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Abstract: Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for
rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil
amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth,
nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect
of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen
(N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions.
Pyrolysis char from maize (600 ◦C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6)
for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by
80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on
shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were
observed under both non-saline and saline conditions. The root architectural traits, such as root
length, surface area, project area, root volume, and nodulation traits, also significantly increased
by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased
under B2 and B4 amendments compared to the plants grown without biochar application. Moreover,
the soil under saline conditions amended with biochar showed a positive effect on the activities
of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this
study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of
licorice under saline soil conditions by improving nodule formation and root architecture, as well as
soil enzyme activity.

Keywords: biochar; licorice; soil enzymes; salinity; nutrients; root system

1. Introduction

Licorice is a perennial shrub widely distributed in South-Western Asia and the Mediter-
ranean region, which consists of about 20 species. The most commonly grown species
are Glycyrrhiza glabra L. and Glycyrrhiza uralensis Fisch., used as food and in traditional
medicine to treat various health disorders [1–3]. The plant is well adapted to saline and
arid soils because of its deep root system. Thus, licorice is used to restore soil fertility
by increasing soil organic matter and soil biological activity [4,5]. However, exposure
of licorice to excessive salinity may elicit nutrient deficiency and imbalances of N, K, P,
and microelements, which are essential for plant growth [6,7]. Furthermore, salt stress
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disturbs the symbiotic performance of legumes with Rhizobia, thereby resulting in de-
creased nodulation and nitrogen fixation [8]. This process was explained by the failure
of rhizobial colonization in the rhizosphere, and the formation of root nodules. There
are several approaches to improving plant growth and development under drought and
salinity, such as genetic engineering and the application of microbial inoculants [9]. Biochar
amendment has also been repeatedly reported as an effective approach in restoring saline
lands and increasing plant tolerance to salt stress; thus, it has gained attention in practical
applications worldwide [6,10,11]. Biochar is a solid by-product of biomass-derived from
forestry, agriculture, and the food industry, such as wood chips, crop residues, sewage
sludge, or dairy manure. It is produced by pyrolysis or high temperatures under lim-
ited or complete absence of oxygen [12]. The positive effects of biochar on soil cation
exchange capacity [13], water holding capacity [14] or soil organic matter content [15] were
repeatedly demonstrated. Biochar also increased organic carbon in saline soil, supporting
favourable conditions for soil microbes involved in nutrient cycles [16]. Tang et al. [17]
also observed biochar-induced improvements in soil physical-chemical properties, which
mitigated salt stress during seedling growth of Brassica chinensis L. Moreover, the soil under
saline conditions amended with biochar experienced increased enzymatic activities such
as of urease, invertase and phosphatase [18].

Biochar also plays a vital role in plant growth, providing nutrients and better nutrient
availability [19]. The improved acquisition of nutrients such as N, P, K from soil amended
with biochar was explained by enhanced bioavailability and increased microbial activity
involved in nutrient cycling [20–22]. However, plant growth, nutrient acquisition, and soil
biogeochemical processes after biochar application depend on the type and concentration
of biochar. For example, Ibrahim et al. [23] observed that soil amendment with 2.5% biochar
alleviated the harmful effects of salt stress in Sorghum (Sorghum bicolor L. Moench), whereas
5 and 10% biochar application rates harmed the plant growth under saline conditions.
Our study hypothesized that the application of biochar mitigates the salt stress of licorice,
improves soil nutrient acquisition through improving soil biological properties and root
growth, and finally, that any beneficial effects depend on biochar concentration. Thus,
our study could expand knowledge about the impact of increasing biochar concentrations
on the improvement in the licorice root system (growth and architecture), symbiotic
performance and nutrient availability, especially in salt-affected soils. Experiments were
conducted in a greenhouse and included measurements of soil enzyme activities linked to
carbon, nitrogen and phosphorus cycling.

2. Results
2.1. Plant Shoot and Root Growth

The licorice’s root and the shoot biomass responded differently to the applied biochar
concentrations of B2, B4 and B6 and soil salt stress. In non-saline soil amended with B2, the
shoot and root growth of licorice significantly (p < 0.05) increased by 25 and 28% compared
to plants grown in soil without biochar addition (Figures 1 and 2). However, there were no
significant effects of B4 and B6 on licorice growth. The shoot and root biomass of plants
even decreased after the amendment of B6 (Figure 1). Under saline soil conditions, biochar
improved shoot and root biomass of licorice by 80 and 41%, respectively; however, B4 and
B6 had no significant effects on shoot growth (Figure 1).

Notably, biochar improved the symbiotic performance of licorice, since the nodule
number of plants grown in non-saline soil was 3.0 ± 1.0. In contrast, nodule numbers
significantly increased threefold (8.6 ± 1.5) after the addition of B2 to the soil and twofold
(6.0 ± 2.1) per plant at B4. Soil salinity inhibited nodule formation in the plant; no nodules
were found on roots grown in saline soil without biochar addition. However, the soil
which was amended with B2 and B4 increased nodule numbers to 4.1 ± 1.5 and 3.2 ± 1.0
per plant.



Plants 2021, 10, 2135 3 of 17
Plants 2021, 10, x FOR PEER REVIEW 3 of 17 
 

 

 

(A) 

 

(B) 

Figure 1. Shoot (A) and root (B) growth of licorice grown in soil amended with biochar at 2%, 4% 

and 6% concentrations under non-saline and saline soil conditions. Column means with different 

letters are significantly different based on Tukey’s HSD test at p < 0.05. 

  

  

 

 

  

  

 

  

 

   

   

   

   

   

                

  
 
 
  
 
  
  
  
  
  
  
  
  
 
  
 
 

                   

  

 

 

 

  

 

 

  

 

    

   

    

   

    

   

    

   

                

  
 
  
 
  
  
  
  
  
  
  
  
 
  
 
 

                   

Figure 1. Shoot (A) and root (B) growth of licorice grown in soil amended with biochar at 2%, 4% and 6% concentrations
under non-saline and saline soil conditions. Column means with different letters are significantly different based on Tukey’s
HSD test at p < 0.05.
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Figure 2. Biochar addition (2%) enhanced whole-plant growth under saline soil conditions. (A): entire plants, (B): ampli-

fied root system of biochar-treated variant, (C): amplified root system of control plant. 
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amended soil, the nutrient concentration in the licorice plant tissues was higher than the 
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of licorice grown in non-saline soil amended with B2 slightly increased by 9% and by 7% 

under saline soil conditions, respectively (Figure 3A). Significant increases (p < 0.05) in N 

content of plant tissue over the controls were observed after B2 and B4 amendments under 

non-saline conditions, being 44 and 32% higher, respectively (Figure 3B). Under saline 
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under non-saline conditions (Figure 3C). 

Figure 2. Biochar addition (2%) enhanced whole-plant growth under saline soil conditions. (A): entire plants, (B): amplified
root system of biochar-treated variant, (C): amplified root system of control plant.

2.2. Carbon and Nutrient Concentrations

The concentrations of C, N, and P in plant tissue were affected by different biochar
concentrations applied under non-saline and saline soil conditions. In the biochar-amended
soil, the nutrient concentration in the licorice plant tissues was higher than the plants grown
in soil without the addition of biochar. The carbon content in the root tissue of licorice
grown in non-saline soil amended with B2 slightly increased by 9% and by 7% under saline
soil conditions, respectively (Figure 3A). Significant increases (p < 0.05) in N content of
plant tissue over the controls were observed after B2 and B4 amendments under non-saline
conditions, being 44 and 32% higher, respectively (Figure 3B). Under saline conditions, the
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soil amended with B2 and B4 showed an increased concentration of plant N content by 37
and 26%, respectively (Figure 3). Among other nutrients analyzed, only the P concentration
of plants significantly (p < 0.05) increased after the amendment of B2 under non-saline
conditions (Figure 3C).
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Figure 3. Concentrations (%) of carbon (A), nitrogen (B), and phosphorus (C) in licorice plant tissue grown after application
of biochar at 2%, 4%, and 6% concentrations under non-saline and saline soil conditions. The different letters indicate
significant differences based on Turkey’s HSD test at p < 0.05.

2.3. Licorice Root Architecture

In general, licorice root architecture showed a differentiated response to different
concentrations of biochar amendment. Interestingly, the total root length significantly
increased by 26 and 57% under the B2 amendment under non-saline and saline condi-
tions, respectively, as compared to the other treatments (Figure 4A). Root length similarly
responded under the amendment of B4. The root length increased at both saline and
non-saline soil conditions, although significant differences compared to the control were
only observed under saline soil conditions (Figure 4A). Soil amendment changed the root
project area, especially when grown under saline conditions (Figure 4B). The root project
area significantly increased by 29–32% under non-saline and 37–48% under saline soil
conditions compared to the control plant. By comparison, the surface area of the root
significantly increased by 31% and 25% under non-saline and 51, and 36% under saline
soil conditions compared to the control plants (Figure 4C). As shown in Figure 4D, the root
diameter was not affected by biochar additions, except under B4, where an increase of 12%
was observed under non-saline soil conditions (Figure 4D). The root volume responded
differently to both biochar concentrations and soil conditions. Both B2 and B4 induced up
to 52 and 43% higher root volumes under non-saline soil conditions than the control plants
(Figure 4E). The root volume responded similarly to the addition of biochar under saline
soil conditions, as it was increased by 73% under B2 amendment compared to the control
plants (Figure 4E). There was no clear response from the root tips to different biochar
additions, as they were significantly (45%) higher after B2 amendment compared to control
plants under saline soil conditions only.
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Figure 4. Root morphological traits, i.e., total root length (A), project area (B), surface area (C), root diameter (D), root
volume (E), and root tips (F) of licorice grown after application of biochar at 2%, and 4% concentrations under non-saline
and saline soil condition. The top and bottom of the box represent 75% and 25% quantile, respectively. The bars of the box
represent maximum and minimum values of observations. The line in the box represents the median. The dot represents the
value of each individual observation. Letters within each column mark significant differences at p < 0.05 based on Duncan’s
test. BC: biochar, NB: without biochar, S: saline, NS: non-saline, R.: root.
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2.4. Soil Enzymes

The biochar amendment of B2 significantly increased fluorescein diacetate (FDA) hy-
drolase activity in non-saline and saline soil by 45 and 42%, respectively (Figure 5A); how-
ever, the activity decreased at the addition of B4 and B6 under both saline and non-saline
conditions. The biochar amendments affected the acid and alkaline phosphomonoesterase
activities under licorice (Figure 5B). An increase in acid phosphomonoesterase activity by
10 and 25% in non-saline soil and 13 and 32% in saline soil was observed after B2 and B4
amendments compared to the control, respectively. However, the effect was not significant
(Figure 5C). In contrast, alkaline phosphomonoesterase activity decreased in soil amended
with biochar at all of the applied concentrations (B2, B4, B6). Protease activity significantly
increased after biochar additions (Figure 5D), i.e., an increase of 70 and 48% was observed
in non-saline and of 96 and 96% in saline soil amended with B4 and B6 compared to the
control, respectively (Figure 5D).
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Figure 5. Effect of biochar amendment on FDA hydrolytic activity (A), soil acidic phospho-
monoesterase activity (B), soil alkaline phosphomonoesterase activity (C), and soil protease
activity (D) under non-saline and saline soil conditions. The top and bottom of the box represent
75% and 25% quantiles, respectively. The bars of the box represent maximum and minimum values
of observations. The line in the box represents the median. The dot represents the value of each
individual observation. Letters within each column mark significant differences at p < 0.05 based
on Duncan’s test. ACP: acidic phosphomonoesterase activity, AKP: alkaline phosphomonoesterase
activity, FDA: fluorescein diacetate hydrolytic activity, Protease: protease activity. BC: biochar, NB:
without biochar, S: saline, NS: non-saline.
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2.5. Correlations and Redundancy Analysis

A cluster map of correlations was plotted to explore the relationship between mea-
surements and retrace cause-effect dependencies, and a RDA was performed. The cluster
map of correlations indicates four groups related to root morphological measurements,
including root project area, root surface area, and root length. The root volume and
tips were clustered with nodule numbers in one group (Figure 6) and significantly and
strongly correlated.
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Figure 6. Cluster map of correlations of the root morphological measurements, plant measurements, nodule number, soil
properties, saline conditions and biochar additions. Biochar: biochar additions, Bioss.root: root biomass, Bioss.shoot: shoot
biomass, EC: soil electric conductivity, Nr.: number, Saline: saline conditions. The colour bar indicates Pearson correlation
coefficient. The columns/rows of the data matrix are re-ordered according to the hierarchical clustering result; similar
observations are close to each other. The blocks of ‘high’ and ‘low’ values are adjacent in the data matrix.

Plant tissue measurements, such as contents of N, C, and P, as well as biomass, were
clustered with acidic phosphomonoesterase activity in one group. These measurements
also significantly and positively correlated with each other. Soil moisture and biochar
additions clustered together and showed strong correlations with most of the root mor-
phological measurements apart from root diameter; however, only weak correlations with
the plant measurements (Table 1 and Figure 6). Alkaline phosphomonoesterase activity,
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protease activity, and FDA hydrolytic activity showed weak correlations with root mor-
phological and other plant measurements. Soil EC indicated a weak correlation with root
morphological measurements and nodule number and showed a significantly negative
correlation with shoot measurements. The saline soil condition indicated a significantly
negative correlation with root morphological and aboveground plant parameters. Before
the RDA was performed, data of the response variables (root project area, root surface
area, root length, root volume, root tips, root diameter, shoot biomass, root biomass, plant
N, P and K) as well as for the explanatory variables (biochar addition, saline condition,
soil acidic and alkaline phosphomonoesterase activity, protease activity, FDA hydrolytic
activity, soil moisture and EC) were normalized. As a result, the first three RDAs explained
70.57%, 9.63%, 2.37% of the total variance (Figure 7).

Table 1. Soil electric conductivity (EC) and moisture content during licorice growth in pot experiments.

Condition Treatment EC Moisture

Saline

Control 0.165 ± 0.03 7.5 ± 0.86
2% BC 0.385 ± 0.08 9.2 ± 0.76
4% BC 0.421 ± 0.03 9.3 ± 0.95
6% BC 0.750 ± 0.09 12.0 ± 1.10

Non-saline

Control 0.041 ± 0.01 7.2 ± 0.76
2% BC 0.062 ± 0.01 11.5 ± 0.50
4% BC 0.069 ± 0.02 9.5 ± 1.10
6% BC 0.076 ± 0.01 13.1 ± 0.8
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Figure 7. RDA-ordination triplot of variables. Response variables are shown by green arrows;
explanatory variables are shown by yellow arrows. The angles between the arrows of the response
and explanatory variables indicate correlations. The RDA1 and RDA2 axis explained 70.57% and
9.63% of the total variance, respectively.

A permutation test for RDA under a reduced model was performed to test the impor-
tance of the chosen model, the axis, and the explanatory variables (Table 2). The significance
level of the model of RDA indicates that it can appropriately explain the data (Table 2).
The RDA1 axis explained most of the variables and indicated the highest impact. In the
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explanatory variables, the acidic phosphomonoesterase activity contributes the most to
explain the response variables.

Table 2. Permutation test for RDA under reduced model.

Df Variance F Pr(>F) Signif.

Model 9 9.8537 5.6962 0.001 ***

Axis

RDA1 1 8.0393 41.8259 0.001 ***
RDA2 1 1.0973 5.709 0.219
RDA3 1 0.2695 1.4023 0.981
RDA4 1 0.215 1.1185 0.987
RDA5 1 0.1404 0.7306 0.996
RDA6 1 0.038 0.1978 1
RDA7 1 0.0303 0.1574 1
RDA8 1 0.0204 0.1064 1
RDA9 1 0.0035 0.0181 1

Explanatory
variables

Protease 1 0.3749 1.9505 0.158
AKP 1 0.8829 4.5933 0.031 *
ACP 1 4.9067 25.5281 0.001 ***
FDA 1 0.1533 0.7975 0.457

Soil.EC 1 1.6688 8.6824 0.002 **
Soil.Moisture 1 0.5343 2.7798 0.079 .
Nodule.Nr. 1 0.2909 1.5135 0.22

Saline 1 0.8186 4.2591 0.035 *
Biochar 1 0.2233 1.1617 0.281

Residual 8 1.5377
Signif. codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1.

The soil EC, alkaline phosphomonoesterase activity and the saline condition also
affected the response variables. However, the biochar showed no significant contributions
to explain the response variables. Thus, we traced back to the previous results, and
a 2% biochar addition showed a positive effect on the root morphological and plant
measurements; nevertheless, a 4% or a 6% biochar addition showed no significant impact
on plant measurements. The overall contributions of three rates of biochar addition could
not be significantly differentiated.

3. Discussion

Overall, this study showed that plant growth attributes, root architecture, nutrient
acquisition and symbiotic performance of licorice under both non-saline and saline soil
conditions improved after the amendment of biochar. However, the concentration of B2
had the most benefits for licorice root and shoot growth, as well as N and P uptake and
C allocation under both soil conditions. Biochar dosage could be a crucial factor in deter-
mining the biochar potential in improving plant growth [24]. Liu et al. [25] observed a
dose-dependent response of rice to biochar related to nutrient availability. They observed
an enhancement of rice root grown under 0.05% biochar amendment, but not for 0.1%
biochar. In another study, Batool et al. [26] reported improved physiological parameters
of Abelmoschus esculentus L., such as leaf stomatal conductance and gas exchange rate
at 1% biochar application compared 3%. Moreover, growth parameters of licorice were
positively affected by 2% biochar treatments under salt stress, indicating alleviation of
the adverse impact on plants. Several other reports demonstrated the positive impacts of
soil amendments with biochar on plant growth and development under salt stress [27,28].
For example, Farooq et al. [29] observed an increased growth in seedlings and leaf area
and reduced oxidative damage and Na+ accumulation in cowpea leaves after biochar
application under salt stress conditions. A similar observation was reported for quinoa,
where the amendment of biochar significantly increased plant height, shoot biomass, water
use efficiency and yield under salt stress compared to control plants [30]. The effects of
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biochar on plant stress tolerance were also found to be dose-dependent. Ibrahim et al. [23]
studied the impact of biochar rates (0%; 2.5%; 5%, 10%) on sorghum growth and physiolog-
ical attributes under saline conditions. The plant height, leaf area, fresh and dry weight
under stress were improved by 2.5 and 5% biochar amendment, whereas a 10% addition of
biochar negatively influenced plant physiological properties. The effect has been explained
by the regulation of the synthesis of anti-oxidant enzymes in plants induced by biochar [31],
and also by a reduction in Na acquisition of plants [32].

The B2 concentration improved the root architecture of licorice under non-saline and
saline conditions compared to the other treatments, indicating that a low biochar appli-
cation rate strongly stimulates root system growth. In addition, the overall contributions
of three rates of biochar addition on the root architecture traits were high according to
the significant correlation among biochar and root architecture traits from the RDA result.
Points for observations of the amendment of B2 and B4 under non-saline conditions can
be projected perpendicular on the lines for response and explanatory variables, indicating
the response values and explanatory variables at those sites on the triplot. The result also
proves the root morphological growth was positively affected by B2 and B4 amendment
under non-saline conditions. Similar findings were observed for the halophytes Sesbania
(Sesbania cannabina) and Seashore mallow (Kosteletzkya virginica), where the root system, as
well as shoot growth under salt stress, were improved by biochar application [33]. Several
reports explain the possible mechanisms leading to the positive effects of biochar on plant
growth. Laird et al. [34] observed reduced nutrient leaching and enhanced soil quality
after applying biochar. The application rate of B2 increased C, N and P contents in plant
tissues under both non-saline and saline conditions. The positive effect of biochar on plant
growth was explained by the increased availability of essential nutrients for plant growth
and development [35]. The nutrient uptake in plant tissue of corn such as N, P, K, and Mg
was stimulated by the biochar amendment of alkaline soil [36]. Biochar is rich in organic
carbon and minerals and supplies additional nutrients to the soil available for plant acqui-
sition, improving plant nutritional status and plant development [37]. El-Naggar et al. [38]
observed an increased cation exchange capacity (CEC) of soil after biochar amendment,
associated with higher nutrient retention. Furthermore, reduced salt stress after biochar
application was explained by improving stomatal conductance and water consumption of
plants [32,39].

In our study, the nodule numbers decreased in licorice roots grown under saline soil
conditions. In an earlier study, Zahran et al. [40] illustrated that abiotic stress might lead to
an alteration in the Rhizobium-host plant recognition process. Remarkably, application rates
of B2 and B4 improved the symbiotic performance of licorice under both non-saline and
saline soil conditions. The result of RDA and the cluster map also indicated that biochar
positively correlated with nodule numbers. However, only the observations of the B2 and
B4 amendment under non-saline conditions can be projected on the line of nodule number
on the triplot; apparently, saline conditions offset the effect of biochar to a certain degree.
In earlier studies, several reports demonstrated increased nodule numbers in soybean roots
after adding biochar [12,41]. Biochar is rich in carbon and several nutrients; some of these
nutrients are directly available for microbes. Thus biochar can likely provide sources for
bacterial survival and proliferation in soil and rhizosphere [42,43].

Soil enzyme activities responded differently to the biochar concentration applied
under both non-saline and saline soil conditions. Fluorescein diacetate (FDA) hydrolase
activity increased in soil amended with B2, whereas rates of B4 and B6 additions even
inhibited enzyme activity under non-saline and saline conditions. Ma et al. [21] reported
that applying 10 t ha−1 biochar produced from black cherrywood significantly increased
soil FDA hydrolytic activity in a sandy field. Accordingly, an increase in FDA hydrolytic
activity, which is an indicator of total microbial activity, was also reported by Chan et al. [15]
after adding biochar into the soil. Furthermore, acid phosphomonoesterase activity was
stimulated in soil amended with B2 and B4; however, alkaline phosphomonoesterase
was inhibited under both soil conditions. In the explanatory variables of the RDA triplot,
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the acidic phosphomonoesterase activity contributed the most to explaining the response
variables. The acidic phosphomonoesterase activity strongly correlated with plant P, shoot
dry weight and root dry weight. It is likely that the P uptake may increase organic P
mineralization [44] and thus, facilitated the association between plants and microorgan-
isms [45,46]. Furthermore, P-solubilizing microorganisms are promoted to release organic
acids to solubilize ortho-P [47,48]. A significant correlation between biochar and acidic
phosphomonoesterase activity was also found, suggesting that biochar may have an in-
direct effect on P cycling for plant growth. Furthermore, soil protease activity strongly
increased after applying B2, B4 and B6 under both saline and non-saline conditions. Corre-
spondingly, increased enzyme activities involved in C and N cycles were also detected after
adding maize biochar [41]. Thus, the increased enzyme activities in saline-alkaline soils
amended with biochar in other studies demonstrated an improved microbial community
related to central C, N, and P cycling activities [49,50]. Moreover, urease plays a crucial
role in mineralizing soil organic nitrogen, as do phosphatases in transforming soil organic
P forms [51,52].

4. Materials and Methods
4.1. Soil, Biochar and Plant

The soil used in the study was sandy loam, collected from the horizon (0–15 cm depth)
of an experimental arable field under irrigation operated by the Experimental Field Station
of the Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.
The soil had the following contents: clay and fine silt (7%), coarse and medium silt (19%),
sand (74%), C org (0.6%), total N (0.07%), P (0.03%), K (1.25%), and Mg (0.18%), the pH
was 6.2. The biochar material was supplied from the Leibniz-Institute for Agrartechnik
Potsdam-Bornim e.V. (ATB), Germany. The biochar was produced from maize by heating
at 600 ◦C for 30 min and had the following properties (calculated per dry weight): dry
matter (DM% fresh matter)—92.85; ash (%)—18.42; total organic carbon content (%)—75.47,
N (%)—1.80; C/N ratio—41.93; Ca (g/kg −1)—9.26; Fe (g/kg−1)—11.40; Mg (g/kg−1)—
4.91; K (g/kg−1)—32.26; P (g/kg−1)—5.26; pH—9.89; EC—3.08 [53]. Licorice seeds were
purchased from an online seed store of Chinese traditional medicine in China and were
used for pot experiments.

4.2. Plant Growth Experiment

The experiment was conducted in a plant growth chamber at the Leibniz Centre for
Agricultural Landscape Research (ZALF). Three concentrations of biochar 2, 4, and 6%
(w/w) were used as a soil amendment. Pots (d = 0.16 m, 3 L) were filled with 1000 g
air-dried soil and mixed with crushed chars (particle size < 3 mm). The seeds of licorice
(Glycyrrhiza uralensis Fisch.) were surface-sterilized using 10% v/v NaOCl for 5 min and
70% ethanol for 5 min. After that, seeds were rinsed five times with sterile distilled water
and transferred to paper tissue for germination in a dark room at 25 ◦C for 3–4 days. A total
of three seeds were sown to each pot, and after one week, the seedlings were thinned to
two plants per pot. The following treatments were set up: (i) plants grown in soil without
biochar B0, (ii) plants grown in soil amended with 2% (B2), 4% (B4), and 6% (B6) biochar.
Each treatment included four pots and was arranged in a randomized complete block
design. The plants were grown under non-saline and saline (50 mM NaCl) conditions for
40 days at a temperature of 24 ◦C/16 ◦C (day/night) and in the humidity of 50–60%. Plants
were irrigated with tap water containing 50 mM NaCl three times a week. The control
treatment was only irrigated by tap water without NaCl. During plant growth, electrical
conductivity of soil (EC) and moisture were measured every 3–4 days with UMP-2 BT+
sensor (UGT GmbH, Müncheberg, Germany). Average soil EC and soil moisture during
plant growth are presented in Table 1. At harvest, the roots were separated from the shoots,
and their biomass was oven-dried at 70 ◦C for 48 h. The dry weights of root and shoot and
the number of nodules were determined from each plant.
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4.3. Plant and Soil Nutrient Analyses

For the determination of carbon (C), nitrogen (N), and phosphorus (P) concentrations
in plant tissues, oven-dried plants were homogenized by milling, and powders of shoots
and roots were combined. The powder was analyzed with an inductively coupled plasma
optical emission spectrometer (ICP-OES; iCAP 6300 Duo).

4.4. Root Morphological and Architectural Traits

Roots were separated from shoots and washed carefully with water. The entire root
system was spread outward and analyzed using a scanner system (Expression 4990, Epson,
Los Alamitos, CA, USA). Digital images of the root system were analyzed using Win
RHIZO software (Régent Instruments, Quebec, Canada) for total root length, root volume,
the number of root tips, root surface area, and average root diameter. The total number of
nodules per plant root was counted under a stereomicroscope.

4.5. Soil Enzyme Measurements

Acid and alkaline phosphomonoesterase activities were assayed, according to Tabatabai
and Bremner [54]. The concentration of p-nitrophenol (p-NP) produced in the assays by acid
and alkaline phosphomonoesterase activities was calculated from a p-NP calibration curve
after subtracting the absorbance of the control at 400 nm wavelength using a Lambda 2
UV-VIS spectrophotometer [55]. Protease activity was assayed using the method described
by Ladd and Butler [56]. The ammonium released was calculated by relating the measured
absorbance at 690 nm to a calibration graph containing 0, 1.0, 1.5, 2.0, and 2.5 µg of NH4

+-
N mL−1. The assay of fluorescein diacetate (FDA) hydrolytic activity was performed
according to Green et al. [57]. The fluorescein concentration was calculated by reference to
a standard curve with 0, 0.001, 0.005, 0.05 and 0.15 mg of fluorescein.

4.6. Statistical Analyses

The data were subjected to one-way analysis of variance (ANOVA) using the software
package SPSS-22 (SPSS Inc., Chicago, IL, USA). Multiple comparisons of the means were
conducted by the least significant difference using Tukey’s Honest Significant Difference
(HSD) (LSD) (p = 0.05) test. Linear correlation analyses were performed with Pearson’s
correlation coefficients to clarify the relationship between various measurements by using
python 3.8.1. A cluster map of the correlations was plotted to visualize the results. For
further data exploration, a redundancy analysis (RDA) was performed to explain the
dependent relationships between the explanatory variables (soil properties) and response
variables (plant parameters) using the open-source statistical language R v1.3.1056 (R
Studio, Boston, MA, USA). The results of the RDA were plotted on a triplot, on which
the angles between the arrows of the response and explanatory variables indicate the
correlations.

5. Conclusions

The results of our study revealed synergistic effects of concentration-dependent
biochar amendments on licorice growth, nutrient uptake, and soil enzyme activities in-
volved in the cycling of C, N and P in sandy loam soil under both non-saline and saline
conditions. The improved acquisition of nutrients by licorice was explained by enhanced
root growth, bioavailability of nutrients and increased soil microbial activity after biochar
amendment. Remarkably, a medium-amount biochar amendment (B2) of the soil mostly
improved the root system architecture and thus enabled improved nutrient uptake, and
may support nitrogen fixation activity under salt stress. The use of excessive amounts of
biochar, however, may result in unfavourable soil physico-chemical or soil ecological con-
ditions such as over-critical aromatic C contents or unfavourable soil aggregation, which
may negatively impact plant growth and microbial proliferation.
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Overall, our findings underpin the notion of an elaborate interrelationship between
biochar concentration and enhanced licorice growth, its root system architecture, symbiotic
performance and nutrient acquisition under saline soil conditions.
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