shows the power of the models to predict the occur-
rence of Ae. j. japonicus with a certain probability, i.e. the ‘exactness’
(Eq. (4)). It was calculated by the Mean (p|m), which is the arithmetic
mean of the predicted probability (p) at the collection sites of mos-
quitoes in 2015 (m), with exclusive consideration of collection points
where the predicted probability values (p) were greater than 10%.

= ∧ >E Mean p m p( ) 10% (4)

The higher the mean of the matched collection point values of 2015
is, the more useful the model demonstrates to be for the prediction of
Ae. j. japonicus. Therefore, the best model evaluated through the index E
calculates the highest values of probability of occurrence for the

collection point values of 2015 (i.e. the test data).
Both indices, S and E, are equally important, making a direct

comparison inadequate. They represent a partially ordered set
(Reggiani and Marchetti, 1975; Halfon, 1985; Brüggemann and
Steinberg, 1998) which can be graphically visualised by the HDT
(Hasse, 1952; Halfon, 1985; Brüggemann et al., 1994). The HDT is
available via the PyHasse software package (https://pyhasse.org/).

In this study, the HDT was used to compare the indices (S1, E1) of
one model (M1) with the indices (S2, E2) of another model (M2). M1 has
higher values than M2, if S1 is bigger than S2 or E1 is bigger than E2 (Eq.
(5)). M1 and M2 are not comparable, when S1 is bigger than S2 but E1 is
lower than E2, or vice versa (Eq. (6)).

> ⇔ > ∧ >M S E M S E S S E E( ) ( )1 1 1 2 2 2 1 2 1 2 (5)

≠ ⇔ > ∧ < ∨ < ∧ >M S E M S E S S E E S S E E( ) ( )1 1 1 2 2 2 1 2 1 2 1 2 1 2

(6)

2.4.3. Secondary performance indices
The time for training can vary highly between the algorithms,

especially depending on the size of the dataset and the number of es-
timators and input variables. We measured the time needed via the
Python module ‘timeit’.

If the model has a lot of adjustable options, a good performance
even for a special dataset is evident. On the other side, it can be very
time-consuming to find the best configuration when there are too many
options. Therefore, we changed the settings of the models according to
the documentation (http://scikit-learn.org, Pedregosa et al., 2011;
Garreta and Moncecchi, 2013) until the results of the training could not
be improved anymore.

A good comprehensibility of the model enables to retrace the de-
cision path of the estimators. This allows to evaluate the importance of
the used input variables (Pedregosa et al., 2011). The decision if the
model was either a black box or a white box method was made by
examining their functionality (Cox, 1958; Breiman et al., 1984; Cortes
and Vapnik, 1995; Breiman, 2001).

3. Results

3.1. Performance indices

The values of the performance indices derive from 10 steps of
training and testing the single models. The model with the highest
values of ‘precision’, ranging from 0.8 to 0.85 and, thus, showing only
small variance, is SVM. The median of RF reaches the second highest
values of 0.74, but the range of the testing results of the model has a
rather high variance from 0.64 to 0.81. LR has a median precision of
0.72, fluctuating from 0.67 to 0.76. The model with the poorest results
is DT with a median of 0.69 and a high variance from 0.59 to 0.82
(Fig. 1).

Fig. 1. ‘Precision’ from 10 steps of training and testing. RF=Random forest,
LR= Logistic regression, SVM=Support vector machine, DT=Decision tree.
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For the index ‘recall’, SVM has the highest median of all models with
a value of 0.77 and a small variance from 0.74 to 0.80. LR and DT show
similar results with a median of 0.74, but differ considerably in var-
iance: LR 0.74–0.76; DT 0.65–0.84, with outliers of up to 0.42. The
poorest results are represented by RF, with a median of 0.42, ranging
from 0.31 to 0.47 (Fig. 2).

The results of the evaluation of the spatial simulation (Table 2,
Fig. 3) were calculated according to Eqs. (3) and (4) (see chapter 2.4.2).

The following main results can be inferred from the Hasse diagram
(Fig. 3):

1 The evaluation results in a clear structure.
2 DT is the model with the poorest results.
3 Combinations of two to three models yield the best results.
4 The combination of all four models performs worse than combina-
tions of less models or even single models.

3.2. Secondary quality indices

LR and DT have the fastest algorithms (69 and 91 s, respectively),
SVM has a medium (171 s) and RF the slowest runtime (518 s).

DT and RF are the only models that allow following and visualising
the path of how the input variables were used for classification. LR and
SVM are black boxes.

All models possess a lot of possibilities to fit them for the used da-
taset. We had to tune some of the default settings (e.g. number of es-
timators, depth of tree etc.) until the result of the training could not be
improved anymore.

3.3. Spatial simulation

All selected models have in common, that they predict high prob-
abilities of occurrence (0.7–0.9) for almost the whole area of the federal
states of Baden-Wuerttemberg (BW) and North Rhine-Westphalia
(NRW). The highest values are calculated by SVM, the lowest by DT. In
other German federal states we find a high variation of the calculated
prediction values. RF shows highly fragmented areas with values> 0.5
for Hesse (H), Rhineland-Palatinate (RP), Lower Saxony (LS), Thuringia
(T) and Bavaria (BA). By contrast, SVM seems to calculate a more or less
continuous area and very small additional spots in BA, but overall ra-
ther high prediction values of> 0.7.

LR looks similar to SVM, but predicts a much smaller distribution
area and values for RP, but very high values of> 0.8 for the foothills of
the Alps in southern BA. DT shows the biggest calculated area, with
prediction values from 0.4 to 0.5, which includes LS, Schleswig-
Holstein (SH), northern Saxony-Anhalt (SA), western parts of
Brandenburg (BR), Mecklenburg-Western Pomerania (MP) and Berlin
(B). Smaller areas with higher values are calculated by DT with the
focus on the borders of BA and T, NRW, RP and H and some spots in BA
(Fig. 4).

Most of the sites where individuals of Ae. j. japonicus were collected
from 2011 to 2014 (BW and NRW) were correctly calculated by all
models. Looking at more recently detected presence areas, e.g. from BA
(first records from 2015; Zielke et al., 2016), the models show marked
differences: The predicted probability of occurrence of Ae. j. japonicus
calculated through DT and RF shows no or only weak probability values
as compared to field collections from 2015 in the southern part of BA,
when LR provides values of ∼0.5–0.7 (Fig. 4).

The combination of models results in maps with areas of predicted
occurrence that are more balanced than those from single models, be-
cause they are rid from outliers and much less fragmented. Frequently
calculated high values are amplified, single weaker values are

Fig. 2. ‘Recall’ from 10 steps of training and testing. RF=Random forest,
LR=Logistic regression, SVM=Support vector machine, DT=Decision tree.

Table 2
‘Exactness’ (E, Eq. (4)) and ‘selectivity’ (S, Eq. (3)) of the used models and their
combinations. RF=Random forest, LR= Logistic regression, SVM=Support
vector machine, DT=Decision tree.

Model Exactness Selectivity

LR & RF 0.6303 0.6667
RF & SVM 0.6477 0.6348
LR & RF & SVM 0.6366 0.6398
LR & SVM 0.6085 0.6362
SVM 0.6270 0.6111
LR 0.5535 0.6455
RF 0.6122 0.5628
DT & LR & SVM 0.6064 0.5499
DT & RF & SVM 0.6415 0.5127
DT & LR & RF 0.6258 0.4018
DT & LR & RF & SVM 0.6178 0.3934
DT & SVM 0.6080 0.3956
DT & RF 0.6229 0.3879
DT & LR 0.5975 0.3926
DT 0.4858 0.2233

Fig. 3. Hasse diagram of ‘selectivity’ and ‘exactness’ (resulting from values of
Table 2). Models or combinations of models on the same horizontal level are
not comparable to each other. An arrow points to a better performing model or
combination of models.
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diminished from the map. A negative effect can be caused by a single
model with very poor results; it can bias the output from a combination
of models with good evaluation results in such a way that it degrades
the whole set (e.g. the addition of DT; Fig. 5).

When we look at the best results according to the Hasse diagram,
which are the combinations of ‘RF and LR and SVM’, ‘RF and SVM’ or
‘LR and RF’, we see two main differences among many similarities: the
combination ‘RF and SVM’ shows higher values for LS, but is much
weaker for southern BA; by contrast, ‘LR and RF’ shows much higher
values for southern BA (Fig. 5).

3.4. Comparison

The modelling outputs can be compared by summarising the

different evaluation results. This is common in environmental model-
ling to get an overview about the quality of the models (e.g. Kampichler
et al., 2010). In this case, each quality index contributes equally to the
final result. Another option would be weighted ranking, which can be
done independently if the modelling priorities are different (e.g. if false
negatives should be absolutely avoided, the ‘recall’ index should have a
higher value than the ‘precision’ index; or if there is a bigger dataset,
the running time becomes more important).

According to the summarised results of the evaluation indices in
Table 3, SVM can be ranked as the best model, due to its good results in
the primary evaluation indices, and despite the facts that it is a black
box model and rather slow. LR is faster than SVM, but is ranked second
because it has weaker ‘recall’ and ‘precision’ results. RF follows third
due to its slow runtime and a lower value in the index ‘recall’, probably

Fig. 4. Predicted probabilities of Ae. j. japonicus occurrence by the specific models, calculated with weather data from 2014 and mosquito training data from 2011 to
2014, as compared to field collection data from 2015.
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owing to problems with the dataset or the training size (see chapter
4.1). DT is presented at the end because its variance makes it unreliable.
However, the indices listed in Table 3 are incomparable. Therefore, the
summarised results of the evaluation indices should be taken with
caution. Instead for an accurate comparison of the models it is advised
to prefer the results from the Hasse diagram (chapter 3.1).

4. Discussion

4.1. Performance

All models show good ‘precision’ index results, with the exception of
DT which shows a rather high variance of this index, creating the

Fig. 5. Combinations of models, showing predicted probabilities of occurrence of Ae. j. japonicus, calculated with weather data from 2014 and mosquito training data
from 2011 to 2014, as compared to field collection points from 2015.

Table 3
Values of evaluation indices of single models, ranking from 1 (best) to 4 (worst). An asterisk (*) indicates high variance, resulting in poor values. The overall
performance (result) is calculated as mean of the single indices.

Model Recall Value Precision Value Time [s] Value Compre-hensibility Value Result

SVM 0.77 1 0.82 1 171 3 Black box 3 2
LR 0.75 2 0.72 3 69 1 Black box 3 2.25
RF 0.42 3 0.74 2 518 4 White box 1 2.5
DT 0.7* 4* 0.68* 4* 91 2 White box 1 2.75
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impression that this model produces overfitted and unreliable output.
An explanation could be the specific dataset, where locally clustered
occurrence points can lead to an improper result. DT is prone to over-
fitting anyway, producing rather inaccurate and variable outputs with
certain datasets compared to other models (James et al., 2013; Géron,
2017).

Regarding the ‘recall’ index, all models show good results, with the
exception of RF. This could be the result of the randomised DTs
(number of estimators= 10) in the training process. When the calcu-
lated maps are considered, the output of RF shows scattered, tessellated
projected distribution areas, even in regions where a more contiguous
area was expected. Such a mosaic-like pattern could be the reason for
missing many of the testing points from 2015 and conveys the im-
pression that the model is rather insensitive.

When we changed the number of estimators, we got the worse re-
sults for the classification performance the more estimators we in-
cluded. This is a well-known problem in machine learning and is at-
tributed to the bias-variance trade-off (Hastie et al., 2009). As RF
reduces the variance of the single DTs, the bias of the model increases,
resulting in underfitting and becoming overly conservative. This makes
RF rather unreliable for helping detect unknown occurrence outside of
the area of training data origin. On the other hand, it reduces the risk of
calculating false positives. When we changed the training size from
1000 to 300 individuals, the ‘recall’ index became much better, but led
to a rather liberal, unselective model, probably resulting from the in-
sufficient number of training data and/or unbalanced input data
(Subramanian, 2015). With a bigger dataset we assume that RF should
yield a much better result, especially if some of the parameters for
regularisation are adjusted (e.g. max_depth, min_samples_leaf, max_-
leaf_nodes).

For evaluating the modelling performance, the concept of partial
ordering (Halfon, 1985), visualised through the HDT (Brüggemann
et al., 1995), proves to be highly efficient. The approach of using the
HDT to support the common evaluation method is new in en-
tomological modelling studies and seems to be a promising tool for
ranking model output.

Comparing the results from calculating the HDT (via the partially
ordered set of ‘selectivity’ and ‘exactness’ indices), the combinations of
‘LR and RF’, ‘SVM and RF’ and ‘SVM and LR and RF’ produced the best
results. Specific ensembles, containing two or three models, performed
better than single models. The combination of all studied models was
outperformed by most of the combinations with two or three models
and also by some single models, e.g. SVM. Similar results, evaluated by
other approaches, were recently obtained. For example a combination
of up to 10 out of 27 models improved the training output (Martre et al.,
2015), and subsets of five to seven models are outscoring the whole
ensemble of 13 models (Solazzo and Galmarini, 2014).

Regarding the time effort for modelling, the rather simple structure
of LR and DT may explain why these algorithms were the fastest and
why RF with ten estimators was five to seven times slower. As the
calculation in our study was already quite time-consuming, despite a
rather small dataset, it is suggested to use LR or SVM for bigger data-
sets.

When the comprehensibility of the models is compared, we see that
SVM and LR are black box models. In the white box models DT and RF,
the importance of variables can be ranked (Breiman, 2001). Thus, in
future modelling studies, the use of DT and RF can help to get a better
understanding of the influence of specific variables.

Optimising the model by changing its setting does not only require
understanding the model, but a well described documentation, which
can be found for the scikit-package (Pedregosa et al., 2011). A certain
setting can improve the accuracy of the model, but sometimes with
negative side effects like an increase in false positive or false negative
prediction. For example, we found the problem of overfitting in DT with
exceedingly complex trees, which tend to learn incorrect patterns (in
particular with the default setting: ‘max_depth=None’, resulting in a

fully grown tree). Anyway, it is necessary to change the adjustments of
each model before the application of the default settings, or else the
output could be prone to serious overfitting (Rodda et al., 2011). All
models showed good results after some tuning, also owing to a precise
documentation (Pedregosa et al., 2011; Garreta and Moncecchi, 2013).

4.2. Further modelling steps

Weather variables alone cannot explain the occurrence of Ae. j. ja-
ponicus. It is necessary to include further aspects, such as land use, al-
titude and host population density (Liu et al., 2017) to get a more ac-
curate picture of the possible distribution of Ae. j. japonicus. An
approach to find such additional variables could be preliminary cluster
computing, which has shown to be more promising than the selection
by biological expertise (Wieland et al., 2017).

When simulating the spread of this species, rivers, roads and rail-
ways as pathways to distant locations, which may be climatically sui-
table, but not accessible by active migration of the mosquito, should
also be analysed (Tannich, 2015; Holloway and Miller 2017). To solve
the problem of adaptability of the species to the new environment,
which produces uncertainties in specific variables, it is proposed to use
a fuzzy modelling approach (Wieland and Mirschel, 2008; Costa et al.,
2015).

5. Conclusion

By using eight weather variables and a dataset of different mosquito
species, all four models calculate accurate predictions of the potential
occurrence of Ae. j. japonicus in Germany, with some limitations for the
rather unstable decision tree.

The evaluation of the spatial simulation with the introduced indices
‘exactness’ and ‘selectivity’ results in a partially ordered set. The ap-
plication of the Hasse diagram technique visualises the partial set of
‘selectivity’ and ‘exactness’ indices of all models and combinations.
Therefore, this technique appears to be a convenient instrument for the
evaluation of machine learning methods.

Ensemble models compared to single models can give a more ba-
lanced and more diverse output, which is helpful to get information
about previously unnoticed mosquito populations. Interestingly, the
best results for the prediction of the species distribution are from
combinations of two or three models. The combination of all available
models is not advised, because there will always be some with weaker
or instable output, which disqualify the output of the whole ensemble.
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