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A B S T R A C T   

The effects of land cover configuration on land surface temperature (LST) have been extensively documented. 
However, few studies have examined the effects of woody features and their configuration on LST in agricultural 
landscapes. A study was conducted in Brandenburg, Germany to examine the potential impacts of small woody 
features (SWF) on the LST of adjacent agricultural areas. High-resolution maps of woody features at the regional 
scale, together with the remotely sensed proxies of vegetation conditions (such as topography and crop types), 
were used to quantify the impact of SWFs on the gradient of LST at different distances during the dry season 
(June to September) of each year between 2017 and 2020. The structural characteristics of SWFs, orientation, 
eccentricity and size, were used as input in a multilinear regression model and in machine learning methods to 
predict LST at different distances. The results of the regression methods applied in this study illustrate that the 
surface temperature and then the eccentricity of SWFs play the key roles in predicting the gradient of LST at 
different distances to adjacent fields. This study determines the role of other attributes of SWFs in the prediction 
of LST, which will influence future landscape planning decisions and strategies.   

1. Introduction 

Agricultural production faces numerous challenges, including 
climate change and global population growth. Its bioclimatic de
pendency makes agriculture the most vulnerable economic sector to 
climate change (Hatfield et al., 2020) . Negative impacts of global 
warming on the agricultural sector affect the provision of food for a 
growing human population (Dumortier et al., 2021; Godde et al., 2021; 
Rezaei et al., 2023) . A future warmer climate raises the prospect of more 
intense and frequent heat waves (Meehl and Tebaldi, 2004). Contem
porary cropping systems encounter significant difficulties when it comes 
to adapting to increasing average temperatures and, in particular, heat 
waves (Lüttger and Feike, 2018; Beillouin et al., 2020; Webber et al., 
2020). For this reason, adaptation methods that reduce the impact of 
heat waves on crops are in demand. 

Trees, shrubs and other perennial woody plants that grow taller than 
common crops have come into focus as features of the agricultural 
landscape that provide shade to their immediate vicinity and transpire 
water from a larger soil moisture reservoir, potentially offering a 
“cooling service” (Monteith et al., 1991; Kanzler et al., 2019; Swieter 
et al., 2022). Small woody features (SWF) are patchy or linear structures 

of woody vegetation, such as solitaires, groves, woodlots, thickets, 
hedgerows, bocages or gallery forests, but considerably smaller in size 
than forests, although a clear size definition is lacking (Plieninger, 
2011). SWFs are traditional elements in agricultural landscapes across 
Europe that have been historically managed for decades or centuries to 
provide ecosystem services such as provisioning (e.g., wood for fuel, 
timber), regulating (carbon sequestration, purification of air and water), 
and others (e.g., cultural and aesthetic) (Franz et al., 2010). Based on 
their spatial arrangement in the terrain, they may drastically influence 
local wind speeds and turbulent mixing of air masses from a microcli
mate perspective (Brandle et al., 2004; Heisler and Dewalle, 1988; 
McNaughton, 1988). 

The woody features’ microclimate encompasses the sub-canopy local 
climate, which is buffered and subsequently decoupled from the sur
rounding „mesoclimate“ (at landscape level) or "macroclimate" (at the 
regional and higher scales) due to physical protection against strong air 
mixing or incoming radiation (Bramer et al., 2018). Evidence suggests 
that tree canopies may effectively buffer understorey environments 
against climate extremes and support microclimates that may moderate 
the response of sub-canopy species to macroclimatic warming (Davis 
et al., 2019; De Frenne et al., 2019). 
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The spatial arrangement of woody elements in the agricultural 
landscape, taking into account the field geometry, wind direction, and 
terrain slopes, has the potential to alter the mesoclimate of the respec
tive area, as a result of a range of microclimatic effects (Donat et al., 
2023). According to the comparable studies in this field, woody features 
act as a buffer for a variety of microclimate variables. Changes in the 
microclimate conditions are noticeable only within proximity to wooded 
features, within a distance approximately ten times greater than the 
height of the windbreak (Brenner et al., 1995; Cleugh, 1998). Yet, to our 
knowledge, research on the impact of integration of woody features into 
the agricultural landscape and how their specific microclimate affects 
the mesoclimate is still lacking. 

To maintain a well-balanced mesoclimate within cropland, farmers 
have traditionally embraced the practice of cultivating woody features 
(Cleugh, 1998). In temperate zones, woody features are used to maintain 
biodiversity and provide ecosystem services, whereas in tropical and 
subtropical zones, agriculture and horticulture are primarily focused on 
using hedges to manage water and soil (Vanneste et al., 2020; Mont
gomery et al., 2020). Woody features are a common measure in the 
Mediterranean region to prevent soil erosion (Donjadee et al., 2010; 
Gomez-del-Campo, 2010), and provide habitat for other plant species 
(Bassa et al., 2012). 

The characterisation of a specific mesoclimate is challenging due to 
its typical spatial extent of several square kilometres. Land surface 
temperature (LST) is one climate variable that can easily be assessed 
across large areas through the use of remote sensing, while the spatial 
patterns of air humidity, wind speed and related indicators are more 
difficult to obtain. In this study, we use remotely sensed LST as a proxy 
for the air temperature above that surface. Air temperature is then the 
relevant feature to assess the risk for crop underperformance (Asseng 
et al., 2015), animal welfare (Gauly and Ammer, 2020) and human 
thermal comfort (de Abreu-Harbich et al., 2015). Under low-wind speed 
and high-radiation conditions, the LST is a significant factor that in
fluences near-surface air temperature (Karnieli et al., 2010; Gao et al., 
2011; Good et al., 2017; Khanal et al., 2017; Keenan and Riley, 2018) . 
We assume that LST observed over a dominantly open agricultural 
landscape is an appropriate indicator for the surface’s radiation turnover 
regime and the resulting mesoclimate at the landscape scale (Mutiibwa 
et al., 2015). The potential of SWFs to control the surrounding LST is not 
fully understood and has not been quantified until now. We investigate 
the feedback between SWFs and the gradient of LST as affected by 
insolation and the dominant wind speed and direction (Tamang et al., 
2010; Baker et al., 2021). For this purpose, we break down the effects of 
SWFs on temperature gradients by their physical properties, size, type, 
orientation and eccentricity. 

To evaluate the effects of SWFs on the LST of nearby agricultural 
fields, remote sensing (RS) data has been supplied sufficient details from 
the plant conditions (Senay et al., 2019; Weiss et al., 2020) and assess 
heat and water stress (Sayago et al., 2017; Virnodkar et al., 2020; Zhu 
and Burney, 2022). The Copernicus Land Monitoring Service provides 
homogeneous information on SWFs at the European level using Very 
High Spatial Resolution (VHSR) Earth Observation (EO) scenes 
(Copernicus, 2019). In this study, we used the available high-resolution 
maps of woody features at the regional scale, together with the remotely 
sensed proxies of vegetation conditions (such as topography and crop 
types), to examine the effects of SWFs on the nearby field’s climate from 
the standpoint of LST. 

Given the significance of the preceding facts, the overarching goal of 
this study is to illustrate whether an SWF has a significant impact on the 
LST of adjacent fields. We also aim to shed light on the structural and 
dynamic attributes of SWFs, which would affect the temperature 
gradient of the landscape. To this end, we compare the results of mul
tilinear regression and machine learning methods to predict LST at 
different distances from an SWF. 

2. Methods 

2.1. Case study 

The area under investigation is the rural district (Landkreis) of 
Märkisch-Oderland (MOL), located in the Federal State of Brandenburg, 
Germany (52◦N, 13◦E; Fig. 1a). The overall topography of the region is 
dominated by softly rolling hills, generally with altitudes between 100 
and 150 m above mean sea level (a.s.l.). Agricultural land accounts for 
approximately 45 % of the area of the Federal State of Brandenburg, 
totalling 29,640 km2 (Amt für Statistik Berlin-Brandenburg, 2016). Ac
cording to Köppen’s classification, Brandenburg’s climate is charac
terised by a warm humid continental climate (Dfb) with warm summers 
(Kottek et al., 2006). Mean annual precipitation is 521 mm (max. = 749 
mm in 2010, min. = 348 mm in 2004), with a mean annual temperature 
of 10.0 ◦C for the period 1991–2020 (max. 11.8 ◦C, 2014; min. 8.5 ◦C, 
2004), as observed at the Müncheberg meteorological station. These 
conditions, paired with sandy soils of very low water holding capacity, 
pose considerable challenges to agricultural production. 

2.2. Input data 

2.2.1. Land surface temperature 
Land surface temperature (LST) was derived from satellite remote 

sensing data (Landsat 8). For this purpose, we used LST retrieval method 
based on single thermal infrared (IR) channel to investigate the thermal 
gradients of SWFs in adjacent fields. 30 m spatial resolution data was 
retained for the derived LSTs, although the landsat thermal bands are 
resampled from their original 100 m resolution. In this method, the al
gorithm also used other bands, such as NIR and R, which have 30 m 
resolution. The LST was obtained during the warmest period in Bran
denburg between 1 June and 1 September for four years (2017, 2018, 
2019 and 2020). The LST was collected throughout this time, and im
ages from 49 time steps were analysed. All the images of the MOL region 
were captured between 10:50 and 11:05 am in the local time zone 
(CEST). The algorithm for estimating LST was developed in Google Earth 
Engine based on a Statistical Mono-Window (SMW) algorithm (Ermida 
et al., 2020). The images with less than 20 % of cloud cover were 
selected. In addition, Landsat Pixel Quality Assurance information was 
used to mask out any pixels with lower quality such as pixels with cloud 
or cloud shadows. In the final step, Landsat LST data for each year were 
aggregated using mean in order to have continuous coverage over the 
study area. Subsequently, the LST data were resampled to a 5-meter 
resolution, aligning with the reference resolution established in this 
study through the ‘Nearest Neighbour’ method. The resulting cell’s 
value is established based on the closest cell centre within the input grid. 

2.2.2. Small woody features 
The Small Woody Features (SWF) layer, used by Copernicus to 

determine tree and shrub coverage in German agricultural areas, com
prises woody linear and small patchy elements. These elements adhere 
to specific geometric specifications, with patches and additional features 
having minimum and maximum areas of 200 and 5000 m2s, respectively 
(Copernicus, 2019). 

The Copernicus Land Monitoring Service provides SWFs at the pan- 
European level using more than 37,000 very High Spatial Resolution 
(VHSR) Earth Observation (EO) scenes. The main outputs of this 
extraction are vector and raster products (5 m and 100 m spatial reso
lution) (Fraucqueur et al., 2019), which provide homogeneous infor
mation on the structure of SWFs, such as linear features (hedgerows, 
bocages, lines of trees, etc.) and small patches of woody vegetation 
(solitaires, groves, thickets, woodlots, etc.), for the reference year 2015 
(± 1 year) (Copernicus, 2019). This dataset is publicly available on a 
large scale for agricultural areas in Brandenburg. 

The map of SWFs in MOL was re-projected to EPSG 3035 with a 5 m 
resolution. This specific projection and resolution are considered as the 
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reference standards for processing other maps (LST, crop types, and 
distance maps) throughout our research. The final processed map of 
SWFs was then used to randomly select 135 samples from the agricul
tural area of MOL. Each sample covers an area of 50 to 52 hectares, 
including one to a maximum of six different SWFs, preferably located in 
the centre of the sample (see Fig. 1). The selected samples of the SWF 
map were used as the reference map to select the same area of other 
maps, LST, crop type map, and elevation, and to resample and re-project 
them in this study. 

2.2.3. Crop type map 
Multi-year agricultural land cover maps based on study of Blick

ensdörfer et al. (2022) were used in our study. Their approach involved 
applying a random forest classifier and dense time series data from 
Sentinel-2 and Landsat 8 in combination with monthly Sentinel-1 
composites and environmental data. The mapped area, containing 
major crop sequences of cereals and leaf crops, has adequate accuracy 
(78 % to 80 %) and is aligned well with agricultural statistics at the 
regional and national levels. Blickensdörfer et al. (2022) classified and 
tested 24 agricultural land cover classes in Germany for the period from 
2017 to 2020, in which the meteorological conditions differed signifi
cantly. Based on the output of that work, binary masks of winter and 
spring crops were created. 

Prior to the analysis, all maps used in this study were re-projected 
and resampled to the reference map. For each sample, we determined 
the SWF types and crop types in adjacent fields. Based on the cropping 
patterns in the study area, we used broad categories of cropland man
agement, i.e. spring crops (maize, oilseed rape, oat and soybean) and 
winter crops (rye, wheat, oilseed rape and winter barley), as well as 
grasslands. 

2.2.4. Distance map 
SWFs are highly scattered throughout various landscapes, causing 

challenges for the selection process. To address this, we selected a 
cluster of SWFs, preferably situated at the centre of each sample (as 
shown in Fig. 2). Notably, in each sample, the group of SWFs is posi
tioned in such a way that, at least in one direction, it remains discon
nected from the next group of SWFs. For instance, in Fig. 2, there are no 
SWFs to the West, East, and South of the group, while a single SWF is 
situated to the North of the group. 

The data is retrieved from the centroid point of each SWF and moved 
pixel by pixel in four primary directions. We excluded pixel values in 
directions where they intersected with another group of SWFs within the 
sample. This decision was made to ensure that we could estimate the 
impact of only one SWF on LST in each direction. We used OpenCV, an 
open-source Python library (Villan, 2019), to process SWF images 
comprising only woody features with a resolution of 5 m and to generate 
a distance map with the same resolution for each sample. In this 
approach, all pixels receive a value based on their distance to the border 
of the nearest SWF, dependent on the position of the SWFs in the sample. 
Pixels located inside the SWFs are assigned a value of zero (see Fig. 2) 
and as one moves away from the SWFs, the pixel values increase, rep
resenting a gradual distance from the SWFs. 

2.3. The warming or cooling impacts of small woody features on land 
surface temperature 

Considering only pixels that were not influenced by any other SWF, 
we used the distance map, the multi-year LST map, the crop rotation 
map (2017 to 2020) and digital elevation model (see Fig. 3) for further 
analysis. Fig. 3 shows an example of the values available from the LST 
map and the crop map for the year 2017 in the westward direction of a 
single SWF in one of the samples. 

Fig. 1. The study area (Landkreis Märkisch-Oderland, a rural district located in the Federal State of Brandenburg, Germany) showing small woody features (green 
pixels) and the selected sample sites (red rectangles). 
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We then set up a dataset for each sampled SWF containing all its 
attributes as defined by Copernicus (2019), e.g. size and type, as well as 
additional attributes obtained from image processing. We defined 
additional attributes to the SWF, including orientation and eccentricity. 
Regarding the aspect of an SWF functioning as a windbreaker, it was 
expected that more details about the shape and orientation of the SWF 
would better explain its cooling effect. Orientation is the angular posi
tion of a reference line from east (0◦) to west (180◦) of an asymmetric 
SWF. In this study, we considered an imaginary east-west line as a 
reference, stretching throughout the woody feature from a reference 
placement to its current placement. 

The eccentricity (ε) of an SWF describes its deviation from a perfect 

circular shape. It is defined as =
̅̅̅̅̅̅̅̅̅̅̅̅

1 − b2

a2

√

, where a and b are semi-minor 
axes and a > b. An ellipse with equal axes has zero eccentricity, and is a 
circle. The more elliptic the SWF is, the greater the value of its eccen
tricity. At the opposite extreme, a value of 1 describes a linear SWF. 

The LST maps for all years had a resolution of 5 m. From a series of 
moving points starting from each centroid point towards different di
rections, points with distance values of less than 25 m were considered 
as the average LST of an SWF (LSTSWF). 

LSTSWF ∼ LST [0 pixel= < distance value< 2 pixels]

There was no significant difference between the LST and their 

Fig. 2. A random sample of SWFs with a resolution of 5 m, consisting of five distinct SWFs, each labelled with a different colour (A). The distance map in [m] 
generated based on the locations of the SWFs in the sample, showing the minimum distance between the SWFs (B). 

Fig. 3. Overview of remote sensing and auxiliary data for a sample small woody feature (SWF; ID: 65). From the centroid point of the SWF (red dot) in the SWF map 
(A), we moved pixel by pixel (red line) towards the west, after having assured that there was no other SWF in this direction. The correlation between distance and LST 
is plotted (B). The values for surface temperature and crop type for each pixel were obtained from the LST map (C) and the crop map (D), respectively. This procedure 
is then repeated in northerly, easterly and southerly directions. 
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gradients of the four cardinal directions. We therefore did not consider 
the individual directional data any further. For the distance from the 
centroid point of the SWF in any direction, we defined four different 
distance zones: Zone 1 – less than 25 m (1 to 5 pixels); Zone 2 – between 
25 m and 50 m (5 to 10 pixels); Zone 3 – between 50 m and 75 m (10 to 
15 pixels); and Zone 4 – between 75 m and 100 m (15 to 20 pixels). We 
further defined Zone 4 as the reference LST (LSTRef), assuming that it 
represents an LST that is not affected by an SWF (see Table 1). For each 
sample, the values of LST at each point were deducted from LSTRef in 
each direction, making sure that there was no overlap with the influ
encing zone of another neighbouring SWF. The difference between two 
temperatures (LSTpoint – LSTRef) is defined as the cooling effect of an 
SWF. 

The length of the distance moving from centroid points towards 
different directions varied for each SWF due to their size and shape, their 
location in the sample, and the sample size. We therefore chose the 
minimum length of 20 pixels (100 m) for all centroid points, and 
preferred samples in which the SWF was positioned centrally. If the sum 
of the differences in LST between each point’s LST and SWF (LSTpoint – 
LSTRef) is negative within 20 pixels, the LST experiences a cooling effect 
due to the SWF, while a positive sum represents a higher LST in the 
vicinity of an SWF, indicating a warming effect. From the database, 
outliers were reduced due to a lack of information on LST in some pixels. 
Table 1 summarises the entire information about the area around the 
SWFs at defined distances. 

To study temperature variation at different distances, we formulated 
a hypothesis based on LST data within 100 m for each pixel in the four 
cardinal directions, with the SWF at the centre. This hypothesis allowed 
us to provide a testable prediction, a critical aspect of our method. In our 
study, the null hypothesis (H0) assumes similarity in LST distributions 
for various distances from the SWF, while the alternative hypothesis 
(Ha) assumes no similarity in LST distribution across distances. Null 
hypothesis significance testing (NHST) was used to test the rejection of 
H0 with a 95 % confidence level (Fisher, 1925). To this end, the datasets 
were uniformly reduced to a size of 1000 samples. First, a Shapiro–Wilk 
test checked for normal data distribution. Then, using an ANOVA across 
all years, Welch’s t-test examined the influence of direction and zone, 
facilitated by Python modules “scipy.stats” and “statsmodels” (Skipper 
and Perktold, 2010). Levene’s test assessed the equality of variances at 
different distances. 

2.4. Machine learning methods 

We used hypothesis testing to investigate any similarity in the 
behaviour of SWFs at different distances. We ran a multilinear regression 
model (MLR) with three other regression models (Extra Trees Regression 
(ETR), Random Forest Regression (RFR) and Gradient Boosting 
Regression (GBR)) to predict the LST of the adjacent field at a short 
distance. All computations for this study were run on Python (version 
3.6.8). 

Multiple linear regression (MLR) is a conventional and widely used 
approach for estimating temperature (Zhang et al., 2019). Recent 
studies have demonstrated that machine learning models are also well 

suited for temperature prediction (Pouyan et al., 2022). In this study, 
both types of models were used to investigate how well the physical 
attributes of SWFs can be used to predict LST in adjacent field. Three 
data-driven algorithms for predicting were introduced in this section. 
These algorithms include extra trees (ET), Random Forest Regression 
(RFR), and Gradient Boosting Regression (GBR). In our study, we used 
the coefficient of determination metrics (R2) and the mean absolute 
error (MAE) as common metrics to evaluate training and validation of 
the model. 

2.4.1. Multilinear regression (MLR) 
In the MLR model, the relationships between a dependent variable 

(LST in different distances from SWF in this study) and two or more 
independent variables (e.g., the proposed 4 physical features of SWF and 
crop types) are established using the linear function. We checked the 
correlation coefficient between each feature and LST, and ranked the 
features from high to low according to the coefficients. 

2.4.2. Random forest regression (RFR) 
As a tree-based ensemble method, it was developed to address the 

shortcomings of traditional Classification and Regression Tree method. 
RFR consists of a large number of weak decision tree learners, which are 
grown in parallel to reduce the bias and variance of the model at the 
same time (Breiman, 2013). For training a random forest, N boot
strapped sample sets are drawn from the original dataset. Each boot
strapped sample is then used to grow an unpruned regression (or 
classification) tree. The most important hyperparameters to tune for the 
RF are n_estimators, max_samples, n_features, and max_depth (see 
Table S1). 

2.4.3. Extra trees regression (ETR) 
The Extra Trees algorithm is a machine learning technique that ex

tends the random forest algorithm. It is designed to reduce overfitting in 
datasets (Geurts et al., 2006). Similar to random forest, Extra Trees 
trains each base estimator with a random subset of features (John et al., 
2016). However, during the process of splitting nodes, Extra Trees se
lects the best feature and its corresponding value randomly. In contrast, 
random forest trains the model using bootstrap replicas. This random
ness in feature and value selection makes Extra Trees less prone to 
overfitting compared to random forest (John et al., 2016). Each 
regression tree in Extra Trees is trained using the entire training dataset 
(for the results of tuning in Table S2). 

2.4.4. Gradient boosting regression (GBR) 
Like any other regression problem, in GBM too we try to find a 

regression function, fb that minimizes the loss function (for example, 
squared error loss) but with a weak learner (for example, regression 
trees) (Kuhn and Johnson, 2013). Regression trees are excellent choice 
for base learners in GBM algorithm because they are easy to prune 
(require only one parameter, tree depth), can be added together to form 
an ensemble and are computationally fast (Ridgeway, 2007). Two tun
ing parameters (tree depth or interaction depth and number of itera
tions) are typically adjusted for model training. 

Table 1 
Summary of data for the area around small woody features (share of data, mean land surface temperature (LST), its standard deviation (SD), minimum LST, and 
elevation in seven distances classes (zones) for four years 2017–2020).  

Zone Distance [m] Share of data [%] Mean LST [ ◦C] SD [K] Min LST [ ◦C] Elevation [m] 

Zone 1 0–25 15.0 36.6 4.5 25.6 33.7 
Zone 2 25–50 14.3 37.4 4.6 25.8 32.7 
Zone 3 50–75 14.1 37.8 4.8 25.8 33.0 
Zone 4 75–100 15.2 38.0 4.9 25.4 33.8 
Zone 5 100–125 14 38.1 5 25.2 33.3 
Zone 6 125–150 13.7 38.1 5.2 25.6 33.7 
Zone 7 150–175 13.7 38.1 5.2 25.4 33.4  
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2.5. The impact of small woody features on land surface temperature at 
different distances 

The values of differences in LST at each distance from the SWF were 
considered for each pixel. In each direction from the SWF, we estimated 
the accumulation of differences in LST values at different distances from 
the SWF using rolling linear regression models, with a fixed window of 
time over the entire dataset. Given the length limitation of the obser
vations for each direction (20 pixels), we considered a minimum length 
of 6 pixels to obtain larger parameter estimates. These accumulation 
values were later considered at 25 m, 50 m, 75 m and 100 m, and their 
values represent the impacts of the SWF at those distances. If the 
gradient of LST in Zone 4 as a reference point towards the SWF is 
negative, it implies that the cooling effect of the SWF gets stronger to
wards the SWF. Conversely, a positive value means that LST gets warmer 
when approaching the SWF. 

3. Results 

3.1. Overall changes in land surface temperature for different distances to 
small woody features 

The values of SWF generated as described in Section 2.3 were 
organised in a dataset. Statistical tests for normality (Shapiro and Wilk, 
1965) were applied to check if the values from each sample have a 
normal distribution in different directions and at different distances. 
Furthermore, violin plots (Fig. 4) show the distribution of LSTs in the 
four distance zones for each individual year. The year 2018, an 
extraordinarily warm summer in Germany, produced the highest LST 
(40.5 ◦C) and the largest amplitudes (24.3 K). The absolute LST 
increased from the centre of the SWFs outwards, at different tempera
ture levels each year, but always with a similar gradient. On average, the 
LST in Zone 2 was +0.8 K higher than the LST in Zone 1, followed by 
Zone 3 (+1.5 K) and Zone 4 (+1.8 K). 

Table 2, showing the average LST for all zones, illustrates an increase 
in the values of surface temperature by changing zones and moving 
towards Zone 4, where LST was considered the reference point. This 
table clearly demonstrates that the differences in LST between Zone 4 
and the other zones were higher in Zones 1 and 2 than in Zone 3. 

Bold figures in Table 2 shows where the null hypothesis (H0) was 
rejected based on the result of the t-test, which suggests that there is a 
significant difference between the LST in Zone 1 and that in other zones. 
For Zones 3 and 4, H0 was rejected in all years; for Zone 2, it was sig
nificant only for the year 2017. 

The temperature difference between each point and the reference 
points outside the SWF in Zone 4 indicates whether or not we are 
experiencing a cooling effect at that point. In the case of a cooling effect, 
this difference is negative. Across our region, the average yearly 

temperature differences in the four defined distance zones (0–25 m, 
25–50 m, 50–75 m and 75–100 m) were –1.0, –0.7, –0.2 and 0.0 ◦C, 
respectively. 77.6 % of differences in LST experienced a higher LST 
when moving away from the SWF, while 22.4 % of the adjacent fields 
had a lower LST than the nearest SWF. 

3.2. Variations of the impact of crop types on land surface temperature 

Based on the crop categories defined in Section 2.2.3, the order of 
dominant cultivated crops in the fields where a warming effect was 
observed was: winter crops (9.6 %), followed by grassland (5.4 %) and 
spring crops, mainly maize (6.2 %). In cases where a cooling effect was 
observed, winter crops (55.2 %) and then spring crops (8.7 %) had the 
highest percentages of land cover, and had a higher LST than the SWF of 
2.2 K and 1.9 K, respectively, on average. Grasslands with a land cover 
percentage of (12.2 %) had a 1.9 K higher LST than the SWF on average. 
In this region, maize represents about 79 % of the category of spring 
crops, and its LST was 0.3 K higher than that of the other spring crops in 
this category (for more details, see Figure S2 in the supplementary 
material). 

In the case of a warming effect, grasslands (3 K) and then spring 
crops (1.3 K) experienced a higher LST than their reference points in our 
samples. However, fields with winter crops experienced the highest 
cooling effect (–2.2 K), followed by fields with both winter and spring 
crops (–1.9 K). During this period of the year, only very little land (0.1 
%) was cultivated with all of the crop types under consideration (spring 
and winter crops, and grassland), but those fields experienced a –1.5 K 
cooling effect on average. 

3.3. Prediction of land surface temperature around small woody features 

The methodologies utilized in this study necessitate a certain level of 
hyperparameter customization within the model framework. Hyper
parameters were chosen independently for each utilization of the ma
chine learning models. For the majority of hyperparameters, we stuck 
with the default values provided by the package. It’s worth noting that 
the performance of GBR, RFR, and ETR did not display significant 
sensitivity to hyperparameter tuning. As a result, we primarily adhered 

Fig. 4. The distribution of land surface temperature (LST) across four different distances (0–25 m, 25–50 m, 50–75 m and 75–100 m) during the warm period (June, 
July and August) of the individual years 2017, 2018, 2019 and 2020. 

Table 2 
The average absolute land surface temperature (LST) for each zone in four 
consecutive years (2017–2020) in [ ◦C].   

2017 2018 2019 2020 

Zone Mean SD Mean SD Mean SD Mean SD 

Zone 1 32.7 2.1 40.9 3.4 37.3 2.8 39.3 2.9 
Zone 2 33.6 2.2 41.8 3.5 38.2 2.8 40.1 3.0 
Zone 3 34.2 2.3 42.5 3.6 38.8 2.9 40.8 2.9 
Zone 4 34.5 2.3 42.8 3.7 39.1 3.0 41.2 2.9  
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to the default values (see the Tables S1–3 for more details in supple
mentary materials). 

Fig. 5 summarizes all the characteristics based on the eccentricity 
and orientation that were considered in this study, together with the 
SWF’s size. The average eccentricity of SWFs was 0.8. However, 73 % of 
SWFs had an eccentricity greater than 0.8, and in 27 %, it was less than 
0.5. Regarding the size of SWFs, 85 % of them were smaller than 0.5 
hectares. All SWFs exhibited nearly equal distribution of orientation 
across three distinct groups (0◦− 40◦, 50◦− 130◦, and 150◦− 175◦), with 
an average orientation of 96.6◦ (Fig. 5). 

At this point, the physical attributes of SWFs, area, orientation and 

eccentricity, along with the LST of the SWF and crop types in the fields 
next to the SWF were used as input for the regression models to predict 
the LST of the adjacent field in different zones. Regarding the four zones 
defined in the study, we followed two approaches to predict the LST of 
each zone. In the first approach, we predicted the LST of all zones based 
on the relevant LST of the SWF and the information available on the 
fields adjacent to the SWF. In the second approach, instead of using the 
LST of the SWF, we used as input data the LST of the next closest zone to 
the SWF. The coefficient of determination metrics (R2) and the mean 
absolute error (MAE) were used to evaluate the performance of the 
models in a regression analysis. The results of all metrics for both 

Fig. 5. The densities and distributions LST− LSTSWF ( ◦C) and the attributes of SWFs (A: area, B: orientation, and C: eccentricity) for all samples.  

F. Ghafarian et al.                                                                                                                                                                                                                              



Agricultural and Forest Meteorology 349 (2024) 109949

8

approaches are presented in Tables 3 and 4. 
In the first approach where we considered LSTSWF to predict the LST 

of other zones, we observed no significant changes in R2, but there was a 
particular increase in MAE in another metric (on average 33 % higher 
from Zone 1 to Zone 2 and 14 % from Zone 2 to Zone 3, respectively). 
This increase was even higher after 2018 and in the following years. In 
the second approach, this pattern was reversed: in the model to predict 
the LST of Zone 4, MAE declined specifically (on average, MAE was 27 % 
lower in Zone 2 than in Zone 1 and 38 % lower in Zone 4 than in Zone 3). 

Multiple linear regression equations to predict LST in different zones 

are used in combination with the following formulae containing six 
different independent variables (the temperature, orientation, eccen
tricity, size and direction of the SWF, and the current crop types grown 
in the field), with one regression coefficient for each independent vari
able. 

Y = β0 + β1X1 + β2X2 + … + βnXn (1) 

To predict LST at different distances, we analysed the coefficients of 
the MLR model, which indicated the highest positive response (1 ±
0.05) of LSTSWF and the lowest response to the size of the SWF in both 

Table 3 
Results of the regression models using LSTSWF as input for regression models to predict LST in different zones (Approach 1).    

2017 2018 2019 2020 

R2 MAE R2 MAE R2 MAE R2 MAE 

LSTZone2 ETR 0.92 0.51 0.95 0.57 0.93 0.58 0.95 0.54 
GBR 0.92 0.57 0.95 0.60 0.92 0.62 0.94 0.57 
RFR 0.92 0.56 0.95 0.58 0.92 0.63 0.94 0.57 
Linear 0.92 0.54 0.95 0.61 0.93 0.61 0.94 0.60 

LSTZone3 ETR 0.87 0.68 0.92 0.81 0.83 0.97 0.87 0.83 
GBR 0.87 0.74 0.91 0.87 0.78 1.08 0.87 0.84 
RFR 0.87 0.73 0.91 0.87 0.81 1.04 0.86 0.86 
Linear 0.86 0.78 0.89 0.94 0.82 1.03 0.87 0.92 

LSTZone4 ETR 0.84 0.77 0.93 0.84 0.75 1.20 0.86 1.01 
GBR 0.84 0.85 0.92 1.00 0.76 1.23 0.85 1.10 
RFR 0.83 0.83 0.92 0.92 0.75 1.23 0.86 1.03 
Linear 0.79 0.96 0.91 0.93 0.80 1.21 0.82 1.24  

Table 4 
Results of the regression models using the land surface temperature of each zone (LSTZone) as input for regression models to predict the land surface temperature of the 
next furthest zone (Approach 2).    

2017 2018 2019 2020   

R2 MAE R2 MAE R2 MAE R2 MAE 

LSTZone2 ETR 0.92 0.51 0.95 0.57 0.93 0.58 0.95 0.54 
GBR 0.92 0.57 0.95 0.60 0.92 0.62 0.94 0.57 
RFR 0.92 0.56 0.95 0.58 0.92 0.63 0.94 0.57 
Linear 0.92 0.54 0.95 0.61 0.93 0.61 0.94 0.60 

LSTZone3 ETR 0.94 0.39 0.97 0.41 0.90 0.63 0.96 0.42 
GBR 0.95 0.39 0.98 0.41 0.91 0.60 0.96 0.44 
RFR 0.96 0.38 0.97 0.47 0.91 0.61 0.96 0.47 
Linear 0.96 0.38 0.97 0.45 0.92 0.54 0.95 0.46 

LSTZone4 ETR 0.98 0.25 0.99 0.36 0.98 0.33 0.98 0.37 
GBR 0.98 0.30 0.99 0.37 0.98 0.36 0.98 0.44 
RFR 0.97 0.32 0.99 0.37 0.98 0.33 0.98 0.40 
Linear 0.98 0.27 0.99 0.30 0.98 0.32 0.98 0.40  

Fig. 6. The average coefficient of all independent variables (attributes of SWFs) of the multilinear regression model for both approaches.  
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approaches (see Fig. 6). Eccentricity is the second-most important 
attribute that influenced the prediction of LST (an average of –0.10). Its 
coefficient was positive in 2017 (an average of +0.10), but became 
negative from 2018 onwards (an average of –0.25). The coefficients of 
crop types averaged at 0.07, differing in all years. In 2017, crops had the 
lowest impact on LST (an average of 0.01), but this value increased in 
the following years (0.05, 0.1 and 0.1, respectively). The directions of 
the SWF responded differently each year. In 2018 and 2019, the co
efficients of the direction were high (an average of 0.06), and were lower 
in 2017 and 2020 (an average of 0.02 and –0.03, respectively) (see 
Table S4, 5 in the supplementary materials). 

This analysis was also amended for two machine learning (ML) 
models (GBR and RFR) by applying a SHapley Additive explanation to 
show the interaction effect of variables and individualised feature at
tributions for all years (Fig. 7). In 60 % of cases, the results of the 
summary plots of GBR and RFR showed that the order of influence was 
LSTSWF, size, eccentricity, orientation, crop types, and direction in both 

approaches. In some cases, the direction of the SWF had a greater impact 
than crop types. 

4. Discussion 

The results indicate that the physical attributes of SWF affect the 
magnitude of the LST of adjacent fields. By explicitly describing the 
quantitative relationships of LST with the configuration of the SWF, this 
research expands our scientific knowledge of the effects of SWF patterns 
on LST in agricultural landscapes. 

4.1. The impacts of crop types in the field on land surface temperature 

The average LST in adjacent fields at different distances from the 
SWF depends on the types of crops grown, as well as their growth stages. 
In the region under investigation, 64.8 % of the fields contained winter 
crops. The photosynthetic activity of the winter crops declined in July, 

Fig. 7. SHAP summary plot with positive and negative relationships of predictors with the target variable, showing six features for the warm period (June, July and 
August) of years 2017 to 2020. LSTSWF is used as input to predict the temperature in Zone 2. (A) Summary plot of Gradient Boosting Regression (GBR) and (B) 
summary plot of Random Forest Regression (RFR). 
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as did transpiration, which cools the surface of the crop. In August, 
almost all of the crops had senesced. Consequently, fields containing 
winter crops during this period experienced a higher LST than the 
adjacent SWF because cooling through transpiration had ceased for 
crops, whereas the SWF, featuring deeper permanent roots, may still 
have transpired water from deeper soil layers. 

Conversely, spring crops – the minor subject of this study (14.8 %) – 
experienced their developed and mid-stage growth mainly in June and 
July. 80 % of the spring crops were maize; compared to other crops in 
this category, these crops had a 2.1 ◦C higher LST than the next SWF. 
Maize has a longer growth cycle, which begins in May and ends after 
August. In June and July, therefore, maize is in its most active devel
opment stages, with maximum photosynthesis and transpiration rates. 
Land used as grassland, with 17.6 % land coverage of the fields, also 
experienced a higher LST than the SWF in most cases. In 5.4 % of the 
grassland, LST was lower than the SWF, which could be due to the 
implementation of extensive grassland management or to geographical 
conditions. This type of land use in Brandenburg is mainly found in low- 
elevation areas close to groundwater with a favourable water balance, 
and to a lesser extent in sandy and loamy upland soils (Kaiser et al., 
2010). 

Fields with both winter and spring crop types had a lower LST than 
the SWF compared with each of these individual crop types. This could 
be explained by the overlapping of their growing stages, leading to a 
vegetation cover on the surface throughout the warming period. 
Tree–soil–crop interactions in agroforestry systems are a complex 
mixture of positive and negative effects both above and also below 
ground (Kho et al., 2001). Another factor to take into account is the scale 
of the data we are dealing with, which is regional. This can potentially 
lead to disparities between field-level observations and regional-scale 
data (Good et al., 2017). In our analysis, we are focusing on tempera
ture derived from satellite imagery, however, it’s important to note that 
measurements taken beneath the canopy may reveal lower tempera
tures, primarily influenced by factors like solar radiation and surface 
conditions. Types of crops and field management could increase or 
decrease the potential impacts of SWFs on LST. This needs to be inves
tigated more specifically on a regional scale, using more data on the 
types of cultivated crops and soil water content. 

4.2. Evaluation of the different regression methods to predict land surface 
temperature at different distances 

Our results demonstrate that the surface temperature of an individ
ual SWF is the most important attribute for predicting LST at different 
distances compared to the other physical attributes of SWFs. This factor 
also reflects morphological features of SWFs (e.g. compactness and 
height of tree canopies), which could reduce the transmission of solar 
radiation to the understorey (Bonan, 2016). In addition, tree height is 
potentially coupled with the canopy effect in SWFs and the provisioning 
of overstorey cover (Vanneste, et al., 2020). Depending on the orienta
tion of the tree, its height plays a relevant role in the gradient of the LST 
at a close distance to the SWF (Montgomery et al., 2020). The results of 
the statistical analysis indicated that the LST in Zones 1 and 2 experi
enced similar LST distributions, while from Zone 3 onwards the effect of 
the SWF becomes smaller. This testifies to evidence that temperature has 
an effective impact up to 50 metres from the SWF. 

In both of the approaches applied, the area covered by an SWF made 
a major contribution to the prediction of LSTs using machine learning 
methods. This fact was also confirmed in the statistical analysis of fields 
to the south of the SWF, with almost double the area experiencing a 
lower LST on this side and the highest LST gradient. This means that the 
larger area was able to increase the positive impacts of the SWF on 
adjacent fields. However, this feature had the lowest positive impact on 
the MLR. This fact may lead us to consider other physical attributes of 
SWFs that could play a larger role, especially in small fields, which have 
a limited potential to devote land to extending or adding an SWF, 

mitigating excess heat. 
It is important to consider also the limitation of LST data used in the 

study. The Landsat LST data frequency can often be affected by clouds, 
which can significantly impact the availability of the data (Weng and Fu, 
2014). Furthermore, this availability ranges from year to year, adding 
additional challenge to the assessment and transferability from one year 
to another. Nevertheless, creating composites (Weng and Fu, 2014; Hu 
et al., 2020) has been an accepted solution for building continuous data 
that can be further used as an input to ML models, which has been 
effective solution in our study as well. The incorporation of additional 
thermal data can further increase density of time series (Anderson et al., 
2021). Another challenge for the analysis is the spatial resolution of the 
LST data as it can also limit the assessment of any small-scale impact of 
SWFs on LST. Future research could benefit from integrating 
high-resolution data, for instance, thermal imagery obtained from un
occupied aerial vehicles (UAVs). Despite certain limitations, our current 
study demonstrates the effectiveness of using Landsat-derived LST data 
for regional-scale analysis. 

4.3. The effect of the eccentricity and orientation of small woody features 

In both approaches, eccentricity of the SWF had the highest impact in 
the hottest year. The high values of eccentricity in this study refer to the 
more elliptic, which this range of value contributed positively to the 
model prediction. Eccentricity in the majority of the SWFs in our study 
ranged between 0.6 and 0.8. This means that the dataset mainly 
included linear SWF, and a few circular patchy woody features. Also this 
feature reflects the impact it has on the penetration of sunlight direction, 
and the wind speed and direction, which was ranked as a highly 
important feature in both the MLR and ML models. The analysis of 
Shapley values has revealed a negative impact of eccentricity on LST, 
suggesting that linear-shaped SWFs with higher eccentricity values have 
a more favourable influence. This finding implies that linear SWFs 
configuration to the field tend to have a more beneficial effect on LST 
compared to patchy ones. Hence, field management practices should 
consider this shape aspect to optimize their influence on LST and other 
related factors. 

Orientation of the SWF – had no impact on MLR. In contrast, it was 
ranked as an important feature of ML methods and according to the 
Shapley value analysis (refer to Fig. 7), it indicates a positive impact of 
the SWF on LST. Considering both the average orientation of the SWF 
and the Shapley value, the effective orientation of the SWF in this region 
lies within the northwest to southeast range, specifically between 100 
and 180◦ The study by Donat et al., 2023 in a field-scale study in 
Brandenburg approves that the north-south orientation of tree rows in 
integrated in cropping systems (agroforestry) significantly impacts 
efficient field management, including cultivation direction, wind and 
water erosion, and shading. 

In MLR, the size of SWF did not show any significant influence, but in 
both ML models, it ranked second in importance, which is not surprising, 
as larger SWFs can have a stronger effect. On the other hand, when 
examining the direction of SWF refer to the side where LST was selected 
and the crop types, ML methods displayed low influence, while MLR 
exhibited high influence. Notably, the impact of both attributes 
increased in 2018 and 2019, which were two years with higher average 
LST during the warm period. Considering this study is not a control field 
experience, all outcomes can be attributed to the prevailing topo
graphical and ecological conditions in the region. 

Sodoudi et al. (2018) in their study demonstrated how the consid
eration of the shape and orientation of green spaces produced a strong 
cooling effect and improved the microclimate. They found the optimal 
orientation occurs by considering it to be parallel to the prevailing wind. 
Unfortunately, a high-resolution map of wind speed and direction was 
not available at the regional scale to provide useful information for 
better field management decisions. The study by Sanusi et al. (2016) also 
confirmed the role of street orientation on microclimatic benefits by 
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influencing the duration and timing of solar radiation interception ac
cording to the sun’s zenith. They suggested that the higher percentage of 
tree canopy could improve thermal comfort rather than the lower per
centage of canopy cover (Pearlmutter et al., 2007). This information was 
defined in Copernicus (2019) as the compactness criterion, which in this 
study was mainly less or equal to 0.75. However, the outcomes of our 
study support the assumption that the implementation of SWF in the 
agricultural landscape or agroforestry is a promising approach to 
increasing the resilience of agricultural land against the growing 
occurrence of heat waves. 

While we acknowledge the shortcomings of our study (a lack of in
formation on agricultural management and soil properties, data from 
only one point in time during the day, and neglect of the effect of the 
sun’s zenith), still these results have the potential to be used for decision- 
making on the rearrangement of SWFs within a landscape to optimize 
the field climate. Furthermore, the method we employed utilizes pub
licly available data, making it applicable in various regions with 
different topography. This broadens the potential for practical applica
tion and impact in diverse geographical settings. 

5. Conclusion 

In this study, we successfully quantified the impact of SWFs on LST in 
an agricultural area at the mesoscale. This method is applicable wher
ever the necessary data are available and accessible and provide insights 
for decision-makers in regional scale. We showed that a possible cooling 
effect of an SWF on adjacent fields manifests mainly in the short distance 
between 1 m and 50 m, and usually fades out beyond 75 m. The physical 
attributes of SWFs, such as eccentricity and orientation, can amplify this 
effect. In the case of eccentricity, a more elliptical shape has a greater 
impact. We assume that access to additional information on agricultural 
management (e.g. irrigation practices and crop rotation) would further 
improve the model performance. Confirmation of this hypothesis is still 
pending. 

The analysis of SWFs at different distances suggests that if the LST of 
a relatively flat landscape in central Europe is to be regulated by 
planting additional trees, a significant cooling effect can be expected if 
trees are planted at distances less than 75 m. This supports the 
assumption that the implementation of agroforestry is a promising 
approach to increasing the resilience of agricultural land against the 
growing occurrence of heat waves. Aligned with the European Union’s 
new common agricultural policy (CAP) and its focus on ’eco-schemes’, 
decision-makers at both field and regional levels can utilize this infor
mation to improve the efficiency of agroforestry implementation. The 
methodology presented in this study offers the advantage of being 
reproducible and addresses a scale that is seldom investigated, thereby 
providing valuable insight for decision-makers to protect their crops 
against damages from extreme temperatures during summer. 
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