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• Dengue dynamics are influenced by the
combined effects of precipitation and
landscape.

• Landscape factors are strongly influen-
tial in increasing the sensitivity of mos-
quito occurrence.

• Climate factors strongly increase the
sensitivity of dengue incidence.
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Background: Dengue is an endemic vector-borne disease influenced by environmental factors such as landscape
and climate. Previous studies separately assessed the effects of landscape and climate factors onmosquito occur-
rence and dengue incidence. However, both factors concurrently coexist in time and space and can interact, af-
fecting mosquito development and dengue disease transmission. For example, eggs laid in a suitable
environment can hatch after being submerged in rain water. It has been difficult for conventional statistical
modeling approaches to demonstrate these combined influences due to mathematical constraints.
Objectives: To investigate the combined influences of landscape and climate factors onmosquito occurrence and
dengue incidence.
Methods: Entomological, epidemiological, and landscape data from the rainy season (July–December) were ob-
tained from respective government agencies in Metropolitan Manila, Philippines, from 2012 to 2014. Tempera-
ture, precipitation and vegetation data were obtained through remote sensing. A random forest algorithm was
used to select the landscape and climate variables. Afterward, using the identified key variables, a model-based
(MOB) recursive partitioning was implemented to test the combined influences of landscape and climate factors
on ovitrap index (vector mosquito occurrence) and dengue incidence.
Results: The MOB recursive partitioning for ovitrap index indicated a high sensitivity of vector mosquito occur-
rence on environmental conditions generated by a combination of high residential density areaswith low precip-
itation. Moreover, the MOB recursive partitioning indicated high sensitivity of dengue incidence to the effects of
ental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan.
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precipitation in areas with high proportions of residential density and commercial areas.
Conclusions: Dengue dynamics are not solely influenced by individual effects of either climate or landscape, but
rather by their synergistic or combined effects. The presented findings have the potential to target vector surveil-
lance in areas identified as suitable for mosquito occurrence under specific climatic conditions and may be rele-
vant as part of urban planning strategies to control dengue.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dengue is an endemic vector-borne disease influenced by environ-
mental factors such as climate and landscape. Dengue-endemic coun-
tries such as the Philippines consider this arboviral disease an
economic and health burden (Buczak et al., 2014). Environmental fac-
tors, particularly climate and landscape, play a significant role in regu-
lating the temporal variations and spatial distributions of dengue and
the vectors Aedes aegypti and Aedes albopictus (Hayden et al., 2010).
These factors can mediate human-mosquito interactions by expanding
the vector's habitat and increasing its abundance, thus advancing den-
gue disease transmission (Thongsripong et al., 2013).

Previous studies demonstrated that climate factors such as precipi-
tation and temperature significantly affect both mosquito abundance
(Barrera et al., 2011; Naish et al., 2014) and dengue incidence
(Phanitchat et al., 2019; Carvajal et al., 2018). For example, the high
availability of breeding sites for mosquitoes during the rainy season in
Southeast Asian countries (e.g., Philippines, Singapore, Thailand, and
Indonesia) contributes to the increased number of annual dengue
cases (Su, 2008; Hashizume et al., 2012). Many studies have reported
that the increasing number of cases is associated with the high number
of available mosquito breeding sites that can hold or contain rainwater,
thereby facilitating high mosquito abundance (Seidahmed et al., 2018;
Arcari et al., 2007). Additionally, high temperatures are responsible for
extending adult mosquito longevity, accelerating virus replication, and
enhancing the mosquito biting rate (Kilpatrick et al., 2008; Chan and
Johansson, 2012).

Recent studies have shown that different land use (LU) types
(e.g., residential, industrial, and agricultural areas) may have different
impacts on dengue incidence (Kesetyaningsih et al., 2018; Sheela
et al., 2017; Sarfraz et al., 2012; Vanwambeke et al., 2007; Cheong
et al., 2014) given the uneven spatial distribution of vectors among dif-
ferent LU types (Piovezan et al., 2019). Areas with human settlements
contribute to a high incidence of dengue (Cheong et al., 2014; Sarfraz
et al., 2012) due to the high availability of man-made water-holding
containers that serve as breeding sites (Ngugi et al., 2017) and humans
as a host preference for blood meals (Higa, 2011).

Most previous studies investigated the effects of either dynamic cli-
mate factors (Carvajal et al., 2018; Zheng et al., 2019; Arcari et al., 2007;
Tovar-Zamora et al., 2019; Bavia et al., 2020) or static spatial distribu-
tions of landscape attributes (Seidahmed et al., 2018; Vanwambeke
et al., 2007; Vanwambeke et al., 2011; Sarfraz et al., 2012) on the tem-
poral variations or spatial distributions of mosquito occurrence and
dengue incidence. However, landscape and climate conditions concur-
rently coexist in time and space, and their spatiotemporal interrelation
and influence on dengue dynamics may not be occurring separately. In
small areas where rainfall is equally distributed, surface runoff flows
from highlands to lowlands due to gravity, increasing water concentra-
tion in lowlands compared with that in highlands. Comparative studies
reported high mosquito densities in flooded lowlands compared with
nonflooded highlands (Nasir et al., 2017; Rydzanicz et al., 2011). One
study reported that the high mosquito abundance in lowlands was in-
fluenced by floods that reach mosquito eggs that were previously laid
in the environment (Hashizume et al., 2012). Another study demon-
strated that during the dry season,mosquito abundancewashigh in res-
idential areas given the availability of permanent water-holding
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containers that served as breeding sites (Little et al., 2017); in the wet
season, mosquito reproduction expanded to other nonresidential
areas. These studies found anuneven effect of precipitation onmosquito
abundance potentially due to different preexisting LU types (Nasir et al.,
2017; Rydzanicz et al., 2011; Little et al., 2017). The characteristics of a
local area's landscape can also influence its microclimate (Chang et al.,
2007; Lin et al., 2018; Thani et al., 2017; Shashua-Bar et al., 2011), po-
tentially affecting the ecology of the mosquito (Murdock et al., 2017)
and dengue transmission. For example, areas with a high percentage
of impervious surfaces (e.g., paved roads, built-up areas) with less veg-
etation coverage can absorb high amounts of solar radiation and pro-
duce more heat compared to areas with less impervious surfaces and
extensive vegetation coverage (Koch-Nielsen, 1999). Therefore, the
combined influence of landscape and climate factors on mosquito and
dengue incidence must be quantitatively assessed (Sallam et al.,
2017). No studies have yet attempted to assess the combined influence
of climate and landscape features on dengue disease dynamics.

Previous studies that utilized environmental factors to develop den-
gue epidemiology models faced challenges when jointly considering
climate and landscape attributes, preventing us from better under-
standing dengue disease distribution. One such challenge is the avail-
ability of secondary datasets (Sarfraz et al., 2012; Vanwambeke et al.,
2007). Climate data such as temperature and precipitation are typically
obtained fromgroundweather stations (WS). However, using such data
is limited by the limited number of ground WS. Therefore, remotely
sensed climatic variable data have been utilized in epidemiological
studies to address the lack of routinely collected data from ground
meteorological stations (Kapwata and Gebreslasie, 2016; German
et al., 2018). The recent introduction of platforms that integrate remote
sensing and cloud computation such as Google Earth Engine (GEE)
(Gorelick et al., 2017) enhances free access and processing of a wide
variety of satellite-derived products for precipitation, temperature, veg-
etation, and LU with notable flexibility, even in large areas (DeVries
et al., 2020). However, many studies that utilize LU based on satellite
image classification contain certain limitations. In this type of map,
built-up areas are often merged into a single category (Vanwambeke
et al., 2006; Ibarra, et al., 2014; German et al., 2018), preventing the
ability to further distinguish the subcategories of land utilization such
as residential, commercial, industrial, etc. These different categories of
LUmay have different ecological responses tomosquito and dengue dy-
namics that need to be accurately captured (Thammapalo et al., 2007);
hence, detailed maps might amplify the chances to capture fine scale
variations of mosquito habitats and dengue incidence. Although labor
intensive, detailed LU maps produced by local governmental agencies
based on field surveys can help uncover patterns of dengue disease at
a fine scale in urban areas (Nazri et al., 2011).

Another challenge lies in finding an appropriate method to model
complex interactive mechanisms between multiple environmental fac-
tors (Little et al., 2017; Sarfraz et al., 2012). In the recent decade, model-
ing techniques in machine learning methods such as random forests
(RFs) (Breiman, 2001) have been adopted to analyze complex databases
and handle anomalies found in datasets such as outliers and multi-
collinearity among covariates. Data-intensivemodeling has gained pop-
ularity in spatiotemporal ecological modeling at the landscape or larger
scales to better explain ecological or epidemiological patterns by cap-
turing nonlinear variable interactions (Ryo et al., 2018; Ryo et al.,
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2017; Ryo and Rilling, 2017). The results of this approach improved RF
model accuracy (Leontjeva and Kuzovkin, 2016) and better predictabil-
ity of species' habitat distribution with the inclusion of maximum en-
tropy (Stanton et al., 2012).

This study aimed to examine the combined influences of landscape
and climate features on mosquito vector occurrence and dengue inci-
dence across MetropolitanManila, the Philippines. We focused on iden-
tifying which specific combinations of climatic conditions and
landscape attributes could potentially lead to an increased sensitivity
of mosquito occurrence and dengue incidence. We employed some ad-
vancedmachine learning algorithms due to its growingutilization to ex-
plore the influence of landscape features or climate on dengue disease
(Carvajal et al., 2018; Guo et al., 2017; Ong et al., 2017; Chen et al.,
2018; Baquero et al., 2018) and mosquito occurrence (Mwanga et al.,
2019; Jiménez et al., 2019; Früh et al., 2018; Zheng et al., 2019). By
selecting important environmental features for RFs, we further exam-
ined and described the optimal combination of landscape and climate
variables that influence dengue incidence and mosquito occurrence
using model-based (MOB) recursive partitioning.

2. Material and methods

2.1. Study area

Metropolitan Manila is the National Capital Region (NCR) of the
Philippines, located at Southwestern Luzon (14°50′N Latitude, 121°E
Longitude). With 100% urbanization (Asian Development Bank, 2014),
the NCR is the most densely populated area in the country (18,165.1
persons/km2 spread over an administrative land area of 636 km2)
(Asian Green City Index, 2011). It comprises 16 cities and one munici-
pality with a total population of 12,877,253 (Philippines Statistics Au-
thority, 2019). Each city or municipality is further subdivided into the
smallest administrative division, a “Barangay,” commonly known as a
village, with 1706 total villages. A collection of villages can be merged
into a “zone” depending on the city's administrative boundaries.

Themajority of the target area is covered by residential (54.07%), in-
dustrial (9.41%), and commercial (7.45%) areas. The urban development
ofMetropolitanManila occurred through a gradual replacement of agri-
cultural LUwith industrial and commercial LU, and amassive increase in
residential areas. The constant spatial and population growth has led to
LU pressure and instigated substandard housing in areaswith a high risk
of flooding (Zoleta-Nantes, 2000).

The climate of Metropolitan Manila during the rainy season (from
July to December) is characterized by strongmonsoon rain and tropical
storms (World Bank, 2014; BBC News, 2012). Heavy rain associated
with a lack of drainage infrastructure contributes to flooding (Zoleta-
Nantes, 2000).

2.2. Data sources and processing

2.2.1. Administrative boundaries
The map of the administrative boundaries of Metropolitan Manila

(Fig. 1a) was obtained from the Philippine GIS Data clearinghouse
(www.philgis.org). Metropolitan Manila includes 1706 villages
(barangays) with most within the City of Manila (n = 897; 53%). In
this study, the villages of Manila, Caloocan, and Pasay were merged to-
gether into “zones” to facilitate consistency in village size because most
villages are very small with an average area of 0.06 km2. Additionally,
86% (n = 771) of the villages have an area of <0.06 km2. The average
area of each village in Metropolitan Manila (excluding the City of
Manila) is 0.41 km2. This study used the City of Manila, Caloocan, and
Pasay's designated zone names to merge villages. Overall, 464 villages
or zones were subsequently analyzed in this study. The population sta-
tistics were obtained from the Philippine Statistics Authority agency
(www.psa.gov.ph). Since the Philippine population census is conducted
every five years, we obtained the 2010 (Philippines Statistics Authority,
3

2012) and 2015 (Philippines Statistics Authority, 2019) census data and
used the compounded population growth rate to calculate the popula-
tion for the years 2012 and 2013. The sum of the projected population
of the merged villages (Manila, Caloocan, and Pasay) was also
calculated.

2.2.2. Entomological surveillance
In 2012, governmental institutions (Department of Science and

Technology (DOST), Department of Education, Department of Health,
Department of Interior, and local governments) implemented a nation-
wide surveillance program that installed DOST Orvicidal/Larvicidal
traps (OL-traps) to monitor Aedes mosquitoes to help control dengue
transmission and reduce dengue cases (DOST, n.d., DOST Mosquito
Ovicidal/Larvicidal (OL) Trap for Dengue Prevention, 2013). Surveil-
lance programs in many countries have utilized ovitraps as a routine
surveillance tool because they are relatively low-cost and reliable in
attracting gravid Aedes females for oviposition (Silver, 2007; Ritchie
et al., 2003). In Metropolitan Manila, ovitraps were installed in public
places such as schools, institutes, and other education facilities. A total
of 719 georeferenced surveillance locations providing weekly reported
Ovitrap indices (OIs) were extracted from the reporting website
(http://oltrap.pchrd.dost.gov.ph/) (DOST, n.d.) from July 2012 to De-
cember 2014. Afterward, each georeferenced surveillance location was
matched with its corresponding village, with only 268 of the 464 vil-
lages containing mosquito surveillance location(s). We aggregated the
OIs into a monthly index by dividing the cumulative OI by the total
number of sampling locations. Given the low numbers and inconsistent
reporting during themonths of January to June, the study only included
the aggregated monthly OI from July to December of 2012, 2013, and
2014.

2.2.3. Epidemiological data
The total number of weekly reported dengue cases from January

2012 to December 2014 for all 464 villages was obtained from the Na-
tional Epidemiology Center, Department of Health, Philippines. Most
of the reported dengue cases during this periodwere suspected or prob-
able cases according to standard definitions andwere not confirmed in a
laboratory.We calculated themonthly dengue incidence by dividing the
total number of dengue cases eachmonth by the total population of the
village multiplied by a population factor of 10,000. The dengue inci-
dence was transformed by adding 1 to all values and obtaining its natu-
ral logarithm [loge (n + 1)].

2.2.4. Climatic factors
Remote sensing (RS) is a promising tool in epidemiological studies

(German et al., 2018; Misslin and Daudé, 2017; Buczak et al., 2014;
Araujo et al., 2015). This study used the Tropical Rainfall Measurement
Mission (TRMM) product 3B43 to obtain the monthly average rainfall.
This gridded quasi-global product consists of monthly average precipi-
tation measured in hourly bases with 0.25° of spatial resolution
(Huffman and Bolvin, 2018). The Terra Moderate Resolution Image
Spectroradiometer (MODIS) collected the average land surface temper-
ature. The products MOD11A2 and MYD11A2 from MODIS Terra and
Aqua satellites consists of the average temperature collected within an
eight-day period for both daytime and nighttime temperatures with
1 km spatial resolution (USGS, n.d.-a). GEE (Gorelick et al., 2017) was
used to download the RS raster images, apply scaling factor (0.02),
and convert temperature values from the default Kelvin (K) to degrees
Celsius (°C). This product suffers from missing data, particularly during
the rainy season, given the high cloud cover and other atmospheric dis-
turbances. To overcome this limitation, a Kriging interpolation method
was applied to estimate themissing temperature values for each village
using ArcGIS software version 10.2 (ESRI, Redlands, CA). This method
weights the surrounding measured values to derive a surface of pre-
dicted values for an unmeasured location for each month (ESRI, 2016).
Since each village can be covered bymultiple pixels of the raster images

http://www.philgis.org
http://www.psa.gov.ph
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Fig. 1. Administrative boundaries of Metropolitan Manila showing: (a) Ovitrap locations; Landscape features: (b) Residential areas classified according to densities, (c) Nonresidential
areas, (d) Uninhabited areas, (e) Road networks, and (f) Flood risk.
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of precipitation and temperature, the spatially weighted average value
of all pixelswithin each villagewas calculated permonth. The validation
of RS data for further use in the study was done by performing Pearson
correlation analysis using the complete time series precipitation or
interpolated temperature against precipitation or temperature ob-
served from the three available ground WS across the study area from
January 2012 to December 2014. The RS data utilized for validation
corresponded to the monthly spatially weighted average value of the
pixels around 1 km radius of eachWS correlated to the value of precip-
itation or temperature observed from a particular ground WS, respec-
tively. Essentially, these analyses showed a very high positive
correlation (r>0.9, p<0.01), suggesting that RS data can precisely ren-
der the spatiotemporal trend of climatic data observed from ground
WS; making it appropriate for further analysis. Detailed results from
these analyses are presented in Supplementary file 1.

A flood hazard map of Metropolitan Manila was obtained from the
LiDAR Portal for Archiving and Distribution (LiPAD) website (https://
4

lipad.dream.upd.edu.ph) (LiPAD, 2018). This flood map indicates the
flood susceptibility level at a 10-m spatial resolution (NOAH, 2015).
There are three categories of flood susceptibility: (a) low (flood water
height ranging from 0.1–0.5 m), b) moderate (0.5–1.5 m), and
(c) high (above 1.5 m). Initially, the percentage of land covered by
each flood risk category was calculated by village and multiplied by a
weighing value from 1 (low) to 3 (high) according to the risk category.
The average of these three values was calculated and utilized as the
flood risk index per village. The degree of flood susceptibility was esti-
mated based on a five-year period of heavy rain scenarios and thus is
limited to spatial risk and does not consider the temporal variation of
risk throughout a year.

2.2.5. Landscape data
The local LU map of Metropolitan Manila (2004) was obtained from

the Philippine Geoportal website (www.geoportal.gov.ph) managed by
the Bureau of National Mapping and Resource Authority and the

https://lipad.dream.upd.edu.ph
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Metropolitan Manila Development Authority (NAMRIA, n.d.). This map
contains 30 LU types (agricultural, grass, forest, water bodies, open
spaces, parks and recreation, education and cultural, health andwelfare,
religious and cemetery, military, governmental institutions, industrial,
commercial, transport, residential areas of very low, low, medium,
high, and very high density, and informal settlements). The largest por-
tion (54.07%) was covered by residential areas (very low, low, medium,
high, and very high house densities) with multi-story dwelling places
(1–2, 3–4, 5, ormore stories). This study only considered the house den-
sity categories (very low, low, medium, high, and very high) given the
very small proportion of multi-story categories of more than three
stories (0.01%–0.07%). Nonresidential areas such as industrial, commer-
cial, and public facilities comprised 37% of MetropolitanManila. A small
portion was covered by natural landscape aspects such as water bodies
and forests (10%). The 2004 LUmap had a time gapwith our dengue in-
cidence data (2012–2014); thus, we updated themap to the period cov-
ered by our study so that all input parameters in the model had the
same time range. This map was subjected to updates based on open
street maps (OSM), processed and distributed by Geofabrik GmbH
(www.geofabrik.de). The OSM data contained modifications that oc-
curred before December 2016 (Geofabrik GmbH, 2019). Prior knowl-
edge of the study area was used to manually inspect and validate the
map modifications. We noted some LU changes that occurred between
2004 and 2014 in specific areas with the expansion of residential and
commercial areas into open spaces (Supplementary file 2). Although
LU is expected to change over time, LU in the 10-year period was not
significantly different, which may reflect the well-established and con-
solidated urban land utilization distribution in Metropolitan Manila.
Therefore, in this study, we considered the LU map of 2014 as a static
variable that accurately rendered the land utilization distribution for 3
years (2012–2014). LU variables included the percentage of land cov-
ered by each LU class (i.e., agriculture, water bodies, commercial, resi-
dential) per village (Fig. 1b–d). The percentage of each LU class was
calculated as follows. Firstly, we calculated the area of each LU class
per village. Then, the percentage of each class was determined over
the total area of the villages. All edits and calculations of LU areas per vil-
lage was performed in ArcGIS software, version 10.2.

Road network density (RND) assesses the urbanization gradient
(Suarez-Rubio and Krenn, 2018), which influences mosquito
abundance and dengue transmission (Bostan et al., 2017). The road
network map was obtained from the Philippine GIS Data Clearing-
house website (http://philgis.org/) and classifies roads as primary,
secondary, tertiary, residential, and others (PhilGIS, 2012). The
RND for each category was calculated by dividing the total length
of roads by the total village area. Since the RND of each category of
primary, secondary, and tertiary roads was less than 0.001 m/m2,
we merged them into a single category, “main roads” (Fig. 1e).
Terra MODIS Normalized Difference of Vegetation Index (NDVI)
was derived from the product MOD13Q1 version 6. The NDVI
consists of measures of the reflected photosynthetic activity on veg-
etation and is generated every 16 days at 250-m spatial resolution
(USGS, n.d.-b). All images were downloaded through GEE and proc-
essed using ArcGIS to obtain their monthly averages per village.
Table 1
Spatiotemporal data characteristics.

Data Source Raw Temporal resolutio

Dengue cases DOH Weekly
Ovitrap Index (%) DOST Monthly

Precipitation (mm/h) TRMM Monthly
Land Surface Temperature (°C) MODIS 8-day

Normalized Difference of Vegetation Index MODIS 16-day
Land use (Ha) NAMRIA, Geofabrik Static 2004, 2014

Road Network (m) PhilGIS Static
Flood risk LiPAD Static

5

2.2.6. Data matching
To conformwith the limited availability of OI data, DI and all explan-

atory variables were also restricted to those from July–December (rainy
season) 2012–2014 in the analysis. Furthermore, all variableswere spa-
tially weighted by the area of the village for each month. The final
dataset was obtained from village-month mean values (Table 1).

2.3. Cross-correlation analysis

A cross-correlation analysis was conducted on the temporal varia-
tions of environmental factors (precipitation, temperature, and vegeta-
tion) on the OI and dengue incidence. The mean value of Metropolitan
Manila area per month for each variable was utilized. We identified
the best-lag based on the highest Pearson correlation coefficient that
was generated and its statistical significance (p < 0.05). These analyses
were implemented in R software version 3.6.2 using “ggpubr” package
version 0.2.4 (Kassambara, 2019). The best-lag timing for each variable
was used for the latter analyses.

2.4. Model development with variable selection

The model development was made in two steps. First, RF
algorithm was used for variable selection. Second, the selected
variables were utilized to investigate the potential combined influ-
ences between climatic and landscape factors toward OI and Dengue
incidence with MOB recursive partitioning. Our combined approach
of RF followed by MOB recursive partitioning enable us to see the
nonlinear variable interactions.

2.4.1. Random forest for variable selection
RF is a bootstrap aggregation (bagging) ensemble method that gen-

erates a large number of independent bootstrapped trees from random
small subsets of the dataset (Breiman, 2001). RF is used to solve a vari-
ety of classification and regression problems due its ability to handle
large numbers of predictor variables even in thepresence of complex in-
teractions (Garge et al., 2013). Two regression models were imple-
mented in this study. Dengue incidence was regressed with lagged
climate factors, LU types, and OI, with 27 explanatory variables. Addi-
tionally, the OI was regressed with lagged climate factors and LU
types, with 26 explanatory variables. Since RF variable importance can
be sensitive to tuning parameters, we performed a grid search by
looping a model implementation over several parameters combination
for OI and Dengue incidence. The loop trains several RFmodels by grad-
ually supplying and increasing the values of four parameters namely:
number of variables (mtry), number of trees (ntree), percentage of boot-
strap sample and node size. Afterwards, the best parameters combina-
tion is selected from the model with the lowest Out-of-Bag error. Both
OI and Dengue incidence models were implemented with parameters
set at ntree = 500, bootstrap sample = 80% and node size = 8. The
mtry was set at 5 and 9 for OI and Dengue incidence respectively. RF
models were estimated using the “ranger” package (Wright et al.,
2020) implemented in the R software version 3.6.2 (R Core Team,
2017).The other parameters were set as default in the package.
n Raw spatial resolution Adopted temporal resolution Adopted spatial resolution

Tabular: Village Monthly Village
Vector: point Monthly Village
Raster: 0.25° Monthly Village
Raster: 1 km Monthly Village
Raster: 250 m Monthly Village
Vector: Village Static Village
Vector: Village Static Village
Raster: 5 m Static Village

http://www.geofabrik.de
http://philgis.org/


Table 2
Cross-correlation analysis of temporal climate factors in dengue incidence and ovitrap
index.

Variables Dengue incidence Ovitrap index

Lag month r value p value Lag month r value p value

Ovitrap Index 3 0.52 0.05 – – –
Precipitation 1 0.69 0.00 0 0.48 0.04
Temperature 3 0.52 0.05 0 0.73 0.00
Vegetation 1 −0.71 0.00 3 0.77 0.00

M.E. Francisco, T.M. Carvajal, M. Ryo et al. Science of the Total Environment 792 (2021) 148406
To identify the most important predictors of dengue incidence and
mosquito occurrence, we assessed variable importance (VI), which
was measured as the mean decrease in MSE in the RF models. VI is cal-
culated based on the number of times the explanatory variable is used
for splitting, weighted by the improvement to the model as a result of
each split, averaged over all trees (Elith et al., 2008). For the VI and re-
spective p-values, we applied the permutation importance method,
which computes an unbiased VI measure (Altmann et al., 2010). Posi-
tive importance values with p-values less than 0.05 were selected for
the subsequent MOB recursive partitioning analysis.

2.4.2. Model-based recursive partitioning
To investigate the combined influences of the selected explanatory

variables to OI and Dengue incidence, we used a Model-Based (MOB)
recursive partitioning (Zeileis et al., 2008; Pirkle et al., 2018). MOB is
reminiscent of the classification and regression tree (CART) algorithms,
which recursively split the datasets into subsets at each step based on
independent variables (Pirkle et al., 2018). MOB algorithm performs it-
eratively through the following steps: (1) fit a user-defined linear re-
gression equation to the data; (2) investigate if the model parameters
depends on other covariates; (3) if yes, split the model and data
into two groups with respect to the covariate with a threshold that
brings the largest changes in the linear model parameters based on
M-fluctuation test; and (4) repeat the procedure (1–3) in each of
the resulting subsamples. The process is repeated until a particular
stopping criterion is reached. Our stopping criteria were at the fol-
lowing parameters: 5% level of significance (alpha= 0.05) and max-
imum depth of the tree equal to 4 (maxdepth=4). These constraints
contribute to avoid model overfitting (Zeileis et al., 2008, Pirkle et al.,
2018), and simplification of the tree structure for better interpret-
ability since only the most significant predictors are considered
(Kopf et al., 2010). The P-values were Bonferroni corrected to control
a false positive rate. We used the Linear Model Tree (lmtree) inter-
face implemented in “partykit” package (Hothorn and Zeileis, 2015)
in R Software (R Core Team, 2017).

Themodelswere implemented via two steps. First,we utilized all se-
lected explanatory variables to build a decision tree to see the overall
distributions of the OI and dengue incidence. From this step, we identify
the predictors most strongly associated with the distribution of the OI
and Dengue incidence. We used these associations as a linear model
that MOB explores. Then, using a MOB, we explored covariates that
modulate the associations. We regressed OI with High residential den-
sity areas as a linear model, of which parameter dependency was ex-
plored with precipitation, residential RND, temperature, medium
residential density areas, vegetation, health institution areas, very high
residential density areas, flood risk, commercial areas, and industrial
areas. For Dengue incidence, we used precipitation as the linear model
predictor, using the following variables as potential modulators: tem-
perature, commercial areas, high residential density areas, vegetation,
OI, flood risk, and residential RND.

3. Results

3.1. Cross-correlation analysis

Precipitation yield had the highest positive and significant correla-
tion with dengue incidence (r = 0.69, p = 0.00) at a one-month lag,
followed by OI (r = 0.52, p = 0.05) and temperature (r = 0.52, p =
0.05), both at a three-month lag. Vegetation displayed a negative and
significant correlation (r = −0.71, p = 0.00) at a one-month lag
(Table 2). Vegetation showed the highest positive correlation with the
OI (r = 0.77, p = 0.00) at a three-month lag, followed by temperature
(r = 0.73, p = 0.00) and precipitation (r = 0.48, p = 0.04), both at a
zero-month lag. A dataset that contained lagged climate factors at the
most significant lag for each variable (highest correlation coefficient
and p < 0.05) was used as input dataset.
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3.2. Variable selection

Fig. 2 shows the varied importance of the selected variables in the
two RF models. The OI was significantly associated with 11 variables
(three climatic factors and eight landscape factors). High residential
density areas were ranked first, followed by precipitation, residential
RND, temperature, medium residential density areas, vegetation, health
institution areas, very high residential density areas, flood risk, com-
mercial areas, and industrial areas (Fig. 2a). Dengue incidence was sig-
nificantly associated with eight variables (three climatic factors, four
landscape factors, and OI). Precipitation was ranked first, followed by
temperature, commercial areas, high residential density areas, OI, vege-
tation, flood risk, and residential RND (Fig. 2b). These variables were
used in the subsequent modeling.

3.3. Model-based recursive partitioning

Fig. 3a displays the MOB tree of the environmental conditions
explaining the distribution of the OI. The tree is composed of three
partitioning levels and eight terminal nodes. Each terminal node
shows the average OI of a subset of the entire dataset based on selected
landscape and climatic features and labeled accordingly as terminal
nodes OV-A1 to OV-A8. In the MOB tree, high residential density was
identified as the first-level partitioning variable and thus considered
the most important environmental feature. The succeeding levels
were comprised of residential RND, precipitation, industrial areas,
health institutional areas, and flood prone areas. The order of the vari-
ables was agreed with the estimated variable importance (Fig. 2a).
The average OI from node OV-A1 to OV-A8 ranged from 1.36 to 34.52%.

We employed further analyses to identify the interactive effects of
the most important predictor (i.e., high residential density) with other
environmental factors on OI (Fig. 3b). Higher slopes and R-squared
values were found in nodes OV-B4 and OV-B8 (0.30 (R2 = 0.13, p =
0.00) and 0.25 (R2 = 0.05, p = 0.00), respectively), indicating that the
effect of high residential density areas on OI is modulated by precipita-
tion, residential roads, and industrial areas. Discordant associations of
high residential density areas to OI were observed for flood risk. A neg-
ative slope of −0.18 (R2 = 0.02, p = 0.00) was found when the flood
risk was lower or equal to 0.36 (node OV-B5) whereas a positive slope
of 0.07 (R2=0.01, p=0.02)was foundwhen the flood risk was greater
than 0.36 (node OV-B6).

Fig. 4a shows theMOB tree of the influence of climatic and landscape
factors on dengue incidence. This tree is composed of eight terminal
nodes generated from three partitioning levels. Each terminal node
shows the average dengue incidence of a subset of the entire dataset
based on selected climatic and landscape factors and is labeled accord-
ingly as terminal nodes DI-A1 to DI-A8. Precipitation was the
partitioning variable in the first and second partitioning levels and
thus considered the most important environmental feature, similar to
the RF analysis (Fig. 2b). The succeeding partitioning levels comprised
commercial and high residential density areas. The average dengue inci-
dence on the terminal nodes DI-A1 to DI-A8 ranged from 0.04 to 0.51.

We employed further analyses to infer the interactive effect of the
most important predictor (precipitation) with other environmental



Fig. 2. Varied importance measures of the variables with the most significant associations with (a) ovitrap index and (b) dengue incidence; (**) statistically significant at p < 0.05.
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factors on dengue incidence (Fig. 4b). We specified precipitation as the
main predictor and the remaining variables as interacting factors.
Higher slopes and R-squared values were found in relation to two
Fig. 3. Recursive partitioning trees for identifying the (a) most influential variables on the ovitr
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different interaction patterns and were considered influential toward
dengue incidence. The first pattern involved interactions between pre-
cipitation, commercial areas, and high residential density areas (nodes
ap index and (b) interactive effects between environmental factors and the ovitrap index.



Fig. 4. Recursive partitioning trees for identifying the (a) most influential variables on dengue incidence and (b) the interactive effects between environmental factors and dengue
incidence.
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DI-B7 and DI-B4, with slopes of 0.44 (R2 = 0.24, p=0.00) and 0.39 (R2

= 0.17, p = 0.00), respectively). The second pattern involved interac-
tions between precipitation, commercial areas, high residential density
areas, and flood risk (nodes DI-B6 and DI-B2, with slopes of 0.41 (R2 =
0.16, p = 0.00) and 0.39 (R2 = 0.16, p = 0.00), respectively).

4. Discussion

4.1. The interactive effects between high residential density, precipitation,
and other landscapes in modulating ovitrap index

In general, ovitraps can detect the presence of both Ae. aegypti and Ae.
albopictus. However, theOI data utilized in this studydoes not contain any
information on the proportion of these two species. Therefore, our discus-
sion in this section focuses solely on Ae. aegypti, because previous studies
that surveyed selected areas of Metropolitan Manila indicated a high in-
festation rate of Ae. aegypti (>80%) (Mistica et al., 2019; Carvajal et al.,
2019), thereby making it the primary vector for dengue transmission.

Both the RF and MOB tree (Figs. 2a and 3a) analyses clearly indicate
the importance of high residential density areas on the overall distribu-
tion of theOI.We employed further analyses by specifying high residen-
tial density areas as the main predictor and the remaining variables as
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interacting factors (Fig. 3b). The influence of high residential density
areas on mosquito occurrence became clearer under certain environ-
mental conditions specifically with lower precipitation (≤0.45 mm/h).
The two nodes OV-B4 and OV-B8 with the highest slopes (0.30 and
0.25, respectively) were both formed in high industrial areas (>4.15
and > 1.52%, respectively) and high residential road areas (>0.02 and
> 0.01 m/m2, respectively), and node OV-B4 was formed in a low pre-
cipitation condition (≤0.45 mm/h). Since Ae. aegypti preferentially
breeds in small water containers exposed to the outdoors (Carvajal
et al., 2019; Ngugi et al., 2017), little rainfall might be sufficient tomain-
tain optimal levels of water suitable for mosquito emergence. Although
the aforementioned previous studies have reported a positive associa-
tion of precipitation and mosquito occurrence, our results reveal that
the effect of precipitation in increasing the sensitivity of mosquito oc-
currence may prevail at a certain threshold. Conversely, enhanced rain-
fall might flush outmosquito eggs and larvae from breeding containers:
thus, reducing the chances formosquito survival and population in high
residential density areas (Dickin et al., 2013).

Residential RNDwas the partitioning variable on the second level of
the MOB tree. Furthermore, nodes OV-B4 and OV-B8, which had the
highest slopes, were partitioned with higher residential road densities
(>0.02 and > 0.01 m/m2, respectively). These results suggest a high
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sensitivity ofmosquito occurrence to high residential density areaswith
a higher density of residential roads. Roads not only serve as transporta-
tion networks for people and goods but are also simultaneously accom-
panied by drainage components (e.g., roadside drains or canals, drain
sumps), which collect surface water runoff for discharge in appropriate
locations to avoid inland water flooding. However, in many cases, effi-
cient drainage in residential areas can be compromised by the en-
croachment of concrete structures or garbage clogging the canals
(Lagmay et al., 2015). These interferences can inhibit complete water
flow, resulting in spots of accumulated water, which can create favorable
habitats for Ae. aegypti (Paploski et al., 2016). Growing evidence has sug-
gested a positive association between drainage and the occurrence of Ae.
aegypti in Singapore (Seidahmed et al., 2018), Brazil (Souza et al., 2017),
and Australia (Montgomery et al., 2004). Our results, specifically in the
nodes OV-B4 and OV-B8, suggest that the high density of roads may con-
tribute to an increased mosquito occurrence. However, these results
should be carefully interpreted as they may reflect the actual poor condi-
tions of the road network drainage in the study area.

Notably, with high precipitation (>0.45 mm/h), high residential
density areas showed an opposite association to OI depending on the
flood risk (Fig. 3b). Higher flood risk led to a positive association be-
tween residential density areas and OI (node OV-B6) whereas lower
flood risk led to a negative association (node OV-B5). Breeding con-
tainers located in high residential density areas with a higher flood
risk, despite being watered by rainwater or water for domestic usage,
might have a higher chance to be reached by flood waters. However,
flood waters can also extend the range of potential habitats for mosqui-
toes (Yee et al., 2019). Evenmore unusual breeding sites such as under-
ground septic tanks were reported as favorable for Ae. aegypti
reproduction in residential areas in Puerto Rico (Barrera et al., 2008).
These conflicting potential effects of flood on mosquito habitats might
explain the higher sensitivity ofmosquito occurrence in high residential
density areaswith higher flood risks (node OV-B6) compared with high
residential density areas with lower flood risks (node OV-B5).

Node OV-B1, which had less precipitation (≤0.45mm/h), residential
roads (≤0.02m/m2), and nohealth institution areas (≤0%), is an extreme
situation of null sensitivity of the OI toward high residential density
areas. This node's slope (0.00, R2 = 0.00, p = 0.84) might indicate
that themixture of other types of landscapeswith residential areas is es-
sential to enhance the sensitivity of the OI to residential density areas.
However, further work is necessary to test this hypothesis and explain
potential mechanistic effects.

The adaptation of Ae. aegypti closer to human settlements does not
seem to be solely influenced by environmental factors; certain human
practices (e.g., housing in flood prone areas, weak environmental sanita-
tion, obstruction of drainage canals, water storage practices for domestic
usage)might contribute to the occurrence ofmosquitoes. Therefore, envi-
ronmental improvement and integrated controlmeasures at the commu-
nity level to improve the environment surrounding households, careful
domesticwater storage, and other sanitationpractices are themost prom-
ising solutions for reducing the occurrence of mosquitoes.

The environmental conditions associated with mosquito occurrence
must be carefully interpreted given the nature of the mosquito occur-
rence data (OI) utilized in this study. The OI is based on the percentage
of positive ovitraps and can detect the presence or absence of vectors.
However, it has limited capacity in displaying the precise range of mos-
quito density in the environment (Harburguer et al., 2016). Therefore,
the environmental conditions inferred from this ovitrap MOB tree
might only display the conditions formosquito oviposition and not nec-
essarily the conditions influencing mosquito abundance.

4.2. Interactive effects between precipitation and landscapes in modulating
dengue incidence

Both RF (Fig. 2b) andMOB tree (Fig. 4a) analyses showed the signif-
icant influence of precipitation in regulating the sensitivity to dengue
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incidence with high proportions of high residential density and com-
mercial areas. On the MOB tree (Fig. 4a), precipitation was the
partitioning variable on the first and second levels, whereas high resi-
dential and commercial areas were selected as partitioning variables
on level 3. Overall, dengue incidence MOB trees supported the signifi-
cant influence of precipitation on dengue incidence. The significant in-
fluence of precipitation agrees with previous studies in the Philippines
(Carvajal et al., 2018; Su, 2008) and Malaysia (Dickin et al., 2013),
which reported precipitation as a main driver of the temporal variation
of dengue incidence. These studies assumed that the high correlation
between precipitation and dengue incidence is due to the increasing
mosquito density during the rainy season.

In the variable selection step, precipitation showed a very strong in-
fluence on dengue incidence compared with other environmental fac-
tors. We conducted further analyses to evaluate the combined
influence of precipitation with other environmental factors in modulat-
ing dengue incidence (Fig. 4b). The association between precipitation
and dengue incidence was notable particularly in areas covered by
high residential and commercial areas, suggesting a high influence of
these LU types in modulating dengue incidence. The highest slope
(0.44, R2 = 0.24, p = 0.00) was reported for node DI-B7 (Fig. 4b),
which incorporates interactions between precipitation, commercial
areas (>4.41%), and high residential density areas (between 25.38 and
83.97%). Herewith, this nodal pathway was considered the most influ-
ential environmental condition for increasing dengue incidence with
high precipitation. The second highest slope (0.39, R2 = 0.17, p =
0.00)was reported for nodeDI-B4 and formedwith environmental con-
ditions of commercial areas (0.31 < commercial areas ≤4.41%) and high
residential density areas (>10.90%). With these influential patterns ob-
served in terminal nodes DI-B7 and DI-B4, we suggest that certain eco-
logical factors in commercial and high residential areas can enhance
dengue transmission with precipitation. Previous studies have shown
that residential and commercial areas experience the most damaged
houses during extreme rainfall and flood events in Metropolitan
Manila (Porio, 2014, a, Porio, 2011, b). Damage to families' shelters,
followed bymassive displacements, might subjectmany people to dete-
riorated conditions with limited capacity to observe disease prevention
and vector control measures. The high human exposure to vectors in
these areas might create an avenue for high dengue transmission. A
highly sensitive influence of precipitation on increasing dengue inci-
dence was observed under high flood risk conditions (DI-B6 and DI-
B2). These terminal nodes showed higher slopes of 0.41 (R2 = 0.16, p
=0.00) and 0.39 (R2=0.16, p=0.00), respectively. Conversely, termi-
nal nodes with lower flood risk (nodes DI-B1 and DI-B5, with slopes of
0.28 (R2=0.14, p= 0.00) and 0.33 (R2= 0.12, p=0.00), respectively)
displayed less sensitivity in increasing dengue incidence. These exam-
ples illustrate that the increased sensitivity of dengue transmission in
residential and commercial areas with high precipitation can also be
caused by floods. Floods can contribute to increased mosquito density
and force people to live confined in deteriorated conditions of habitabil-
ity with high exposure to vectors. The combination of human presence
and exposure to vectors has been linked to high dengue transmission in
residential (Scott and Morrison, 2010, de Moura Rodrigues et al., 2015)
and commercial areas (Honório et al., 2009; Thammapalo et al., 2007).
Due to the anthropophilic nature of Ae. Aegypti, high human presence
and exposure in these areas may increase feeding opportunities for
mosquitoes and increase the chances of dengue fever infections
(Koyadun et al., 2012). Because many people are exposed in areas
with high precipitation levels, it becomes easier for mosquitoes to bite
and infect many people in a short time, thus increasing the incidence
of dengue (Akter et al., 2017).

We expected that the resulting dengue incidence and ovitrap MOB
trees (Figs. 4a and 3a) would yield similar tree topology patterns. This
expectation assumed that the high dengue incidence during the rainy
season is a result of high mosquito abundance influenced by precipita-
tion. However, our result was contrary to our assumption and could



M.E. Francisco, T.M. Carvajal, M. Ryo et al. Science of the Total Environment 792 (2021) 148406
be explained by methodological limitations. The OI is based on the per-
centage of positive ovitraps with the presence or absence of vectors;
however, it has a limited capacity in precisely displaying the range of
mosquito density in the environment transmitting dengue. Although
ovitraps are fast and cost-effective tools for monitoring the presence
of mosquitoes, the OI has a low associationwith dengue incidence com-
pared with adult mosquito abundance data (deMelo et al., 2012). Addi-
tional correlation analyses (data no shown) of the OI and dengue
incidence from the terminal nodes of Fig. 3a and bwere not significantly
correlated. Therefore, themosquito occurrence data (OI) utilized in this
studymight be responsible for the dissimilarities in the ovitrap andden-
gue incidence MOB tree topology patterns.

4.3. Accessibility of data, modeling approach, and limitations

Most previous epidemiological studies faced limitations when inte-
grating climatic and landscape data given the scarcity of data and
modeling techniques. Although we consider landscape to be static in
this study, themodel development did not distinguish dynamic or static
terms. Since the physical characteristics of each village did not change
significantly over the three years, we assumed that these characteristics
remained the same for eachmonth of the study period. Based on this as-
sumption, we utilized a data structure from previous studies that re-
peated the values of the static variables for the monthly values of the
climate variables in each village (Kaul et al., 2018). This design allowed
us to analyze dengue dynamics as a function of the combined influences
of climate dynamics over the static landscape.

Many methods from conventional statistics and machine learning
may, in principle, be used to handle datasets with temporal and spatial
dimensions. Usually a statistical model suggests empirical relationships
between variables to generate specific outcomes based on certain as-
sumptions and a priori knowledge of the modeled dynamics (Bzdok
et al., 2018; Kapwata and Gebreslasie, 2016). By contrast, machine
learning does not require a specific model structure in advance. The al-
gorithm itself can automatically utilize the original input data to identify
hidden patterns in complex data structure (Richter and Khoshgoftaar,
2018). Beforehand, statistics requires us to declare a formalmodel that in-
corporates our knowledge of the system. Thus, before implementing a
model, careful inspection of the data is necessary (e.g., normal distribu-
tion) (Olden et al., 2008). Machine learning makes minimal assumptions
about thedata structure and canbe effective evenwhen thedata are gath-
ered without a carefully controlled experimental design (Bzdok et al.,
2018). Additionally, machine learning is less sensitive to outliers and
can efficiently address higher dimensionality variables even in the pres-
ence of complicated nonlinear interactions among covariates (Olden
et al., 2008). The increase in data complexity may inherit some disadvan-
tages to classical statisticalmethods. Instead, we utilized amachine learn-
ing approach such as RF for variable selection and recursive partitioning
for subset selection because of their ability to handle complex datasets
and evaluate nonlinear relationships in the data without having to satisfy
the restrictive assumptions required by conventional approaches.

Machine learning, specifically RF, is often the preferred modeling
method in awide variety of epidemiological studies due to its capability
to handle large datasets and accurately identify the best predictors
(Kapwata and Gebreslasie, 2016). However, many studies only ranked
the relative importance of individual variables in influencing mosqui-
toes and dengue. Ranking the importance of variables alone is not
enough to infer the dynamics occurring in the environment and their in-
fluence on dengue epidemiology (Sallam et al., 2017). As discussed pre-
viously, there are multiple interacting factors in the environment that
could play important roles in influencing mosquito and dengue occur-
rence. RF was able to handle the initial dataset and screen the most rel-
evant variables associated with the OI and dengue incidence. Although
RF can identify themost important variables, it cannot explain the inter-
actions among covariates. Therefore, a recent study recommends also
applying a machine learning method that is relatively easy to interpret
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(Ryo et al., 2020). By utilizing the recursive partitioning method in
this study, we demonstrated importantmechanistic interplays between
environmental factors and presented specific conditions influencing the
OI and dengue incidence. Furthermore, the same variables were identi-
fied as most influential on dengue and mosquitoes in RF and recursive
partitioning. This consistency of results indicates the appropriateness
of the adopted study design in capturing combinatory influences
among environmental factors. However, since the data utilized are lim-
ited (July–December), subsequent studies should be conducted to infer
whether complete data (January–December) with a similar modeling
approach leads to different or similar results.

The utilization of RS in our study constituted a great asset for
accessing spatiotemporal temperature, precipitation, and vegetation
data for each village. These types of data overcome the limited accessi-
bility of such information at fine scales in areas where the spatial cover-
age of weather stations is coarse (German et al., 2018). By using Google
Earth Pro, wewere able to use cloud computation to conduct all prelim-
inary processing of the data, which significantly shortened the working
time.Moreover, detailed LUmaps can distinguish the risk of dengue and
mosquito occurrence at a fine scale. Many studies that used coarse LU
classification, for example, reported that Ae. aegypti and dengue inci-
dence are positively correlated with residential areas (Vanwambeke
et al., 2007; Vanwambeke et al., 2011; Sarfraz et al., 2012). In this
study, we demonstrated that the distributions of mosquito and dengue
can also vary depending on the type of density in these residential areas.

Our study, however, has certain limitations. As mentioned in the
methods, the entomological data used in this study are incomplete
and only correspond to the months of July–December of 2012–2014.
This period covers the rainy season in Metropolitan Manila. Therefore,
the lack of data for the dry season (January–June) may cause potential
bias in our study. Furthermore, ovitraps were installed in only 298 of
464 villages acrossMetropolitanManila. Complete data from all villages
may increase the robustness of our analysis and better describe the
mechanistic understanding of associations between the dengue metrics
and environment factors. On the other hand, longer time series of Den-
gue epidemiological data along with the respective serotypes circulat-
ing would provide important insights on the dengue dynamics by
accounting for possible herd immunity within the target population.
Other socio-economic factors can also be included as they are being re-
ported as important factors governing the abundance of mosquito and
transmission of dengue (Santos et al., 2020). Nevertheless, our findings
may still reflect the actual circumstances of LU and climatological char-
acteristics of the study area. The results of the combinatory influences of
landscape and climate may differ in other urban cities, particularly in
rural areas in the Philippines and other dengue-endemic countries.
Nonetheless, the methodology presented in this study can infer
interplays between climate and landscape on mosquito occurrence
and dengue incidence. To improve Dengue dynamics modeling, other
approaches such as empirical dynamic modeling can be considered
when complete and longer time series data is available.

5. Conclusions

Our study design was capable of integrating and assessing the com-
bined influences of both climate and landscape factors toward dengue
disease dynamics. It suggests discordant patterns wherein the OI is pri-
marily influenced by landscapes and modulated by the effects of low
levels of precipitation. Dengue incidence is primarily influenced by pre-
cipitation and modulated by landscape types. These results show that
the dynamics of dengue disease are not solely influenced by individual
effects of either climate or landscape, but rather by their synergistic
and combined effects. The presented findings have the potential to tar-
get vector surveillance in areas identified as suitable for mosquito oc-
currence under specific climatic conditions. Furthermore, the study
findings may be relevant as part of urban planning strategies to control
dengue in areas of increased sensitivity to dengue transmission.
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In recent years, vector control efforts in eliminatingmosquito breed-
ing sites have intensified in residential areas by identifying and
destroying breeding sites. However, we demonstrated that the exis-
tence of potential breeding sites in the landscape is not the only reason
for dengue transmission. These efforts should be accompanied by effec-
tive improvements in urban planning toward amore resilient landscape
against mosquito-vectored diseases.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.148406.

CRediT authorship contribution statement

Micanaldo Ernesto Francisco: Software, Formal analysis, Data
curation, Visualization, Writing – original draft. Thaddeus M. Carvajal:
Conceptualization, Data curation, Writing – original draft. Masahiro
Ryo: Methodology, Validation, Writing – review & editing. Kei
Nukazawa: Data curation, Writing – review & editing. Divina M.
Amalin: Writing – review & editing. Kozo Watanabe: Conceptualiza-
tion, Validation,Writing – review & editing, Supervision, Project admin-
istration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

We thank Katherine M. Viacrusis, Lara Fides T. Hernandez, and
Howell T. Ho from Trinity University of Asia for collecting and providing
the data on notified dengue fever cases. This study was supported in
part by the Japan Society for the Promotion of Science (JSPS) Grant-in-
Aid Fund for the Promotion of Joint International Research (Fostering
Joint International Research (B)) under grant number 19KK0107, JSPS
Grant-in-Aid for Scientific Research (A) under grant number
19H01144, the JSPS Core-to-Core Program B. Asia-Africa Science
Platforms under grant number JPJSCCB20190008, and the Endowed
Chair Program of the Sumitomo Electric Industries Group Corporate
Social Responsibility Foundation.

References

Akter, Rokeya, Hu, Wenbiao, Naish, Suchithra, Banu, Shahera, Tong, Shilu, 2017. Joint ef-
fects of climate variability and socioecological factors on dengue transmission: epide-
miological evidence. Trop. Med. Int. Health 22 (6), 656–669. https://doi.org/10.1111/
tmi.12868.

Altmann, André, Tolosi, Laura, Sander, Oliver, Lengauer, Thomas, 2010. Permutation im-
portance: a corrected feature importance measure. Bioinformatics 26 (10),
1340–1347. https://doi.org/10.1093/bioinformatics/btq134.

Araujo, Ricardo V., Albertini, Marcos R., Costa-da-Silva, André L., Suesdek, Lincoln,
Franceschi, Nathália C.S., Bastos, Nancy M., Katz, Gizelda, et al., 2015. São Paulo
urban heat islands have a higher incidence of dengue than other urban areas. Braz.
J. Infect. Dis. 19 (2), 146–155.

Arcari, Paula, Tapper, Nigel, Pfueller, Sharron, 2007. Regional variability in relationships
between climate and dengue/DHF in Indonesia. Singap. J. Trop. Geogr. 28 (3),
251–272.

Asian Development Bank, 2014. Republic of the Philippines National Urban Assessment.
ADB, Philippines.

Asian Green City Index, 2011. Assessing the Environmental Performance of Asia’s Major
Cities. Munich. Siemens AG, Germany.

Baquero, Oswaldo Santos, Santana, Lidia Maria Reis, Chiaravalloti-Neto, Francisco, 2018.
Dengue forecasting in São Paulo city with generalized additive models, artificial neu-
ral networks and seasonal autoregressive integrated moving average models. PLoS
One 3 (4), e0195065. https://doi.org/10.1371/journal.pone.0195065.

Barrera, R., Amador, M., Diaz, A., Smith, J., Munoz-Jordan, J.L., Rosario, Y., 2008. Unusual
productivity of Aedes aegypti in septic tanks and its implications for dengue control.
Med. Vet. Entomol. 22, 60–69.

Barrera, Roberto, Amador, Manuel, MacKay, Andrew J., 2011. Population dynamics of
Aedes aegypti and dengue as influenced by weather and human behavior in San
Juan, Puerto Rico. PLoS Negl. Trop. Dis. 125 (12), e1378. https://doi.org/10.1371/jour-
nal.pntd.0001378.
11
Bavia, Lorena, Melanda, Francine N., de Arruda, Thais B., Mosimann, Ana L.P., Silveira,
Guilherme F., Aoki, Mateus N., Kuczera, Diogo, Sarzi, Maria Lo, et al., 2020. Epidemio-
logical study on dengue in southern Brazil under the perspective of climate and pov-
erty. Sci. Rep. 10 (1), 1–16.

BBC News, 2012. Floods Paralyse Philippine Capital Manila. 8 7. (Accessed 2 19, 2020).
https://www.bbc.com/news/world-asia-19159509.

Bostan, Nazish, Javed, Sundus, Nabgha-e-Amen, Syed Ali Musstjab Akber Shah Eqani,
Tahir, Faheem, Bokhari, Habib, 2017. Dengue fever virus in Pakistan: effects of sea-
sonal pattern and temperature change on distribution of vector and virus. Rev.
Med. Virol. 27 (1). https://doi.org/10.1002/rmv.1899.

Breiman, Leo, 2001. Random forests. Mach. Learn. 5–32.
Buczak, Anna L., Baugher, Benjamin, Babin, Steven M., Ramac-Thomas, Liane C., Guven,

Erhan, Elbert, Yevgeniy, Koshute, Phillip T., et al., 2014. Prediction of high incidence
of dengue in the Philippines. PLoS Negl. Trop. Dis. 8 (4).

Bzdok, Danilo, Altman, Naomi, Krzywinski, Martin, 2018. Statistics versus machine learn-
ing. Nat. Methods 15 (4), 233–234.

Carvajal, Thaddeus M., Viacrusis, Katherine M., Hernandez, Lara Fides T., Ho, Howell T.,
Amalin, DivinaM., Watanabe, Kozo, 2018. Machine learningmethods reveal the tem-
poral pattern of dengue incidence using meteorological factors in metropolitan
Manila, Philippines. BMC Infect. Dis. 18 (1), 1–15.

Carvajal, Thaddeus M., Ho, Howell T., Hernandez, Lara Fides T., Viacrusis, Katherine M.,
Amalin, Divina M., Watanabe, Kozo, 2019. An ecological context toward understand-
ing dengue disease dynamics in urban cities: A case study in metropolitan Manila,
Philippines. Health in Ecological Perspectives in the Anthropocene. Springer Nature
Singapore Pte Ltd, Singapore, pp. 117–131 https://doi.org/10.1007/978-981-13-
2526-7_10.

Chan, Miranda, Johansson, Michael A., 2012. The incubation periods of dengue viruses.
PLoS One 7 (11), e50972. https://doi.org/10.1371/journal.pone.0050972.

Chang, Chi-Ru, Li, Ming-Huang, Chang, Shyh-Dean, 2007. A preliminary study on the local
cool-island intensity of Taipei city parks. Landsc. Urban Plan. 80 (4), 386–395.

Chen, Yirong, Ong, Janet Hui Yi, Rajarethinam, Jayanthi, Yap, Grace, Ng, Lee Ching, Cook,
Alex R., 2018. Neighbourhood level real-time forecasting of dengue cases in tropical
urban Singapore. BMC Med. 16 (1), 1–13. https://doi.org/10.1186/s12916-018-
1108-5.

Cheong, Yoon Ling, Leitão, Pedro J., Lakes, Tobia, 2014. Assessment of land use factors as-
sociated with dengue cases in Malaysia using boosted regression trees. Spatial and
Saptio-temporal Epidemiology. 10, pp. 75–84.

DeVries, Ben, Huang, Chengquan, Armston, John, Huang, Wenli, Jones, John W., Lang,
Megan W., 2020. Rapid and robust monitoring of flood events using Sentinel-1 and
Landsat data on the Google earth engine. Remote Sens. Environ. 28 (2), 153–224.
https://doi.org/10.1016/j.rse.2020.111664.

Dickin, Sarah K., Schuster-Wallace, Corinne J., Elliott, Susan J., 2013. Developing a vulner-
ability mapping methodology: applying the water-associated disease index to den-
gue in Malaysia. PLoS One 8 (5), e63584.

DOST. n.d. Dengue vector surveillance. Accessed 10 4, 2018. http://oltrap.pchrd.dost.gov.
ph/.

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees.
J. Anim. Ecol. 77 (4), 802–813.

ESRI, 2016. How Kriging works. https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-an-
alyst-toolbox/how-kriging-works.htm.

Früh, Linus, Kampen, Helge, Kerkow, Antje, Schaub, Günter A., Walther, Doreen, Wieland,
Ralf, 2018. Modelling the potential distribution of an invasive mosquito species: com-
parative evaluation of four machine learning methods and their combinations. Ecol.
Model. 388, 136–144. https://doi.org/10.1016/j.ecolmodel.2018.08.011.

Garge, Nikhil R., Bobashev, Georgiy, Eggleston, Barry, 2013. Random forest methodology
for model-based recursive partitioning: the mobForest package for R. BMC Bioinfor-
matic 14 (1), 1–8.

Geofabrik GmbH, 2019. OpenStreetMap Data in Layered GIS Format. , p. 11 6. http://
download.geofabrik.de/osm-data-in-gis-formats-free.pdf.

German, A., Espinosa, M.O., Abril, M., Scavuzzo, C.M., 2018. Exploring satellite based tem-
poral forecst modelling of Aedes aegypti oviposition from an operational perspective.
Remote Sensing Applications: Society and Evironment. 11, pp. 231–240.

Gorelick, Noel Hancher, Dixon, Matt, Ilyushchenko, Mike, Thau, Simon, Moore, David,
Rebecca, 2017. Google earth engine: planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
(Elsevier).

Guo, Pi, Liu, Tao, Zhang, Qin, Wang, Li, Xiao, Jianpeng, Zhang, Qingying, Luo, Ganfeng, et
al., 2017. Developing a dengue forecast model using machine learning: a case study
in China. PLoS Negl. Trop. Dis. 11 (10), e0005973. https://doi.org/10.1371/journal.
pntd.0005973.

Harburguer, Laura, Licastro, Susana, Masuh, Héctor, Zerba, Eduardo, 2016. Biological and
chemical characterization of a new Larvicide Ovitrap made of plasticwith
pyriproxyfen incorporated for Aedes aegypti (Diptera: Culicidae) control. J. Med.
Entomol. 53 (3), 647–652. https://doi.org/10.1093/jme/tjw022.

Hashizume, Masahiro, Dewan, Ashraf M., Sunahara, Toshihiko, Rahman, M. Ziaur,
Yamamoto, Taro, 2012. Hydroclimatological variability and dengue transmission in
Dhaka, Bangladesh: a time-series study. BMC Infect. Dis. 12 (1), 98.

Hayden, Mary H., Uejio, Christopher K., Walker, Kathleen, Ramberg, Frank, Moreno,
Rafael, Rosales, Cecilia, Gameros, Mercedes, Mearns, Linda O., Zielinski-Gutierrez,
Emily, Janes, Craig R., 2010. Microclimate and human factors in the divergent ecology
of Aedes aegypti along the Arizona, U.S./Sonora, MX border. EcoHealth 7 (1), 64–77.
https://doi.org/10.1007/s10393-010-0288-z.

Higa, Yukiko, 2011. Dengue vectors and their spatial distribution. Tropical Medicine and
Health. 39, pp. 17–27 (10.2149).

Honório, N.A., Nogueira, R.M.R., Codeço, C.T., Carvalho, M.S., Cruz, O.G., Magalhães,
M.A.F.M., Araújo, J.M.G., et al., 2009. Spatial evaluation and modeling of dengue

https://doi.org/10.1016/j.scitotenv.2021.148406
https://doi.org/10.1016/j.scitotenv.2021.148406
https://doi.org/10.1111/tmi.12868
https://doi.org/10.1111/tmi.12868
https://doi.org/10.1093/bioinformatics/btq134
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0015
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0015
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0015
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0020
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0020
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0020
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0025
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0025
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0030
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0030
https://doi.org/10.1371/journal.pone.0195065
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0040
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0040
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0040
https://doi.org/10.1371/journal.pntd.0001378
https://doi.org/10.1371/journal.pntd.0001378
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0050
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0050
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0050
https://www.bbc.com/news/world-asia-19159509
https://doi.org/10.1002/rmv.1899
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0065
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0070
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0070
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0075
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0075
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0080
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0080
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0080
https://doi.org/10.1007/978-981-13-2526-7_10
https://doi.org/10.1007/978-981-13-2526-7_10
https://doi.org/10.1371/journal.pone.0050972
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0095
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0095
https://doi.org/10.1186/s12916-018-1108-5
https://doi.org/10.1186/s12916-018-1108-5
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0105
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0105
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0105
https://doi.org/10.1016/j.rse.2020.111664
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0120
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0120
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0120
http://oltrap.pchrd.dost.gov.ph
http://oltrap.pchrd.dost.gov.ph
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0130
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0130
https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm
https://doi.org/10.1016/j.ecolmodel.2018.08.011
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0150
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0150
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0150
http://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
http://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0160
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0160
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0160
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1371/journal.pntd.0005973
https://doi.org/10.1371/journal.pntd.0005973
https://doi.org/10.1093/jme/tjw022
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0180
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0180
https://doi.org/10.1007/s10393-010-0288-z
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0190
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0190


M.E. Francisco, T.M. Carvajal, M. Ryo et al. Science of the Total Environment 792 (2021) 148406
Seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 3
(11), e545. https://doi.org/10.1371/journal.pntd.0000545.

Hothorn, Torsten, Zeileis, Achim, 2015. Partykit: a modular toolkit for recursive
Partytioning in R. J. Mach. Learn. Res. 16 (1), 3905–3909. http://jmlr.org/papers/
v16/hothorn15a.html.

DOST Mosquito Ovicidal/Larvicidal (OL) Trap for Dengue Prevention. 7 4. Accessed 1 20,
2020. http://filipinoinventionsanddiscoveries.blogspot.com/2013/07/dost-mosquito-
ovicidallarvicidal-ol_4.html.

Huffman, George J., Bolvin, David T., 2018. TRMM and Other Data Precipitation Data Set
Documentation. vol. 4, p. 26. https://pmm.nasa.gov/sites/default/files/document_
files/3B42_3B43_doc_V7_180426.pdf.

Ibarra, Anna M. Stewart, Luzadis, Valerie A., Cordova, Mercy J. Borbor, Silva, Mercy,
Ordoñez, Tania, Ayala, Efraín Beltrán, 6,7 Sadie J Ryan1, 2014. A social-ecological anal-
ysis of community perceptions of dengue fever and Aedes aegypti in Machala,
Ecuador. BMC Public Health 14 (1), 1135.

Jiménez, Mario González, Babayan, Simon A., Khazaeli, Pegah, Doyle, Margaret, Walton,
Finlay, Reedy, Elliott, Glew, Thomas, et al., 2019. Prediction of mosquito species and
population age structure using mid-infrared spectroscopy and supervised machine
learning. Wellcome Open Research 4 (76).

Kapwata, Thandi, Gebreslasie, Michael T., 2016. Random forest variable selection in spa-
tial malaria transmission modelling in Mpumalanga Province, South Africa. Geospat.
Health 11 (434), 251–262.

Kassambara, Alboukadel, 2019. Package ‘ggpubr’. 'ggplot2' Based Publication Ready Plots,
p. 11 14 (Accessed 12 13, 2019). https://cran.r-project.org/web/packages/ggpubr/
ggpubr.pdf.

Kaul, RajReni B., Evans, Michelle V., Murdoc, Courtney C., Drake, John M., 2018. Spatio-
temporal spillover risk of yellow fever in Brazil. Parasit. Vectors 11 (1), 488.

Kesetyaningsih, Tri Wulandari, Andarini, Sri, Sudarto, Pramoedyo, Henny, 2018.
Etermination of environmental factors affecting dengue incidence in Sleman District,
Yogyakarta, Indonesia. Afr. J. Infect. Dis. 12 (1S), 13–25.

Kilpatrick, A. Marm, Meola, Mark A., Moudy, Robin M., Kramer, Laura D., 2008. Tempera-
ture, viral genetics, and the transmission of West Nile virus by Culex pipiens mosqui-
toes. PLoS Pathog. 4 (6), e1000092. https://doi.org/10.1371/journal.ppat.1000092.

Koch-Nielsen, Holger, 1999. Projectar Activamente com a Natureza. Translated by
Margarida David e Silva e José Forjaz. Development Advisory Group ApS, Horve.

Kopf, Julia, Augustin, Thomas, Strobl, Carolin, 2010. The Potential of Model-Based Recur-
sive Partitioning in the Social Sciences –Revisiting Ockham’s Razor. Department of
Statistics, University of Munich, Munich.

Koyadun, Surachart, Butraporn, Piyarat, Kittayapong, Pattamaporn, 2012. Ecologic and
Sociodemographic risk determinants for dengue transmission in urban areas in
Thailand. Interdisciplinary Perspectives on Infectious Diseases https://doi.org/
10.1155/2012/907494.

Lagmay, A.M.F., Mendoza, J., Punay, K., Tingin, N.E., Delmendo, P.A., Cipriano, F., Serrano, J.,
Santos, L., Sabio, G., Moises, M.A., 2015. Street floods inMetroManila and possible so-
lutions. 9 9. (Accessed 8 17, 2020). https://center.noah.up.edu.ph/street-floods-in-
metro-manila-and-possible-solutions/.

Leontjeva, Anna, Kuzovkin, Ilya, 2016. Combining static and dynamic features for multi-
variate sequence classification. 2016 IEEE International Conference on Data Science
and Advanced Analytics (DSAA). IEEE, Montreal, QC, Canada, pp. 21–30 https://doi.
org/10.1109/DSAA.2016.10.

Lin, Brenda B., Egerer, Monika H., Liere, Heidi, Jha, Shalene, Bichier, Peter, Philpott, Stacy
M., 2018. Local- and landscape-scale land cover affects microclimate andwater use
in urban gardens. Sci. Total Environ. 610, 570–575.

LiPAD, 2018. LiDAR Portal for Archiving and Distribution. vol. 1, p. 18 Accessed 11 20,
2018. https://lipad-fmc.dream.upd.edu.ph/layers/?limit=100&offset=0&key-
words__slug__in=flood-hazard-map.

Little, Eliza, Bajwa, Waheed, Shaman, Jeffrey, 2017. Local environmental and meteorolog-
ical conditions influencing the invasive mosquito Ae. albopictus and arbovirus trans-
mission risk in New York City. PLoS Negl. Trop. Dis. 11 (8), e0005828. https://doi.org/
10.1371/journal.pntd.0005828.

de Melo, Diogo Portella Ornelas, Scherrer, Luciano Rios, Eiras, Álvaro Eduardo, 2012. Den-
gue fever occurrence and vector detection by larval survey, Ovitrap andMosquiTRAP:
a space-time clusters analysis. PLoS One 7 (7), e42125. https://doi.org/10.1371/jour-
nal.pone.0042125.

Misslin, Renaud, Daudé, Éric, 2017. An environmental suitability index based on the eco-
logical constraints of Aedes aegypti, vector of dengue. Revue Internationale de
Géomatique 27 (4), 481–501.

Mistica, Myra S., Ocampo, Virginia R., De Las Llagas, Lilian A., Bertuso, Arlene G., Alzona, Fe
D., Magsino, Ester A., 2019. A survey of mosquito species in public schools of metro
Manila, Philippines using Ovitraps as surveillance tool. Acta Medica Philippina 55
(4), 310–314.

Montgomery, Brian L., Ritchie, Scott A., Hart, Alistair J., Long, Sharron A., Walsh, Ian D.,
2004. Subsoil drain sumps are key container for aedes aegypti in Cairns, Australia.
J. Am. Mosq. Control Assoc. 20 (4), 365–369.

Murdock, Courtney C., Evans, Michelle V., McClanahan, Taylor D., Miazgowicz, Kerri L.,
Tesla, Blanka, 2017. Fine-scale variation in microclimate across an urban landscape
shapes variation in mosquito population dynamics and the potential of Aedes
albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis. 11 (5), e0005640.
https://doi.org/10.1371/journal.pntd.0005640.

Mwanga, Emmanuel P., Mapua, Salum A., Siria, Doreen J., Ngowo, Halfan S., Nangacha,
Francis, Mgando, Joseph, Baldini, Francesco, et al., 2019. Using mid-infrared spectros-
copy and supervised machine-learning to identify vertebrate blood meals in the ma-
laria vector, Anopheles arabiensis. Malar. J. 18 (1), 1–9. https://doi.org/10.1186/
s12936-019-2822-y.
12
Naish, Suchithra, Dale, Pat, Mackenzie, John S., McBride, John, Mengersen, Kerrie, Tong,
Shilu, 2014. Climate change and dengue: a critical and systematic review of quantita-
tive modelling approaches. BMC Infect. Dis. 14 (1), 167.

NAMRIA. n.d. Geoportal PH. Accessed 10 10, 2018. http://www.geoportal.gov.ph/.
Nasir, Shabab, Jabeen, Farhat, Abbas, Sadia, Nasir, Iram, Debboun, Mustapha, 2017. Effect

of climatic conditions and water bodies on population dynamics of the dengue vec-
tor, Aedes aegypti (Diptera: Culicidae). J. Arthropod-Borne Dis. 11 (1), 50–59.

Nazri, C.D., Abu Hassan, A., Latif, Z. Abd, Ismail, Rodziah, 2011. Impact of climate and
Landuse variability based dengue epidemic outbreak in Subang Jaya. IEEE Colloquium
on Humanities, Science and Engineering. Penang: IEEE, pp. 907–912.

Ngugi, Harun N., Mutuku, Francis M., Ndenga, Bryson A., Musunzaji, Peter S., Mbakaya,
Joel O., Aswani, Peter, Irungu, Lucy W., et al., 2017. Characterization and productivity
profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in
western and coastal Kenya. Parasit. Vectors 10 (1), 331.

NOAH. 2015. Philippine flood hazard maps. Accessed 1 8, 2020. http://www.nababaha.
com/.

Olden, Julian D., Lawler, Joshua J., Poff, N. LeRoy, 2008. Machine leaning methods without
tears: a primer for ecologists. Q. Rev. Biol. 83 (2), 171–193.

Ong, Anet, Liu, Xu, Rajarethinam, Jayanthi, Ko, Suet Yheng, Liang, Shaohong, Tang, Choon
Siang, Cook, Alex R., Ng, Lee Ching, Yap, Grace, 2017. Mapping dengue risk in
Singapore using random Forest. PLoS Negl. Trop. Dis. 12 (6), e0006587.

Paploski, Igor Adolfo Dexheimer, Rodrigues, Moreno S., Mugabe, Vánio André, Kikuti,
Mariana, Tavares, Aline S., Reis, Mitermayer Galvão, Kitron, Uriel, Ribeiro,
Guilherme Sousa, 2016. Storm drains as larval development and adult resting sites
for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit. Vectors 9 (1), 1–8.

Phanitchat, Thipruethai, Zhao, Bingxin, Haque, Ubydul, Pientong, Chamsai,
Ekalaksananan, Tipaya, Aromseree, Sirinart, Thaewnongiew, Kesorn, et al., 2019. Spa-
tial and temporal patterns of dengue incidence in northeastern Thailand 2006–2016.
BMC Infect. Dis. 19 (1), 743.

PhilGIS. 2012. Philippine GIS Data Clearinghouse. vol. 9 20. http://philgis.org/.
Philippines Statistics Authority, 2012. The 2010 Census of Population and Housing Re-

veals the Philippine Population at 92.34 Million. vol. 4, p. 4 Accessed 12 6, 2018.
https://psa.gov.ph/sites/default/files/attachments/hsd/pressrelease/National%20Cap-
ital%20Region.pdf.

Philippines Statistics Authority, 2019. Urban Population in the Philippines (Results of the
2015 Census of Population). vol. 3, p. 21 Accessed 8 21, 2019. https://psa.gov.ph/con-
tent/urban-population-philippines-results-2015-census-population.

Piovezan, Rafael, Visockas, Alexandre, de Azevedo, Thiago Salomão, Sallum, Maria Anice
Mureb, 2019. Spatial–temporal distribution of Aedes (Stegomyia) aegypti and loca-
tions of recycling units in southeastern Brazil. Parasites Vectors 12 (1), 541. https://
doi.org/10.1186/s13071-019-3794-z.

Pirkle, Catherine M., Wu, Yan Yan, Zunzunegui, Maria-Victoria, Gómez, José Fernando,
2018. Model-based recursive partitioning to identify risk clusters for metabolic syn-
drome and its components: findings from the international mobility in aging study.
BMJ Open 8 (3), e018680. https://doi.org/10.1136/bmjopen-2017-018680.

Porio, Emma, 2011. Vulnerability, adaptation, and resilience to floods and climate change-
related risks amongmarginal, riverine communities inMetroManila. Asian Journal of
Social Science 39 (4), 425–445.

Porio, Emma, 2014. Climate change vulnerability and adaptation in Metro Manila: chal-
lenging governance and human security needs of urban poor communities. Asian
J. Soc. Sci. 42 (1–2), 75–102. https://doi.org/10.1163/15685314-04201006.

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria https://www.R-project.org/.

Richter, Aaron N., Khoshgoftaar, Taghi M., 2018. A review of statistical andmachine learn-
ing methods for modeling cancer risk using structured clinical data. Artif. Intell. Med.
90, 1–14. https://doi.org/10.1016/j.artmed.2018.06.002.

Ritchie, Scott A., Long, Sharron, Hart, Alistair, Webb, Cameron E., Russel, Richard C., 2003.
An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J. Am.
Mosq. Control Assoc. 19 (3), 235–242.

Rodrigues, de Moura, Marianni, Gisela Rita Alvarenga Monteiro Marques, Serpa, Lígia
Leandro Nunes, Arduino, Marylene de Brito, Voltolini, Júlio Cesar, Barbosa, Gerson
Laurindo, Andrade, Valmir Roberto, 2015. Density of Aedes aegypti and Aedes
albopictus and its association with number of residents and meteorological variables
in the home environment of dengue endemic area, São Paulo, Brazil. Parasit. Vectors
8 (1), 1–9. https://doi.org/10.1186/s13071-015-0703-y.

Rydzanicz, Katarzyna, Kącki, Zygmunt, Jawień, Piotr, 2011. Environmental factors associ-
ated with the distribution of floodwater mosquito eggs in irrigated fields inWrocław,
Poland. J. Vector Ecol. 36 (2), 332–342.

Ryo, Masahiro, Rilling, Matthias C., 2017. Statistically reinforced machine learning for
nonlinear patterns and variable interactions. Ecosphere 8 (11).

Ryo, Masahiro, Eric Harvey, Christopher T. Robinson, and Florian Altermatt. 2017. "Non-
linear higher order abiotic interactions explain riverine biodiversity." J. Biogeogr. 45
(3): 628–639.

Ryo, Masahiro, Yoshimura, Chihiro, Iwasaki, Yuichi, 2018. Importance of antecedent envi-
ronmental conditions in modeling species distributions. Ecography 41, 825–836.

Ryo, Masahiro, Angelov, Boyan, Mammola, Stefano, Benito, Jamie KassBlas M., Hartig,
Florian, 2020. Explainable Artificial Intelligence Enhances the Ecological Interpretabil-
ity of Black-Box Species Distribution Models. https://doi.org/10.32942/osf.io/w96pk.

Sallam, Mohamed F., Fizer, Chelsea, Pilant, Andrew N., Whung, Pai-Yei, 2017. Systematic
review: land cover, meteorological, and socioeconomic determinants of aedes mos-
quito habitat for risk mapping. Int. J. Environ. Res. Public Health 14 (10), 1230.
https://doi.org/10.3390/ijerph14101230.

Santos, Jeferson Pereira Caldas, Honório, Nildimar Alves, Barcellos, Christovam, Nobre,
Aline Araújo, 2020. A perspective on inhabited urban space: land use and occupation,
heat islands, and precarious urbanization as determinants of territorial receptivity to

https://doi.org/10.1371/journal.pntd.0000545
http://jmlr.org/papers/v16/hothorn15a.html
http://jmlr.org/papers/v16/hothorn15a.html
http://filipinoinventionsanddiscoveries.blogspot.com/2013/07/dost-mosquito-ovicidallarvicidal-ol_4.html
http://filipinoinventionsanddiscoveries.blogspot.com/2013/07/dost-mosquito-ovicidallarvicidal-ol_4.html
https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7_180426.pdf
https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7_180426.pdf
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0215
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0215
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0215
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0220
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0220
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0220
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0225
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0225
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0225
https://cran.r-project.org/web/packages/ggpubr/ggpubr.pdf
https://cran.r-project.org/web/packages/ggpubr/ggpubr.pdf
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0235
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0235
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0240
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0240
https://doi.org/10.1371/journal.ppat.1000092
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0250
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0250
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0255
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0255
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0255
https://doi.org/10.1155/2012/907494
https://doi.org/10.1155/2012/907494
https://center.noah.up.edu.ph/street-floods-in-metro-manila-and-possible-solutions/
https://center.noah.up.edu.ph/street-floods-in-metro-manila-and-possible-solutions/
https://doi.org/10.1109/DSAA.2016.10
https://doi.org/10.1109/DSAA.2016.10
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0275
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0275
https://lipad-fmc.dream.upd.edu.ph/layers/?limit=100&amp;offset=0&amp;keywords__slug__in=flood-hazard-map
https://lipad-fmc.dream.upd.edu.ph/layers/?limit=100&amp;offset=0&amp;keywords__slug__in=flood-hazard-map
https://doi.org/10.1371/journal.pntd.0005828
https://doi.org/10.1371/journal.pntd.0005828
https://doi.org/10.1371/journal.pone.0042125
https://doi.org/10.1371/journal.pone.0042125
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0295
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0295
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0295
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0300
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0300
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0300
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0305
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0305
https://doi.org/10.1371/journal.pntd.0005640
https://doi.org/10.1186/s12936-019-2822-y
https://doi.org/10.1186/s12936-019-2822-y
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0320
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0320
http://www.geoportal.gov.ph/
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0325
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0325
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0325
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0330
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0330
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0330
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0335
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0335
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0335
http://www.nababaha.com
http://www.nababaha.com
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0345
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0345
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0350
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0350
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0355
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0355
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0365
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0365
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0365
http://philgis.org
https://psa.gov.ph/sites/default/files/attachments/hsd/pressrelease/National%20Capital%20Region.pdf
https://psa.gov.ph/sites/default/files/attachments/hsd/pressrelease/National%20Capital%20Region.pdf
https://psa.gov.ph/content/urban-population-philippines-results-2015-census-population
https://psa.gov.ph/content/urban-population-philippines-results-2015-census-population
https://doi.org/10.1186/s13071-019-3794-z
https://doi.org/10.1186/s13071-019-3794-z
https://doi.org/10.1136/bmjopen-2017-018680
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0390
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0390
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0390
https://doi.org/10.1163/15685314-04201006
https://www.R-project.org/
https://doi.org/10.1016/j.artmed.2018.06.002
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0410
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0410
https://doi.org/10.1186/s13071-015-0703-y
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0420
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0420
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0420
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0425
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0425
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0430
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0430
https://doi.org/10.32942/osf.io/w96pk
https://doi.org/10.3390/ijerph14101230


M.E. Francisco, T.M. Carvajal, M. Ryo et al. Science of the Total Environment 792 (2021) 148406
dengue in the city of Rio De Janeiro. Int. J. Environ. Res. Public Health 17 (6537), 1–20.
https://doi.org/10.3390/ijerph17186537.

Sarfraz, Muhammad Shahzad, Tripathi, Nitin K., Tipdecho, Taravudh, Thongbu, Thawisak,
Kerdthong, Pornsuk, Souris, Marc, 2012. Analyzing the spatio-temporal relationship
between dengue vector larval density and land-use using factor analysis and spatial
ring mapping. BMC Public Health 12 (1), 853.

Scott, Thomas W., Morrison, Amy C., 2010. Longitudinal field studies will guide a para-
digm shift in dengue prevention. Vector Biology, Ecology and Control, pp. 139–161.

Seidahmed, Osama M.E., Lu, Deng, Chong, Chee Seng, Ng, Lee Ching, Eltahir, Elfatih A.B.,
2018. Patterns of urban housing shape dengue distribution in Singapore at neighbor-
hood and country scales. GeoHealth 2 (1), 54–67. https://doi.org/10.1002/
2017GH000080.

Shashua-Bar, Limor, Pearlmutter, David, Erell, Evyatar, 2011. The influence of trees and
grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 31
(10), 1498–1506.

Sheela, A.M., Ghermandi, A., Vineetha, P., Sheeja, R.V., Justus, J., Ajayakrishna, K., 2017. As-
sessment of relation of land use characteristics with vector-borne diseases in tropical
areas. Land Use Policy 63, 369–380.

Silver, John B., 2007. Mosquito Ecology, Field Sampling Methods. Third edition. Springer
science & business media, New York.

Souza, Raquel Lima, Mugabe, Vánio André, Paploski, Igor Adolfo D., Rodrigues, Moreno S.,
Moreira, Patrícia Sousa dos Santos, Nascimento, Leile Camila Jacob, Roundy, Christo-
pher Michael, et al., 2017. Effect of an intervention in storm drains to prevent Aedes
aegypti reproduction in Salvador, Brazil. Parasit. Vectors 10 (1), 1–6.

Stanton, Jessica C., Pearson, Richard G., Horning, Ned, Akçakaya, Resit, 2012. Combin-
ing static and dynamic variables in species distribution models under climate
change. Methods Ecol. Evol. 3 (2), 349–357. https://doi.org/10.1111/j.2041-
210X.2011.00157.x.

Su, Glenn L. Sia, 2008. Correlation of climatic factors and dengue incidence in Metro
Manila, Philippines. Ambio 37 (4), 292–294. https://doi.org/10.1579/0044-7447
(2008)37[292:COCFAD]2.0.CO;2.

Suarez-Rubio, Marcela, Krenn, Renata, 2018. Quantitative analysis of urbanization gradi-
ents: a comparative case study of two European cities. J. Urban Ecol. 4 (1), juy027.

Thammapalo, S., Chongsuvivatwong, V., Geater, A., Dueravee, M., 2007. Environmental
factors and incidence of dengue fever and dengue haemorrhagic fever in an urban
area, southern Thailand. Epidemiol. Infect. 136 (1), 135–143.

Thani, Sharifah Khalizah Syed Othman, Mohamad, Nik Hanita Nik, Abdullah, Sharifah
Mastura Syed, 2017. Influence of urban landscapes to microclimatic variances in a
tropical city. Asian J. Behav. Stud. 2 (7), 31–41.

Thongsripong, Panpim, Green, Amy, Kittayapong, Pattamaporn, Kapan, Durrell, Wilcox,
Bruce, Bennett, Shannon, 2013. Mosquito vector diversity across habitats in central
13
Thailand endemic for dengue and other arthropod-borne diseases. PLoS Negl. Trop.
Dis. 7 (10), e2507. https://doi.org/10.1371/journal.pntd.0002507.

Tovar-Zamora, Ivonne, Caraveo-Patiño, Javier, Penilla-Navarro, Rosa Patricia, Serrano-
Pinto, Vania, Méndez-Galván, Jorge, Martínez, Alejandro Maeda, Guerrero-Cárdenas,
Israel, Servín-Villegas, Rosalía, 2019. Seasonal variation in abundance of dengue vec-
tor in the southern part of the Baja California Peninsula, Mexico. Southwestern
Entomol. 44 (4), 885–895. https://doi.org/10.3958/059.044.0404.

USGS. n.d.-a MOD11A2 v006. Accessed 7 26, 2019. https://lpdaac.usgs.gov/products/
mod11a2v006/.

USGS. n.d.-b MOD13Q1 v006. Accessed 7 25, 2019. https://lpdaac.usgs.gov/products/
mod13q1v006/.

Vanwambeke, Sophie O., Benthem, Birgit H.B. van, Khantikul, Nardlada, Burghoorn-Maas,
Chantal, Panart, Kamolwan, Oskam, Linda, Lambin, Eric F., Somboon, Pradya, 2006.
Multi-level analyses of spatial and temporal determinants for dengue infection. Int.
J. Health Geogr. 5 (1), 5. https://doi.org/10.1186/1476-072X-5-5.

Vanwambeke, Sophie O., Lambin, Eric F., Eichhorn, Markus P., Flasse, Stéphane P.,
Harbach, Ralph E., Oskam, Linda, Somboon, Pradya, et al., 2007. Impact of land-use
change on dengue and malaria in Northen Thailand. EcoHealth 4 (1), 37–51.

Vanwambeke, Sophie O., Bennett, Shannon N., Kapan, Durrell D., 2011. Spatially disaggre-
gated disease transmission risk: land cover, land use and risk of dengue transmission
on the island of Oahu. Trop. Med. Int. Health 16 (2), 174–185. https://doi.org/
10.1111/j.1365-3156.2010.02671.x.

World Bank, 2014. Third flood risk management and urban resilience workshop. NW
Washington. The World Bank Group, USA.

Wright, Marvin N., Wager, Stefan, Probst, Philipp, 2020. A Fast Implementation of Ran-
dom Forests. , p. 1 10. https://cran.r-project.org/web/packages/ranger/ranger.pdf.

Yee, Susan Harrell, Yee, Donald A., de Jesus Crespo, Rebeca, Oczkowski, Autumn, Bai,
Fengwei, Friedman, Stephanie, 2019. Linking water quality to Aedes aegypti and
Zika in flood-prone neighborhoods. Ecohealth 16 (2), 191–209.

Zeileis, Achim, Hothorn, Torsten, Hornik, Kurt, 2008. Model-based recursive partitioning.
J. Comput. Graph. Stat. 17 (2), 492–514. https://doi.org/10.1198/106186008X319331.

Zheng, Xueli, Zhong, Daibin, He, Yulan, Zhou, Guofa, 2019. Seasonality modeling of the
distribution of Aedes albopictus in China based on climatic and environmental suit-
ability. Infectious Diseases of Poverty 8 (1), 1–9. https://doi.org/10.1186/s40249-
019-0612-y.

Zoleta-Nantes, Doracie B., 2000. Flood hazards in metro Manila: recognizing commonali-
ties, differences, and courses of action. Social Science Diliman 1 (1), 60–105.

https://doi.org/10.3390/ijerph17186537
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0450
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0450
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0450
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0455
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0455
https://doi.org/10.1002/2017GH000080
https://doi.org/10.1002/2017GH000080
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0465
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0465
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0465
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0470
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0470
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0470
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0475
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0475
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0480
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0480
https://doi.org/10.1111/j.2041-210X.2011.00157.x
https://doi.org/10.1111/j.2041-210X.2011.00157.x
https://doi.org/10.1579/0044-7447(2008)37<292:COCFAD>2.0.CO;2
https://doi.org/10.1579/0044-7447(2008)37<292:COCFAD>2.0.CO;2
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0495
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0495
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0500
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0500
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0500
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0505
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0505
https://doi.org/10.1371/journal.pntd.0002507
https://doi.org/10.3958/059.044.0404
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://doi.org/10.1186/1476-072X-5-5
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0530
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0530
https://doi.org/10.1111/j.1365-3156.2010.02671.x
https://doi.org/10.1111/j.1365-3156.2010.02671.x
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0545
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0545
https://cran.r-project.org/web/packages/ranger/ranger.pdf
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0555
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0555
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1186/s40249-019-0612-y
https://doi.org/10.1186/s40249-019-0612-y
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0570
http://refhub.elsevier.com/S0048-9697(21)03477-X/rf0570

	Dengue disease dynamics are modulated by the combined influences of precipitation and landscape: A machine learning approach
	1. Introduction
	2. Material and methods
	2.1. Study area
	2.2. Data sources and processing
	2.2.1. Administrative boundaries
	2.2.2. Entomological surveillance
	2.2.3. Epidemiological data
	2.2.4. Climatic factors
	2.2.5. Landscape data
	2.2.6. Data matching

	2.3. Cross-correlation analysis
	2.4. Model development with variable selection
	2.4.1. Random forest for variable selection
	2.4.2. Model-based recursive partitioning


	3. Results
	3.1. Cross-correlation analysis
	3.2. Variable selection
	3.3. Model-based recursive partitioning

	4. Discussion
	4.1. The interactive effects between high residential density, precipitation, and other landscapes in modulating ovitrap index
	4.2. Interactive effects between precipitation and landscapes in modulating dengue incidence
	4.3. Accessibility of data, modeling approach, and limitations

	5. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References




