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Leaf bacterial microbiota response 
to flooding is controlled by plant 
phenology in wheat (Triticum 
aestivum L.)
Davide Francioli1*, Geeisy Cid2, Mohammad‑Reza Hajirezaei2 & Steffen Kolb1,3

Leaf microbiota mediates foliar functional traits, influences plant fitness, and contributes to various 
ecosystem functions, including nutrient and water cycling. Plant phenology and harsh environmental 
conditions have been described as the main determinants of leaf microbiota assembly. How climate 
change may modulate the leaf microbiota is unresolved and thus, we have a limited understanding on 
how environmental stresses associated with climate change driven weather events affect composition 
and functions of the microbes inhabiting the phyllosphere. Thus, we conducted a pot experiment to 
determine the effects of flooding stress on the wheat leaf microbiota. Since plant phenology might 
be an important factor in the response to hydrological stress, flooding was induced at different plant 
growth stages (tillering, booting and flowering). Using a metabarcoding approach, we monitored 
the response of leaf bacteria to flooding, while key soil and plant traits were measured to correlate 
physiological plant and edaphic factor changes with shifts in the bacterial leaf microbiota assembly. In 
our study, plant growth stage represented the main driver in leaf microbiota composition, as early and 
late plants showed distinct bacterial communities. Overall, flooding had a differential effect on leaf 
microbiota dynamics depending at which developmental stage it was induced, as a more pronounced 
disruption in community assembly was observed in younger plants.

Plant–microbe interactions involve a great variety of microorganisms from multiple  domains1,2, and such inter-
actions are major drivers of ecosystem  functions3,4. Plants provide a multitude of niches for the growth and 
proliferation of various microorganisms, including bacteria, fungi, protists, nematodes and viruses. These micro-
organisms form complex co-associations with plants, constituting the plant microbiota. The members of a plant 
microbiota have crucial roles in plant productivity and health, comprising beneficial, neutral and pathogenic 
 microorganisms5.

The plant microbiota is generally defined by host species and genotype, compartment, and tissue  location6–8, 
as well as by environmental factors, such as edaphic properties and climatic  variables9–12. Leaf-colonizing micro-
organisms have been described as an extension of host phenotypes as they can impact plant fitness in several 
 ways13,14. Pathogens that invade and infect leaves are examples of the adverse effects that microorganisms can 
have on plant fitness. On the contrary, commensal leaf microbes can positively influence plant fitness via diverse 
mechanisms, including growth promotion by hormones, modulation of the plant immune system, degradation 
of environmental pollutants, and enhancement of biotic and abiotic stress  tolerance15,16. Indeed, foliar fungal 
endophytes can modulate resistance to  pathogens17,18, and alter growth and survival rates of plant hosts exposed 
to drought, heat, and  salinity19–21.

The composition and structure of leaf microbiota are key to its effects on the host, underlining the need to 
understand the mechanisms that govern the assembly and spatiotemporal dynamics of these  communities13,22. 
Several recent studies have demonstrated that phyllosphere microbiota are not characterized by random micro-
bial assemblies, but instead undergo selection that results, at least partially, in predictable bacterial communities 
dominated by few  phyla23,24. Plant host species, environment and spatial factors were identified as key drivers 
in leaf bacteria community  composition25,26. In Arabidopsis thaliana, soil type was found as the main driver of 
leaf bacterial community  structure27, while several studies revealed that the association of leaf epiphytic and 
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endophytic microbes differs greatly between plant  hosts28,29. Furthermore, phyllosphere microbiota are highly 
variable over the growing season, although patterns in community composition were still  detected30–32. These 
studies revealed that the leaf microbiota was characterized by season-specific bacterial taxa, thus inferring on 
particular mechanisms of leaf adaptation at different plant growth  stages33,34. Collectively, these findings support 
the central role of plant phenology in leaf microbiota assembly, and the likelihood of functional and evolutionary 
changes associated with these predictable  patterns35,36.

Climate change driven factors, such as weather extremes, were also found to be important determinants in 
leaf microbiota assembly, and it has been reported a high sensitivity of the phyllosphere to climate variables, such 
as temperature changes, drought and abnormal rain  events37,38. Considering that seasonal trends are expected to 
shift towards a higher frequency of these extreme weather events with climate  change39,40, this may have signifi-
cant impacts on crop leaf microbiota assembly. As global climate change accelerates, there is an urge to improve 
our understanding of how plant–microbe interactions maintain terrestrial ecosystem productivity in the face of 
prolonged extreme weather events such as flooding and waterlogging.

Here, we performed a glasshouse experiment to investigate the response of the wheat bacterial leaf micro-
biota to flooding. Considering that (a) plant phenology is a major driver in shaping crop  microbiota7,41,42 and 
(b) the microbial response to abiotic stress depends largely on the plant developmental stage in which the stress 
 occurs43,44, wheat plants were subjected to flooding either at tillering, booting and flowering. To monitor the 
effect of flooding on the leaf bacteria community assembly, we employed metabarcoding targeting the 16S rRNA 
gene. We measured numerous soil and plant parameters to correlate physiological plant and edaphic changes with 
shifts in leaf bacterial community assembly. We hypothesized that (i) leaf microbiota composition and structure 
will be highly dynamic over plant growth stage (PGS) with marked differences between early and late bacterial 
communities and (ii) the leaf microbiota structure will be differentially affected by the timing of flooding events, 
with early assembly being more pronouncedly affected.

Materials and methods
Experimental setup. We performed a greenhouse experiment from September to December 2019 at the 
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben (Germany) to investigate the 
response of the wheat microbiota to flooding stress. Seeds of spring wheat (Triticum aestivum L. Chinese Spring) 
were germinated under controlled conditions in 2 mm sieved soil, which was obtained from the experimental 
station in Dedelow (Germany). The soil is classified as a loamy sandy/medium silty sandy soil (S3/Su3 accord-
ing to the German texture classification) Ad-hoc-AG-Boden45. Seedlings were individually transferred to 10L 
pots containing 5 kg of the soil used for germination (one seedling per pot) around the third week after sowing. 
Wheat plants were grown under controlled conditions of day/night temperature, i.e. 18/16 °C, light intensity 
250–300 µmol/(m2 s), photoperiod of 16 h light/8 h darkness and air humidity 70%. A completely randomized 
design was employed to place the pots on glasshouse tables. To monitor the plant developmental stage, we uti-
lized the Zadoks  scale46. Flooding stress was induced only once and for 12 days, at either tillering (Z25–Z30), 
booting (Z37–Z49) or flowering (Z49–Z69) and replicates were destructively sampled (Fig. S1). Previous studies 
have shown that complete oxygen depletion in the top soil occurs within 2–8 days of flooding across a wide range 
of  soils47–49. Thus, considering that the study aim was to explore the response of the leaf bacterial community to 
a severe and intense water stress, flooding was induced for a period of 12 days in order to ensure oxygen deple-
tion in the flooded treatment. Six replicates were established for each combination of water treatment and plant 
growth stage (PGS), for a total of 36 pots. Control pots were maintained at 50% water holding capacity (the field 
capacity of the soil used), while flooding was induced by manually keeping water approximately 5 cm above the 
soil surface for 12 days.

Plant and soil sampling. Control and flooded plants were harvested, and tillers and spikes number 
recorded, in the twelfth day of exposition to flooding in the corresponding developmental stages. Shoots and 
roots were separated, and both fresh and dry weight were measured. Samples from fully expanded leaves for 
molecular analysis were immediately frozen and stored at − 80 °C. Macro- (C, N, P, Mg, S, K and Ca) and micro-
nutrients (Mn, Zn and Na) concentrations in the dry roots and leaves were measured using a sector field high-
resolution mass spectrometer (HR)-ICP-MS (Element 2, Thermo Fisher Scientific, Germany). Several edaphic 
parameters were measured in the soil samples. Total organic carbon (TOC) and total nitrogen (TN) contents 
were measured in triplicate by dry combustion using a Vario EL III C/H/N analyser (Elementar, Hanau, Ger-
many). Plant available P (PDL) was extracted from fresh soil using the double lactate extraction method (1:50 
w/v, pH 3.6, 1.5 h;  Riehm50), and the extracted P was quantified colorimetrically using the molybdenum blue 
 method51. Soil Mn, Ca, Na, K, and Mg concentrations were determined with an inductively coupled plasma-
optical emission spectrometry-ICP-OES (ICP-iCAP 6300 DUO, ThermoFisher Scientific, Germany).

DNA extraction, library preparation and sequencing. DNA was extracted from the collected leaf 
samples using the DNeasy PowerLyzer PowerSoil Kit (Qiagen). Amplification of the bacterial DNA was per-
formed following the PCR procedure as described previously in Francioli et al.52 using the primers  799f53 and 
 1115r54. In brief, PCR was carried out in a 50 μl reaction volume with 1 μl of DNA template (diluted 1:20 from the 
original extract), 0.2 mM dNTPs and 0.4 μM of each primer (PCR conditions: 95 °C for 5 min; 35 cycles at 95 °C 
for 1 min, 56 °C for 1 min and 72 °C for 1 min; and 72 °C for 5 min). The amplicons were sent to LGC Genomics 
GmbH (Berlin, Germany) for barcoding and paired-end sequencing on Illumina MiSeq v3 platform. Demulti-
plexing was performed using Illumina bcl2fastq v2.20 software (https:// suppo rt. illum ina. com/ seque ncing/ seque 
ncing_ softw are/ bcl2f astq- conve rsion- softw are. html) following clipping of barcode and sequencing adapters. 
Primer sequences were removed using Cutadapt v3.455 following sequence processing using QIIME 2 v2021.2. 

https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
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DADA2 pipeline was employed to determine amplicon sequence variants (ASV) from the raw  sequences56, with 
forward and reversed reads truncated at 200 bp and 150 bp, respectively. For the data analysis, we considered 
only ASVs that were detected in at least two samples. The representative sequence of each ASV were referenced 
against the naïve Bayesian classifier for SILVA 138 (https:// www. arb- silva. de/ docum entat ion/ relea se- 138/), and 
non-bacterial ASVs were removed. Bacterial reads were rarefied to 20,000 reads per sample to calculate alpha 
diversity metrics.

Statistical analyses. The soil and root data have been already published in a previous  study57. They were 
used here together with the new, i.e. as yet unpublished, leaf traits data to create a new dataset of variables. We 
analysed this new dataset by multivariate analysis of variance to examine the contribution of all the measured 
variables on the leaf bacterial microbiota structure across PGS and between treatments.

Differences in plant traits and soil properties were tested among the treatments and PGS by univariate analysis 
of variance (ANOVA) followed by Tukey’s honestly significant difference (HSD) post hoc test. Normality and 
homogeneity of variance of the variables measured were examined with the Shapiro–Wilk and Levene’s test, 
respectively. All the variables that did not meet the parametric assumptions were log10 transformed. Spearman’s 
rank correlation was used to determine the correlation between the measured variables. Variables with a Spear-
man rank correlation coefficient ρ > 0.8 were excluded from further analysis. Effects of PGS and treatment on 
the leaf Bacteria richness were tested by generating univariate PERMANOVA  models58. ANOVA followed by 
Tukey’s HSD post hoc test was further employed to perform pairwise comparisons on bacterial ASV richness 
between water treatments at the same PGS. Differences in Bacteria beta-diversity were determined across PGS 
and treatment. Community structure and bacterial community dissimilarity were calculated using Bray–Curtis 
distance based on the relative abundance data with Hellinger transformation (function vegdist in the R package 
“vegan”). To evaluate the effects of the experimental factors on the bacterial microbiota structure, we employed 
permutational multivariate analysis of variances (PERMANOVA) based on the Bray–Curtis dissimilarity using 
999 permutations for each test. Variance partitioning based on redundancy analysis (RDA) was performed to 
quantify the contribution of plant and soil attributes, PGS and treatment to the structure of the leaf bacterial 
microbiota. The significance of the global model using all predictors was tested first, then we conducted variable 
selection using forward selection through the function forward.sel in the R package “packfor”59. Variance parti-
tioning was performed with the varpart function in the “vegan” R  package60. To determine the most important 
environmental variables correlated with leaf bacterial microbiota structure, we constructed a model of multivari-
ate analysis of variance using distance-based redundancy analysis (db-RDA) based on the Bray–Curtis distance. 
Bacterial biomarker taxa characterizing flooding and control treatments at each PGS were identified by linear 
discriminant analysis effect size (LEfSe)61. Ternary plots were produced utilizing the package “microbiome utili-
ties”62. All data were analyzed with R version 4.063.

Approval for plant experiments. Triticum aestivum L. Chinese Spring plants were used in this study, 
and their seeds were kindly provided by Prof. Andreas Börner (Leibniz Institute of Plant Genetics and Crop 
Plant Research, Gatersleben, Germany). No approvals were required for the cultivation of Triticum aestivum L. 
Chinese Spring, which complied with all relevant regulations.

Results and discussion
We investigated how phyllosphere bacterial microbiota of the crop Triticum aestivum cv. Chinese Spring (i) 
developed over plant growth period and (ii) responded to flooding when such stress was induced at differ-
ent plant growth stages (PGS). As plant phenology has been described as a major driver in wheat microbiota 
 assembly64,65 and abiotic stress might have a differential impact on community assembly dynamics depending on 
the specific  PGS57, we conducted a glasshouse experiment, in which wheat plants were subjected to a period of 
12 days of flooding either at tillering, booting and flowering (Fig. S1). In the twelfth day of exposition to flood-
ing, control and flooded plants of the corresponding PGS were removed from the experiment and harvested to 
collect a variety of soil, plant and microbiota associated traits to correlate changes in environmental and host 
traits with shifts in leaf microbiota alpha- and beta-diversity. To our knowledge, only a small number of studies 
have explored the dynamics of the leaf wheat microbiota over plant  development66–68, whereas no study has yet 
investigated the response of wheat’s leaf bacterial microbiota to flooding stress. Since leaf microbiota influence 
plant  fitness69, it is fundamental to resolve the host-microbe interactions in the phyllosphere of crop plants under 
alteration in environmental factors, especially those that are caused by climate change since these affect yields 
of crops. In this line, our work was intended to examine the composition and structure dynamics of the wheat 
phyllosphere microbiota under simulated soil flooding.

Flooding severely affected leaf nutrient status. Flooding significantly reduced spring wheat perfor-
mance as revealed by above- and belowground biomass changes, and it dramatically altered edaphic and root 
properties (see Francioli et al.57. Flooding had also a severe effect on leaf traits, as the concentration of all the 
measured nutrients were strongly affected by this stressor, especially at tillering and booting stage (Fig.  S2). 
Flooded wheat plants showed a significant (P < 0.05) increase of leaf C, which could be due to the inhibition 
of photosynthate delivery from leaves to roots under flooding stress, thus resulting in carbohydrate accumula-
tion in leaves of flooded  plants70,71. Mn and Na concentrations were significantly (P < 0.05) higher in leaves of 
flooded plants at all the three PGS. These results support the view of an increased uptake of these elements and 
their accumulation in shoots under  waterlogging72. On the contrary, leaf N, P, K, S and Mg concentrations were 
significantly (P < 0.05) reduced in flooded plants. Decreases of N and P in leaves during flooding have been 
already reported in previous studies as a consequence of a diminished uptake of these macronutrients from 

https://www.arb-silva.de/documentation/release-138/


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11197  | https://doi.org/10.1038/s41598-022-15133-6

www.nature.com/scientificreports/

the flooded soil by plant  roots73–76. Such a trend was also observed in our experiment (see Francioli et al.57). 
Furthermore, under oxygen deprivation plant roots may suffer of energy deficits which can compromise ion 
transport processes, such as the ability to translocate ions from roots to the  leaves77,78, which might explain the 
lower concentration of Ca and Mg detected in leaves of flooded wheat plants. Moreover, root oxygen deficiency 
decreases the selectivity of  K+/Na+ uptake by roots in favour of  Na+ and retards the transport of  K+ to  shoots79–81, 
corroborating the significant increase of  Na+ and the concomitant decrease in  K+ observed in the leaves of wheat 
plants subjected to flooding. These findings highlight the profound effect of waterlogging on leaf nutrient status, 
and further supporting the view that flooding stress might induce a disruption of inherent root-shoot commu-
nication and promote a functional disequilibrium between roots and  shoots82.

Plant phenology drives leaf bacterial microbiota assembly. From all the leaf samples, we recovered 
293,723 bacterial 16S rRNA gene high quality reads which clustered in 265 bacterial ASVs. Overall, bacterial 
sequences were affiliated to 7 phyla, 12 classes, 40 orders, 67 families and 92 genera. Proteobacteria was the most 
abundant phylum, comprising approximately 48% of the reads across all samples, followed by Actinobacteriota 
(30.4%), Firmicutes (10.1%) and Bacteroidota (6.9%) (Fig. S3). A small proportion of members of Patescibac-
teria, Gemmatimonadota and Deinococcota was also detected. In accordance with our results, phyla belonging 
to Proteobacteria, Actinobacteriota and Firmicutes were found to be the most abundant taxa in wheat leaf in 
 greenhouse83 and field  experiments84.

Leaf-associated bacterial richness ranged from 17 to 76 ASVs and it differed significantly among PGS 
(P < 0.001, Table 1); i.e. flowering samples had on average the highest richness, regardless of treatment (Fig. 1a). 
Increases in bacterial richness and diversity over growing season have been observed in the phyllopshere of 
 cereals84 and other  crops85. This increase in bacterial richness might be linked with the ecological succession 
within the microbiota through plant development, as plant emerging surfaces create new habitat properties and 
thus, an expansion of niche  breadth86. Therefore, along crop growth, the leaf microbiota diversity and complexity 
is expected to increase. Moreover, the observed increase in bacterial richness may be a direct response to signals 
between the plants and microorganisms, which could also mirror a specific responses to increasingly complex 
metabolites produced by mature wheat  plants87. Interestingly, we found that flooding had a marginal effect on 
bacterial richness (Table 1), however, pairwise comparison within PGS revealed a significant decrease in bacterial 
ASVs in the flooded samples at tillering (Fig. 1a).

Likewise, leaf bacterial beta-diversity was mainly affected by PGS, capturing 31.8% of community variation, 
while flooding had a direct marginal effect (Table 2). Plant phenology has been reported an important driver of 
leaf inhabiting  microbiota88,89, and community shifts across plant growth stages are mainly attributed to changes 
in leaf physico-chemistry over  time90. Thus, to better understand the effect of watering treatment in the phyl-
losphere microbiota, we sought to explore the temporal dynamics of the bacterial microbiota under controlled 
glasshouse conditions. Principal coordinate analysis on Bray–Curtis dissimilarities of the control samples clearly 
discriminated along the first coordinate the bacterial communities by PGS (Fig. 2b), highlighting the evident 
differences in community structure between the bacterial community structures at flowering from the other PGS 
(Figs. 1b, 2a,b). Indeed, higher dissimilarities in bacterial community structure between flowering and earlier 
PGS (booting, and tillering) were found (Figs. 2, 4), suggesting a different community assembly at the late growth 
stage flowering compared to mid- and early phase and confirming our first initial hypothesis. At the ASVs level, 
we found a high number of bacterial taxa uniquely detected in the leaf microbiota at flowering compared to the 
other two PGS (Fig. S4). These ASVs accounted for more than 25% of the total bacterial sequences in the con-
trol treatment, which further indicated a substantial restructuring of the bacterial microbiota between late and 
earlier PGS (Fig. S4). Dominant linear discriminant analysis (LDA) effect size (LEfSe) was employed to identify 
bacterial phylotypes as indicative biomarkers at each PGS, which are likely responsible for the large community 
shifts observed across PGS (Fig. 2c). For instance, bacterial members within the Alpha-proteobacteria phylum 
and the orders Propionibacteriales (Actinobacteriota) were significantly (P < 0.05) more abundant at tillering 
than in other PGS. The bacterial leaf microbiota at booting was characterized by a significant (P < 0.05) higher 
proportion of members affiliated with the Bacteriodota, but also with the Clostridiales (phylum Clostridia) and 
Corynebacteriales (Actinobacteriota). In contrast at flowering, the bacterial leaf microbiota was significantly 
(P < 0.05) enriched in taxa of Proteobacteria, in particular the orders Burkholderiales and Pseudomonadales. 
Moreover, significant (P < 0.05) enrichments in member of the Actinobacterial groups Streptomycetales (order) 
and Microbacteriaceae (family), and in the Bacteriodota orders Sphingobacteriales and Cytophagales char-
acterized the leaf microbiota at flowering. At a finer taxonomic ranking, we observed a significant (P < 0.05) 
increase in the abundance of the bacterial endophytes affiliated with the Proteobacteria genera Pseudomonas, 
Paracoccus, Aquabacterium, Enhydrobacter, and with the Actinobacteriota genera Cutibacterium and Lawsonella 
in leaf samples at tillering. LEfSe identified the genera Corynebacterium (Actinobacteriota) and Allorhizobium 

Table 1.  The relative importance of plant growth stage (PGS) and watering treatment (WT) for the bacterial 
community richness associated with wheat leaves.

Parameter df Pseudo-F R2 P‐value

PGS 2 52.098 0.778 0.001

WT 1 3.211 0.024 0.078

PGS * WT 2 0.291 0.004 0.759
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(Proteobacteria) as biomarkers for the bacterial leaf microbiota at booting. Contrarily, the Actinobacteriota gen-
era with putative endophytic capabilities Streptomyces, Aeromicrobium, and Pseudarthrobacter, together with the 
Proteobacteria genera Dechloromonas and Acinetobacter and the Bacteroidota genera Pedobacter, Fluviicola and 
Dyadobacter were significantly (P < 0.05) enriched at flowering. Leaf endophytes are an endosymbiotic group of 
microorganisms that colonize the leaf tissue, spending all or part of their life cycle within their hosts, and without 
causing any apparent symptoms of  disease91. Bacterial endophytes have been reported to exert multiple effects on 
growth and health of several crop species, such as increasing N and chlorophyll  content92,93, auxin indole-3-acetic 

Figure 1.  (a) Leaf bacterial richness and (b) relative abundances of the main bacterial phyla in the control and 
flooding treatment samples across plant grow stages (PGS). Different letters indicate significant differences in 
bacterial richness between water treatments within the same PGS based on Tukey’s HSD test P < 0.05.

Table 2.  The relative importance of plant growth stage (PGS) and watering treatment (WT) for the bacterial 
community structure associated with wheat leaves.

Parameter df Pseudo-F R2 P‐value

PGS 2 7.286 0.318 0.001

WT 1 1.796 0.039 0.046

PGS * WT 2 1.756 0.081 0.022
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acid (IAA)  production94,95 and showed antimicrobial activity against several bacterial and fungal  pathogens96–98. 
The significant differences in the leaf bacterial endophytic structure have usually resulted from leaf  phenology66,99, 
and the results of the our study are in agreement with this observation, since it was found that the differences 
in the leaf endophytic microbiota were driven mainly by PGS. The evident shifts in abundance of PGS-specific 
bacterial genera across phenological stages might imply that specific leaf adaptation mechanisms occur at par-
ticular plant developing  stage33, thus creating different temporal niches that are occupied by various  taxa100,101.

The observed bacterial community shifts across PGS were found strongly associated with our experimental 
factors, as the bacterial leaf microbiota assemblage was significantly influenced by the pure effect of edaphic 
properties (4% of variance), plant traits (10% of variance) and PGS (8% of variance) and by their interactions 
(> 20% of variance) (Fig. 3a). This latter result indicated an important interactive effect of PGS with plant and 

Figure 2.  (a) Ternary plot of the bacterial ASVs distribution across plant growth stages in the leaf of 
wheat control plants; (b) Principal Coordinates Analysis (PCoA) using Bray–Curtis dissimilarity metrics of 
the leaf bacterial communities associated with the control treatment; (c) LEfSe analysis at multiple taxonomic 
levels comparing the bacterial community structure across PGS in control treatment. Cladogram illustrating 
the taxonomic groups explaining the most variation among the bacterial communities. Each ring represents a 
taxonomic level, with phylum (p), class (c), order (o), family (f) and genus (g) emanating from the center to the 
periphery. Each circle is a taxonomic unit found in the dataset, with circles or nodes shown in colours (other 
than yellow) indicating where a taxon was significantly more abundant.
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soil attributes, which in turn significantly affected bacterial microbiota assembly in the phyllosphere. Indeed, 
shifts in soil and plant nutrient concentrations across the different PGS in the control plants were  observed57 
and db-RDA analysis revealed that root Na, leaf Na and total soil N were significant factors (P < 0.05) affecting 
leaf bacterial microbiota structure (Table 3). Plant traits, such as root and leaf nutrient concentrations, have 
been described as key factors in shaping the plant  microbiota102–104, and their variations along plant phenology 
significantly influence bacterial community  assembly105,106.

Flooding influenced significantly bacterial leaf microbiota assembly in young plants. Flood-
ing had a detrimental impact on spring wheat fitness as reflected by a significant (P < 0.05) decrease of above and 
belowground plant biomass, especially at tillering and  booting57, confirming the negative effect of flooding and 
soil waterlogging on wheat  growth107–110.

The leaf microbiota was also significantly affected by flooding and it explained 4% of variance (Table 2). 
We found a significant interaction between water treatment and PGS that accounted for an additional 8% of 

Figure 3.  Variance partitioning illustrating the effects of the experimental parameters on the leaf bacterial 
community associated with (a) control and (b) both watering treatments (control and flooding samples).

Table 3.  Relationships between the predictor soil and plant properties with the leaf bacterial community in 
the control treatment only and in the full dataset (control and flooding samples). Results show marginal tests 
using the db-RDA model. Significant P-values less than 0.05 are indicated in bold. ns no significant.

Control treatment Full dataset

F P F P

Leaf N ns ns 3.216 0.001

Leaf Na 2.481 0.003 1.436 0.042

Root Na 3.480 0.001 4.435 0.001

Root Mn ns ns 1.526 0.021

Soil N 1.479 0.027 ns ns

Soil S ns ns 1.977 0.003
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variation (Table 2). This latter result indicated a putative differential response to flooding along plant develop-
ment. A principal coordinate analysis revealed a more pronounced effect of flooding on early than late PGS 
bacterial leaf microbiota (Fig. 4a). Analysis on structural dissimilarities of the bacterial microbiota between 
treatments at each PGS revealed a significant (P < 0.05) and larger impact of flooding stress at tillering followed 
by booting and flowering (Fig. 4b,c). These findings validated our second hypothesis, as they demonstrated that 
flooding caused a greater disruption to early bacterial leaf microbiota compared with late PGS. Recent studies 
have reported similar findings, i.e. that the juvenile plant-associated microbiota of the roots and rhizosphere 
were more affected by hydrological stress than those associated with later stages of plant  development57,111. Tak-
ing together, all these observations may indicate that the phyllosphere microbiota of young plants is still in a 
dynamic process of establishment, in which community assembly is less resilient to abiotic and biotic stresses.

On the other hand, the microbiota associated with adult plants is relatively more stable due to prior establish-
ment of a more stable community likely with a higher and tighter degree of  interactions7,112,113. LEfSe further 
corroborated these observations, identifying in young plants (tillering) almost twice of bacterial biomarker 
taxa than at other PGS (Figs. 4d, S5). In particular, a depletion of Actinobacteriota, Firmicutes and Alphapro-
teobacteria together with an enrichment of Gammaproteobacteria were observed in the flooded treatments 

Figure 4.  (a) Principal coordinates analysis (PCoA) on Bray–Curtis dissimilarity metrics of the leaf bacterial 
communities across PGS in the control and flooding treatment; (b) Heatmap representing the Bray–Curtis 
dissimilarity in bacterial community structure between watering treatment and PGS; (c) Box plots of Bray–
Curtis dissimilarity index between watering treatment and PGS. The different letters indicate significant 
differences among plant growth stages (Tukey’s HSD test P < 0.05.); (d) LEfSe analysis at multiple taxonomic 
levels comparing the bacterial community structure between control and flooding treatment at tillering. 
Cladogram illustrating the taxonomic groups explaining the most variation among the bacterial communities. 
Each ring represents a taxonomic level, with phylum (p), class (c), order (o), family (f) and genus (g) emanating 
from the center to the periphery. Each circle is a taxonomic unit found in the dataset, with circles or nodes 
shown in colours (other than yellow) indicating where a taxon was significantly more abundant.
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at tillering. At this PGS, flooding caused a significant increase (P < 0.05) in abundance of taxa associated with 
the genera Streptomyces, Massilia and Rheinheimera and a significant (P < 0.05) decrease in the proportion of 
Staphylococcus, Paracoccus and Micrococcus, which are bacterial endophytes that have been commonly isolated 
from  wheat114 and other  plants115,116. Taxa affiliated to Massilia are frequently associated with  wheat7,117 and are 
considered putatively plant-beneficial due to their capability of producing proteases, sidephores and  IAA118,119. 
We can speculate that their increase in leaf samples of flooding treatments at tillering might in our experiment 
had been leaf-mediated and buffered the plant physiological stress that has been induced by flooding.

At booting, flooding decreased significantly (P < 0.05) the abundance of Streptomyces, Allorhizobium and 
Corynebacterium, while an opposite trend was observed for Aeromicrobium and Cutibacterium (Fig. S5). Mem-
bers affiliated to Streptomyces represent a well-studied genus of Actinobacteria with vast economic importance 
in agricultural plant production systems, because they include many potential biocontrol agents but also some 
important plant  pathogens120,121. In recent studies, endophytic Streptomyces spp. were found to promote plant 
growth and protection against fungal disease by producing bioactive compounds in leaves of different wheat 
 varieties122,123. As previously described, leaf developmental stage drives leaf microbiota assembly, and modulates 
metabolite accumulation and photosynthesis contributing to acclimation of plants to water  stress124. Thus, the 
opposite response of Streptomyces to flooding observed at tillering and booting may suggest a specific responses 
of leaf inhabiting Streptomyces spp. to water treatment depending on PGS and leaf development.

At flowering, we observed the lowest differences in community structure between the flooded and the corre-
sponding control treatments (Fig. 4c). This might further indicate that late PGS leaf bacteria microbiota is more 
stable and resilient to abiotic stresses compared to juvenile plants. Biomarker analysis revealed that flooding 
significantly (P < 0.05) decreased the abundance of Actinobacteriota and increased in the Alphaproteobacteria 
(Fig. S5).

Lastly, variance partitioning was employed to quantify the contribution of edaphic and plant properties, and 
their interactions with treatment and PGS on the structure of the bacterial leaf microbiota. These experimental 
factors captured together a large proportion of the variance, accounting for 35% (Fig. 3b). With the exception 
of PGS, which explained around 4% of variation, the pure effect of the experimental variables on the bacterial 
leaf microbiota structure was marginal, since most of the variance explained by them was shared. This indicated 
an interactive effect of PGS and water treatment on the plant and soil properties which in turn significantly 
affected the leaf microbiota assembly. Flooding dramatically altered various soil and plant traits. A significant 
increase (P < 0.05) in soil moisture, pH, Zn, and available P was  observed57. Furthermore, we found a general and 
significant increase (P < 0.05) in leaf C, Mn and Na content under flooding, while leaf N, P, S, Mg and K showed 
an opposite pattern (Fig. S2). db-RDA analysis revealed that soil S, root Na and Mn concentration together 
with leaf N and Na concentration were significant (P < 0.05) factors affecting the bacterial microbiota structures 
in wheat leaf under flooding stress (Table 3). These findings are in line with recent works that highlighted the 
central role of soil and root traits in driving leaf bacterial microbiota assembly, together with leaf  chemistry27,69. 
Overall, these observations acknowledged our second hypothesis, corroborating the fundamental influence of 
flooding on plant and soil properties, which in turn are firmly linked with leaf bacterial microbiota assembly.

Conclusions
Leaf-inhabiting microorganisms play an important role in plant fitness, growth, and resilience to abiotic stress 
and resistance to pathogens. However, the identity of specific factors that govern these complex plant-microbiota 
interactions are largely unknown and their quantitative interactions in determining microbiota assembly in the 
phyllosphere are not well understood. Our study shed light on few of these aspects. This is the first work that 
resolved dynamics of the wheat’s bacterial leaf microbiota over plant development as affected by flooding. We 
proved that bacterial leaf microbiota assembly is mainly governed by plant phenology, with large differences in 
richness and structure between late and early plant and thus, leaf developmental stages. These microbiota struc-
ture shifts were primarily associated with changes in plant traits over time, such as the concentration of several 
macro- and micro-nutrients. Hence, our study underlines the importance of temporal sampling when studying 
plant-associated microbiota of annual plants, such as many crops. It seems essential to understand how plant 
microbiota are structured over the life cycle of their hosts, since the same stresses have different intensities and 
potential impacts at different PGS. Our study further explored the response of the leaf bacterial microbiota to 
flooding stress. The major outcome was that a more pronounced disruption in community assembly occurred 
in younger plants. At the late PGS, the leaf bacterial communities of both flooded and control treatments had a 
higher degree of similarity. Thus, those were likely more resilient to flooding stress.

Our study represents a fundamental starting point to understand the complex interaction between leaf 
microbes and crop hosts. Beyond, there is an urgent need to confirm and observe insights from controlled plant-
level studies with field-level observations that include a broader variability of soil parameters and weather, but 
also further biotic interactions. Moreover, additional work is needed to fill the knowledge gaps on (i) how leaf 
metabolites changes when crop species are faced with extreme weather conditions, (ii) how these metabolites 
shape the phyllosphere microbiota diversity and composition, and (iii) the consequences for crop plant fitness, 
growth and eventually its yield.

Data availability
All raw sequences were deposited in the European Nucleotide Archive (study accession number PRJEB50387). 
The data and the R-code used in the current study are available from the corresponding author on reasonable 
request.
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