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A B S T R A C T

CONTEXT: The transition to digital agriculture is likely to lead to systemic changes that will affect production,
consumption, governance, and the wider environment of agricultural systems. Nevertheless, the absence of
sufficient evidence and ambiguities in perspectives create an ongoing lack of clarity regarding the potential
impacts of digital agriculture. Therefore, to discern potential impacts while addressing system complexities,
uncertainties, as well as normative aspects associated with this transition, future-oriented and participatory
assessments are needed that actively involve diverse knowledge and values of affected stakeholders.
OBJECTIVE: This research aims to explore the impacts and processes of agricultural digitalization according to
stakeholders. The objectives are to identify key areas of impact that digital agriculture is likely to influence,
identify and explore the causal pathways linking digital agriculture to impacts, and quantitatively examine the
uncertainties of stakeholder perceptions associated with these impacts and causal pathways.
METHODS: Through a participatory modelling procedure, diverse stakeholders from the German region of
Brandenburg constructed a Bayesian Belief Network (BBN). The BBN facilitated the identification of the main
impacts of digital agriculture and allowed for the modelling of uncertainties associated with these impacts.
RESULTS AND CONCLUSIONS: Stakeholders perceived several socioeconomic advantages of digitalization,
particularly in terms of bolstering economic stability through improved risk management and enhanced resource
use efficiency, validating existing claims in the literature. The perception seems to be influenced by highly
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variable yields and market uncertainties, as well as shortages in labour in the region. On the other hand, there
was significant uncertainty among stakeholders concerning landscape diversification and its impact on biodi-
versity. This uncertainty arises from the potential profitability of cultivating marginal land under heightened
digitalization-induced efficiency, posing a risk of diminishing natural habitat and landscape heterogeneity. Local
historical trends toward landscape simplification as result of technology-driven efficiency improvements may be
a cause for this perception.
SIGNIFICANCE: This study contributes to a growing body of future-oriented research assessing the impacts of
digital agriculture through engaging stakeholder knowledge and values. While there is theoretical potential for
digitalization to enhance biodiversity, realizing such positive impacts is improbable without improved
communication and policy incentives, given the historical trend of efficiency-driven pathways. This study in-
troduces a novel approach to assessing the impacts of agricultural digitalization through the application of a
participatory Bayesian belief network.

1. Introduction

Digital agriculture, which is expected to transform agricultural sys-
tems in the coming years, is a form of managing and optimizing agri-
cultural production and supply chains using data-driven techniques and
precision farming technologies (Ingram et al., 2022; Klerkx et al., 2019).
Often referred to as the fourth agricultural revolution (Rose and Chil-
vers, 2018), this approach represents a significant shift from traditional
‘analogue’ farming to a system that harnesses real-time and site-specific
data, big data analytics, automated decision making and interconnected
intelligent systems (Wolfert et al., 2017). Used for tasks such as moni-
toring, production and communication, key technologies employed in
digital agriculture include Unmanned Aerial Vehicles (UAVs), in-situ
sensors, satellite images, robotics, digital twins, artificial intelligence,
cloud computing, Internet of Things (IoT), decision support software,
Variable Rate Technologies (VRT), and GPS guidance systems, among
others.

Taken together, the application of digital technologies and processes
is expected to increase agricultural efficiency, productivity, and profit-
ability (Shepherd et al., 2020; Basso and Antle, 2020). This is currently
the dominant narrative embedded in agricultural policy (MacPherson
et al., 2022; Lajoie-O'Malley et al., 2020) as well as a key selling point in
media (Barrett and Rose, 2022) and related industries (Clapp and Ruder,
2020). However, limited adoption indicate that farmers may not yet be
completely convinced by this proposition (Barnes et al., 2019a; Groher
et al., 2020; Kernecker et al., 2020) and that digital agriculture may not
deliver on the hype (Thompson et al., 2019; Knierim et al., 2019; East-
wood and Renwick, 2020; McGrath et al., 2023).

With the exception of GPS-assisted tractors and farm management
information software, the implementation of more complex digital ap-
plications remains limited in European farming (Lowenberg-DeBoer and
Erickson, 2019; Balafoutis et al., 2020), and varies significantly by re-
gion (Barnes et al., 2019a). Adoption barriers of precision and digital
technologies have been attributed to high initial investment costs
(Barnes et al., 2019a), lack of operating skills (Klerkx and Rose, 2020),
insufficient infrastructure and access to broadband internet in rural
areas (Paustian and Theuvsen, 2017; Da Silveira et al., 2023), as well as
lack of trust among farmers due to issues of data sovereignty and privacy
(Jakku et al., 2019). These barriers do not appear to be insurmountable
in the long term as training networks are emerging (in the EU: SFATE -
Smart Farm Training for Employment and Digital Innovation Hubs),
high-speed internet access is becoming a global reality (e.g. via Star-
link), and agri-digital legal frameworks are beginning to take shape
(Härtel, 2021). Moreover, new market models that allow farmers to rent
or lease agricultural robots means that these technologies are becoming
more accessible (Gil et al., 2023), not to mention the substantial growth
in recent years of business ventures and investments in digital agricul-
ture should continue to improve the affordability of related technologies
in the future (Birner et al., 2021).

If digital agricultural technologies are adopted and how they are
instrumentalized depends heavily on the collective and shared percep-
tions of stakeholders as well as how they perceive their value (Moteiro

Moretti et al. 2023), which is subject to dynamic change (Kaplan and
Tripsas, 2008). Therefore, to secure technological improvements into
current and future socio-economic and environmental contexts, an
emphasis has been placed on iterative involvement of stakeholders in
decision-making processes (Reed, 2008). This sentiment has been
echoed by others who underlined the need for greater societal inclusion
and user-centred design in the development and implementation of
digital agriculture technologies (Eastwood et al., 2022). Stakeholder
inclusion is seen as also necessary at higher levels to set goals and
develop indicators to measure progress toward sustainability (Basso and
Antle, 2020), as well as reflect on the potentially disruptive impacts of
innovative digital technologies (Rose and Chilvers, 2018; Eastwood
et al., 2021). Further, involving stakeholders in research will be crucial
toward gaining their trust for digital technologies in the future, jointly
mitigating adverse impacts and promoting acceptance of digital agri-
culture solutions (Jakku et al., 2019).

Society is at a crucial turning point in terms of directing digital
agriculture toward alignment with principles of social responsibility and
sustainability (Lioutas et al., 2021). However, due to the ambiguity in
perceptions of different stakeholders (Knierim et al., 2019; Regan, 2019;
Monteiro et al., 2023), uncertainty surrounding the impacts of digitali-
zation is pervasive, which means a core challenge is articulating a
conceptualization of digital agriculture – including a vision for its future
- that is consensual. This requires not only accounting for potential
positive and negative impacts of digital agriculture through participa-
tion by societal actors but also carefully addressing the uncertainties
within those varying perceptions.

To address uncertainties and to ensure that digital agriculture con-
tributes to societal well-being and sustainability, many scholars have
embraced the Responsible Research and Innovation approach (RRI)
(Eastwood et al., 2019; Rijswijk et al., 2021; Klerkx and Rose, 2020). The
RRI approach is guided by four main principles: anticipation, inclusion,
reflexivity, and responsiveness (Stilgoe et al., 2013), aiming to inform
research design, facilitate anticipation and reflection on both intended
and unintended consequences of innovations, and collaboratively design
solutions to minimize risks and maximize opportunities. Recently there
has been an increase in empirical studies assessing digital agriculture
through the lens of the RRI framework. For example, Zscheischler et al.
(2022) investigated the perceptions of agricultural digitalization with a
group of stakeholders in Germany, illuminating risks related data
ownership and power dynamics, as well as the effects of automation on
farmers' decision-making capacities. Fleming et al. (2021) employed
participatory scenario building to reflect on probable futures of digital
agriculture in the Australian context, underlining the importance of
improved connectivity and infrastructure as well as training and advi-
sory services to overcome concerns related to equity and distribution of
benefits arising from a digital transformation. Examining 21 Living Labs
across Europe, Metta et al. (2022) identified several effects of digitali-
zation, pointing out trade-offs between enhancing existing processes (e.
g., efficiency gains) and enabling new ones (e.g., site-specific monitoring
and control). However, they also noted the potential for rebound effects
(e.g., increased material use) and the disruption of traditional practices
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and organizations (e.g., displacement of workers due to automation).
Regan (2019) interviewed key governance actors in Ireland, drawing
attention to concerns about public aversion to digital technologies, data
ownership and sharing, as well as changing farmer identities and
isolation from farming activities via automation. Reichelt and Nettle
(2023) demonstrated the importance of implementing procedures based
on inclusion and reflexivity to highlight different adoption logics and
develop responsible adoption strategies at early stages of development.
Other forward-looking empirical studies have focused on the implica-
tions of digital agriculture on changing roles in agri-environmental
governance at the EU level (Ehlers et al., 2022) as well as comparing
media, policy and practitioner narratives in the UK (Barrett and Rose,
2022).

What these studies underline is the importance of utilizing partici-
patory approaches that engage stakeholders' perspectives in anticipating
and reflecting on systemic impacts, both positive and negative, of agri-
cultural digitalization (Klerkx and Rose, 2020). However, a research gap
exists where the perceptions of stakeholders and associated un-
certainties regarding agricultural digitalization have been quantitatively
modelled.

In this light, our study asks the following research question: What are
the expected impacts of digital agriculture according to stakeholders
from an arable farming region characterized by high mechanization and
high affinity to digital agriculture? To answer this question, the current
study aims to fulfil three main objectives: i) identify the key areas of
impact that digital agriculture is likely to influence by 2031; ii) identify
and explore the causal pathways linking digital agriculture to impacts;
and, iii) examine, quantitatively, the uncertainties of stakeholder per-
ceptions associated with these impacts and causal pathways.

To these ends, we employ a participatory modelling approach to
construct a Bayesian Belief Network (BBN) in collaboration with mul-
tiple groups of stakeholders from the German federal state of Branden-
burg. As BBN models are widely acknowledged for their ability to
integrate knowledge from diverse domains and transparently address
uncertainty of causation via probability estimates (Voinov and Bous-
quet, 2010), they offer a suitable yet novel approach for assessing the
complexities and unknowns of agricultural digitalization with
stakeholders.

The results of this study illuminate risks and opportunities of digital
agriculture by tapping into stakeholder knowledge, thereby contributing
to sustainable and societally responsible innovation. In addition, the
study contributes methodological insights on how to address uncertainty
of stakeholders' perspectives in impact assessment more directly using a
BBN. The participatory modelling process and the resulting BBN pro-
vided a conduit for constructive discussion and learning between diverse
stakeholders, while to the greatest possible extent mitigating overly
emotional and less objective debates. Last, the findings reveal patterns of
thought of various stakeholder groups regarding digitalization, drawing
attention to societal concerns for researchers and policymakers in the
region.

2. Background

2.1. Digital agriculture: what is it in practice?

Agricultural digitalization is a growing trend that includes concepts
like Precision Farming, Smart Farming, Agriculture 4.0 and Digital
Agriculture, which are often used interchangeably (Klerkx et al., 2019).
This general domain encompasses a wide range of technologies that can
be considered part of the digital toolbox, many of which focus on
improving the efficiency of on-farm input use. In crop production, for
example, in-situ sensors provide real-time data on soil health and crop
conditions, helping farmers make decisions about input (i.e. fertilizers,
pesticides and water) optimization (Pedersen and Lind, 2017; Wolfert
et al., 2017), while remote sensing technologies like satellites and
drones provide similar information over larger areas (Gao et al., 2020).

Artificial Intelligence (AI) and machine learning algorithms are used to
analyse large datasets, aiding in crop monitoring and yield prediction,
which enables strategic planning and resource allocation (Wolfert et al.,
2017). Variable Rate Technologies (VRT) utilize data from sensors to
adjust inputs based on soil and crop variations, significantly boosting
resource efficiency (Finger et al., 2019; Späti et al., 2021). GPS tech-
nology enables precise field mapping and vehicle guidance to reduce
overlap of planting, spraying, and harvestings thereby minimizing input
wastage (Fielke et al., 2019; Godoy et al., 2012).

More recently, although mostly confined to research and develop-
ment, agricultural digitalization has expanded to include the deploy-
ment of AI-assisted robots that work autonomously on activities
including weeding, planting and harvesting. It has been proposed that
such field robots could work in fleets, offering scalability and efficiency
previously unattainable with traditional labour (Sparrow and Howard,
2021; Spykman et al., 2021; Lowenberg-DeBoer et al., 2020). Utilizing
data gathered from various sources, computer software like Farm
Management Information Systems (FMIS), integrate data analytics and
modelling techniques to manage agricultural enterprises and provide
farmers with comprehensive decision support on complex tasks, such as
crop management, irrigation scheduling, fertilizer application, and risk
assessment (Tummers et al., 2019; Melzer et al., 2023). These devices
are connected through the internet, also known as the Internet of Things
(IoT), allowing them to gather and communicate data among them-
selves, thereby streamlining operations and enhancing productivity.
Technologies such as blockchain and Radio-Frequency Identification
(RFID), combined with IoT devices, enable real-time tracking of prod-
ucts, providing detailed information on product origin, handling, and
quality throughout the supply chain (Kamilaris et al., 2017).

Last, and no less important, mobile phone apps have become ubiq-
uitous, providing farmers with information on aspects such as crop
protection, crop selection, weather forecasts, market prices and entry
points, e-learning, communication with other farmers and consumers, as
well as promoting citizen science (Daum et al., 2018; Dehnen-Schmutz
et al., 2016).

2.2. Digital agriculture: systemic impacts

Beyond efficiency and productivity objectives, digital agriculture
offers additional benefits, such as helping to meet increasing food de-
mands, supporting rural livelihoods, and achieving sustainability goals
(Wolfert et al., 2017; Finger et al., 2019; MacPherson et al., 2022;
Garske et al., 2021). For example, more efficient use of inputs such as
pesticides and fertilizers will help to reduce runoff and pollution in the
environment (Balafoutis et al., 2017; Finger, 2023; Balasundram et al.,
2023). Digital tools can also support the redesign of agricultural fields
and landscapes by promoting smaller-scale structures, diversification,
and the integration of agroecological principles, which enhance
ecosystem service supply (Finger, 2023; Donat et al., 2022; Mouratiadou
et al., 2023).

From a larger, agri-food system perspective, digital technologies can
enhance information exchange among suppliers, producers, consumers,
and governments within agri-food value chains (Poppe et al., 2013).
Increased traceability has significant benefits for monitoring food safety,
reducing food waste, ensuring regulatory compliance and capturing
additional value for farmers (Yu et al., 2022; Weersink et al., 2018;
Finger, 2023), while at the same time engaging consumers more deeply
with their food and how it is produced (Regan, 2019), thereby
empowering them in their food choices (Voglhuber-Slavinsky et al.,
2023). The effectiveness of agri-environmental governance also stands
to benefit from digital agriculture and big-data to craft targeted, site-
specific environmental policies (Ehlers et al., 2021).

On the other hand, digital agriculture may have significant impli-
cations for socio-economic structures. An increased reliance on digital
tools may distance farmers from the hands-on aspects of their work,
contributing to “de-skilling”, where traditional knowledge is lost or

J. MacPherson et al. Agricultural Systems 224 (2025) 104222 

3 



replaced, while simultaneously leading to a sense of isolation of farmers
from their fields and animals (Rotz et al., 2019b; Carolan, 2020; Rose
et al., 2021). Although digitalization can simplify certain tasks, allevi-
ating both physical and mental strain, the financial burden of acquiring
such technologies, along with the learning curve required to operate
them, may introduce additional stress (McGrath et al., 2023). Concerns
have also been raised that digital agriculture could also lead to a form of
digital Taylorism, potentially reducing worker autonomy and turning
their tasks into highly monitored, repetitive work processes, which may
undermine job satisfaction and working conditions (Prause, 2021).

Another major issue involves the governance and management of
data. For example, the control of farm-generated data by large agricul-
tural and tech corporations can create power imbalances, leaving
farmers at a disadvantage, as they often receive little to no value from
sharing their data (Lioutas et al., 2021). Additionally, the lack of
interoperability or compatibility between products from different ag-
tech companies can “lock in” farmers to specific technologies, deep-
ening their dependency on these corporations and intensifying existing
power asymmetries (McGrath et al., 2023). Moreover, it is possible that
the economic benefits of precision and digital technologies will accrue
primarily to large-scale arable farma that are able afford these tech-
nologies (Kutter et al., 2011), leaving smallholder farms behind and
potentially creating a digital divide (Hackfort, 2021; van der Burg et al.,
2019).

3. Methods and materials

3.1. Participatory modelling with Bayesian Belief Networks (BBN)

Modelling with stakeholders, or participatory modelling, is a
problem-solving approach that improves system understanding and
decision-making by synthesizing stakeholder knowledge and values in a
coherent manner. More specifically, participatory modelling has been
defined as ‘a purposeful learning process for action that engages the
implicit and explicit knowledge of stakeholders to create formalized and
shared representations of reality ’(Voinov et al., 2018). These shared
representations of reality provide descriptions of the problem at hand by
defining the impacts and potential solutions (Voinov and Bousquet,
2010). Participatory modelling integrates stakeholder insights with
model-based methods, where stakeholders contribute their qualitative
knowledge to frame issues, identify relevant themes and indicators, and
guide the development of assessment models. These models translate
stakeholder input into quantitative and semi-quantitative outcomes.
Analytical tools for participatory modelling include system dynamics
modelling, fuzzy-cognitive mapping, agent-based modelling, and BBNs
(Voinov and Bousquet, 2010). The literature outlines the strengths and
weaknesses of these tools (Gray, 2016) and provides guidance on
selecting the appropriate one (Voinov et al., 2018). This study employs a
BBN approach to engage stakeholders in a participatory modelling
process. We chose to use a BBN approach over other participatory
modelling methods for its ability to easily and transparently integrate
diverse knowledge streams and explicitly handle uncertainty in knowl-
edge via probability estimates, which is useful in the context of assessing
the complexity of impacts of digital agriculture through a multi-
stakeholder approach.

BBNs are graphical representations of real-world systems that rely on
probabilities to model relationships and dependencies (Kjaerulff and
Madsen, 2013). They are visually represented as Directed Acyclic
Graphs (DAGs), which consist of three main elements: (1) nodes repre-
senting variables of the system under investigation; (2) directed arrows
indicating causal dependencies between nodes; and (3) probability
distributions expressed in Conditional Probability Tables (CPTs). These
CPTs describe the probability distribution of a node given the states of its
parent nodes, quantifying the statistical dependence between variables.
While BBNs are often used to model causal relationships, they can also
represent associations or dependencies without implying causation.

BBNs enable the propagation of information throughout the network
through techniques like Bayesian inference. This allows for the calcu-
lation of updated probabilities for variables based on observed evidence,
making BBNs valuable tools for modelling, reasoning, and conducting
probabilistic inference in complex systems. They can be developed using
empirical data from models, direct observations, expert knowledge, or a
combination of these (Marcot, 2012). As such, BBNs are practical in
situations where empirical data is lacking and for integrating data of
different quality (Uusitalo, 2007). In respect to the latter, integrating
knowledge across domains assists with understanding complex man-
agement problems in a more comprehensive way (Cain, 2001). Addi-
tionally, established BBNs can be updated when new information
becomes available, allowing for iterative scenarios analyses, which is
useful for adaptive management approaches (Uusitalo, 2007). The
structure of a DAG prevents cycles and feedback loops, ensuring con-
ditional independence among unrelated nodes and unidirectional
probability inference. This design is important to avoid infinite regress
and recursive causation scenarios during probability calculations.
Although feedback loops are an inherent property of dynamic systems,
including agri-ecological and social systems, the static systems repre-
sentation contained within the DAG of BBN helps to reduce system
complexity and facilitate identification as well as analysis of causal
interactions.

There are many examples in the literature of participatory BBNs
being applied to support agricultural management, especially in the
European context. Henriksen et al. (2007) used a BBN to explore
complexity and uncertainties when assessing the impacts of pesticide
management actions on agricultural economics and groundwater and
drinking water quality on the national Danish scale. Along with stake-
holders, Carmona et al. (2011) worked on developing a decision support
system combining an agro-economic model and object-oriented BBN to
study different management options for groundwater management in
Spain, focusing on the trade-offs between agriculture and the environ-
ment. Duspohl and Doll (2016) used a participatory BBN approach to
identify implementable strategies for promoting renewable electricity
generation in a German county. In a pre-Alpine region in Switzerland,
Celio and Gret-Regamey (2016) applied a BBN approach for land-use
modelling to understand the influence of farmers on land-use change
in a spatially explicit manner. Salliou et al. (2017) used a BBN with
stakeholders in Southwest France to model ambiguity in perceptions of
different stakeholders in the context of biological pest control in apple
orchard cultivation.

The diversity of applications in which participatory BBNs have been
employed speaks to their overall usefulness as a participatory modelling
approach for engaging implicit and explicit knowledge (as well as un-
certainty in this knowledge) of stakeholders. Recognizing the uncer-
tainty surrounding the impacts of digitalization, including lack of hard
data and the need to reconcile and integrate multiple (often conflicting)
perspectives, we find the participatory BBN approach an intriguing
method for addressing these issues. However, no studies have - to our
knowledge - used BBNs in the context of modelling the impacts of
agricultural digitalization till now.

3.2. Selecting system variables and indicators with stakeholders

The selection of system variables and respective indicators is a
crucial step in assessing sustainability since it affects what is measured,
how it is measured, and what conclusions can be drawn from the find-
ings (Pope et al., 2004). Here, stakeholder involvement is seen as a key
criteria for conducting impact assessment and developing indicators that
are relevant, meaningful, and reflective of the local context (Binder
et al., 2010; Latruffe et al., 2016). In our study, we involved stakeholders
in identifying system variables and respective indicators through the
creation of a causal network (i.e. in the form of a BBN) following the
commonly used DPSIR approach (more on this in Section 2.4.1)
(Niemeijer and de Groot, 2008; König et al., 2013). By engaging
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stakeholders in this process, their knowledge and perspectives are
incorporated, ensuring that the chosen system variables and indicators
capture the diverse aspects of sustainability that are important to the
region under study (Reed, 2008). This leads to a better understanding of
the interconnectedness between indicators and the complex relation-
ships within the system (Chopin et al., 2021).

3.3. Case study: Brandenburg, Germany

The federal German state of Brandenburg covers 29,640 km2, of
which 45 % of the land area is dedicated to agricultural production (Amt
für Statistik Berlin-Brandenburg, 2016) (Fig. 1). Within the utilized
agricultural area, 77 % comprises of cropland and 23 % of permanent
grassland (Troegel and Schulz, 2016). The agricultural landscape is
characterized by homogenization and intensified production, which
have had detrimental effects on biodiversity, soil and water quality
(Thomson et al., 2019). This environmental degradation is despite
existing economic incentives from the EU's Common Agricultural Policy
(CAP) for sustainable land management practices (Wolff et al., 2021).

The main crops grown in Brandenburg are wheat, maize, rye, and
barley (Gutzler et al., 2015; Amt für Statistik Berlin-Brandenburg,
2021). Agricultural enterprises are relatively large, having an average
farm size of 242 ha, or four times the German average (Gutzler et al.,
2015; Troegel and Schulz, 2016). These enterprises tend to be highly

mechanized and make intensive use of fertilizers and agrochemicals
(Gutzler et al., 2015).

Regarding natural conditions, the region is characterized by
comparably low-quality soils, from which almost two-thirds are sandy
and sandy-loamy (Wolff et al., 2021). Rainfall is also low, being on
average less than 600 mm/year with the likelihood to decrease even
further in the future. For a more detailed description of Brandenburg's
agricultural landscape, Wolff et al. (2021) provided an analysis of
landscape metrics indicating agricultural landscape structure, diversity
and management using plot-based agricultural data.

3.4. Digital agriculture: state of adoption in the EU, Germany and
Brandenburg

There is not much evidence available about the level of adoption of
digital agriculture across Europe, and most of the research is country-
specific (Barnes et al., 2019a), showing that there are significant
regional variations in adoption. In a survey of farmers from 7 EU
countries (n= 287), Kernecker et al. (2020) found that adopters of smart
farming technologies mostly used GPS-supported tractors, with higher
levels of adoption correlating with increased farm size and arable
cropping systems compared to livestock or mixed cropping systems.
However, it should be noted that in their study they used a purposive
sample, targeting adopters and non-adopters, so the rates of adoption

Fig. 1. Map depicting the location and major land use classes of the German Federal State of Brandenburg, the case study region (European Environment
Agency, 2019).
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across the EU are probably lower.
In Germany, higher levels of adoption also correlate with larger

farms, which points to future growth in adoption rates due to the
continuing structural change in the rural sector (Paustian and Theuvsen,
2017). In a survey of 500 farmers from arable cropping and livestock
systems, Rohleder et al. (2020) found that 8 out of 10 farmers make use
of digital technologies in Germany. From that study, 45 % of re-
spondents reported using GPS-supported machinery and 40 % used
smartphone apps and farm management software. Site-specific appli-
cation technologies for pesticides and fertilizers were used by 32 % of
respondents, while robotics and drones were adopted by 12 % and 11 %,
respectively. The necessary infrastructure in Germany for a wide
adoption, such as broad network connectivity and speed, is still lacking,
although it is probably a question of time until German rural areas are
fully connected (Bernhardt et al., 2021).

As Brandenburg is characterized by large farm sizes and high levels
of mechanization, the adoption of digital technologies in this region is
likely. No data is available, however, on the current state of adoption
among farmers in Brandenburg, although there is ongoing discussion
about the future of digitalization, especially considering the unlocked
possibilities coming with the expansion of the 5G mobile network (Land
Brandenburg, 2019). The state government has its own digital strategy
and claims that it wants to expand Brandenburg's leading role in digital
agriculture and forestry, as well as the digitalization of companies and
value chains (Landesregierung Brandenburg, 2021). There is also
ongoing research projects specifically focused on agricultural digitali-
zation considering the regional context (Bloch and Bellingrath-Kimura,
2020).

Our research is a component of the BMBF-funded DAKIS (Digital
Agricultural Knowledge and Information Systems) research project,
which is – among other things - developing a Decision Support System
(DSS) to allow farmers and advisors to incorporate ecosystem services
and biodiversity in farm-level agri-economic planning (Mouratiadou
et al., 2023). The DAKIS DSS executes models and simulations that are
supplied with high resolution real-time, site-specific data from in-situ
measurements and remote sensing. Based on these models, the project
is also anticipating the integration of field robots within its DSS infra-
structure. Taken as a whole, DAKIS is a state-of-the-art example of how
digital agriculture technologies can be theoretically applied to promote
the provision of multiple agricultural ecosystem services. Most of the
project's activities are located within the German Federal State of
Brandenburg. Therefore, Brandenburg was chosen as the case study
area.

The current study does not focus exclusively on the technologies
utilized in the DAKIS project but takes a broader view on digitalization
and related technologies, defining it as the utilization of data-driven
techniques and precision technologies to inform, optimize and
partially automate decision-making processes and activities throughout
agricultural production and supply chains (Ingram et al., 2022; Klerkx
et al., 2019; Walter et al., 2017). While acknowledging the significance
of digital technologies in animal husbandry and horticulture production,
the focus of our analysis remains on their application within large-scale
arable farming.

Fig. 2. Overview of methodological workflow of the participatory modelling process to construct the BBN.
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3.5. Stakeholder workshops

In this study, a participatory modelling approach employing a BBN
was used to identify and assess the potential impacts of agricultural
digitalization in the future (i.e. by 2031) in Brandenburg, Germany. We
designed our protocol based partially on those developed by Cain (2001)
and Bromley et al. (2005) through engaging a group of stakeholders in a
series of workshops and iterative consultation to co-construct a BBN.
The following subsections describe the methodological approach used to
construct our Bayesian network. For a graphical overview of the meth-
odology, see Fig. 2.

During three online workshops (each about 3 h long), stakeholders
were led through a stepwise process to co-construct a BBN. The main
tasks of the workshops were to select relevant system variables,arrange
them into a graphical network, and elicit conditional probability esti-
mates (e.g. quantification). A final workshop was held to discuss the
resulting BBN with the participants. The workshops were spread out
over a six-month period in 2021–2022 and conducted online to comply
with the COVID-19 regulations at that time. Workshop materials were
prepared on the collaborative whiteboard software MURAL (https://
mural.co/) as well as with MS Excel. Data obtained from the workshops
were later entered into Netica (Netica V5.18, 2015), a Bayesian network
modelling software package, for analysis.

For our case study area, we identified four stakeholder groups of
interest, namely: farmers, researchers, civil society organizations and
public administration. We considered these groups because farmers
offer firsthand insights into the tangible effects of digital technologies on
their livelihoods, while researchers can provide technical expertise and
guidance on innovations. Civil society organizations ensure alignment
with societal values and public administration contributes perspectives
on regulation and policy-shaping. The public administration and civil
society organization can both be seen as expressing the broad viewpoint
of the public, thus we felt that they could be combined into one group,
which we named the ‘civil society group’ for the purpose of this study.
Based on this grouping, we non-randomly identified potential partici-
pants using personal contacts and Google search. We sought out par-
ticipants that were familiar with regional agricultural conditions in
Brandenburg. Within each group, we aimed to incorporate individuals
with diverse backgrounds and experiences to leverage a wide range of
expertise. While it would have been preferable for participants to have
prior knowledge of digital agriculture, we did not reach out to partici-
pants based on their existing familiarity with the subject. However, we
contacted farmers engaged in large-scale arable crop farming, as they
are representative of local farming practices as well as more inclined to
utilize mechanization and possess familiarity with precision agriculture
and digital technologies compared to those involved in small-scale
farming.

Due to the high time requirements for developing the BBN and to
consider the shorter attention span of online workshops compared to
face-to-face workshops, it was necessary to divide the participatory
modelling exercise across multiple days. It was therefore requested that
participants be able to attend all workshops. This was deemed important
to provide continuity of perspectives and ensure a cohesive and
comprehensive modelling process. Considering this, a smaller group of
workshop participants was more feasible in terms of achieving contin-
uous participation as well as more desirable for the in-depth discussions
required for the study.

In total, fourteen stakeholders participated in the workshops: three

were farmers, four were researchers, and seven were representatives
from various local civil society organizations and administrative au-
thorities. Eleven participants attended the first workshop, ten attended
the second workshop and nine attended the third workshop. In cases
where a participant was not able to attend a subsequent workshop, they
were requested to send a substitute participant to attend the workshop in
their stead. In the end, the participants in the farmer and researcher
groups showed continuous attendance (except for one researcher who
could not attend the last workshop), whereas the participants from the
civil society group showed fluctuating attendance between the first and
second workshops. For an overview of participants and their back-
grounds as well as their attendance in the workshops, please see Sup-
plementary Material I.

3.5.1. Workshop 1: variable selection and construction of conceptual
models

The aim of the first workshop was to collect insights into how
different stakeholder groups perceive the impact of digitization on
agricultural systems by guiding them in the selection of relevant system
variables and the creation of conceptual models (Fig. 3). The first
workshop was initiated with a brief overview of digital agriculture,
including associated technologies and potential applications aimed at
improving resource use efficiency as discussed within the literature as
well as promoting landscape diversification within the context of the
DAKIS DSS. Additionally, the research objectives were outlined, fol-
lowed by a short round of discussion for clarifications. Following this,
the researchers', farmers', and civil society group acted in parallel to
develop their own conceptual model, as recommended by Cain (2001),
through in-depth discussions and intra-group consensus-building.
Before network construction, it was necessary for each group to identify
and select the system variables (e.g. relevant agricultural system com-
ponents such sustainability targets, digital agricultural technologies,
affected ecosystem and social conditions, and drivers) to be included in
their models. Therefore, each group first systemically selected variables
from a list of pre-selected variables. The pre-selected list of variables was
compiled from objectives outlined in policy strategy documents,
including the EU F2F Strategy (European Commission, 2020), the
German National Sustainability Strategy (Deutsche Bundesregierung,
2018), and the 2035 national Arable Farming Strategy (BMEL, 2019), as
well as indicators from agricultural sustainability assessment frame-
works and models, including SAFA (FAO, 2013), RISE (Grenz et al.,
2012), KSNL (Breitschuh, 2008), MODAM (Zander and Kächele, 1999),
and ViSA (Shaaban, 2022). Additionally, relevant scientific literature
(Wolfert et al., 2017; Walter et al., 2017; Finger et al., 2019) was used to
derive variables specific to agricultural digitalization and precision
agriculture. Each of the above-mentioned sources was thoroughly
reviewed by the authors before being entered into the pre-selected list of
variables. During this workshop, participants were given the option of
‘writing-in’ new, additional variables they felt were missing from the
pre-selected list (see Supplementary Material I for an overview of the
pre-selected list of variables used in the workshop).

The list of pre-selected variables were categorized according to the
DPSIR framework as a means to structure the variable selection and
model construction processes (Tscherning et al., 2012; Bosch and
Gabrielson, 2003; Niemeijer and de Groot, 2008). Consisting of Drivers
(D), Pressures (P), States (S), Impact (I), and Response (R), the DPSIR
framework analytical tool highlights cause-effect relationships in
nature-human interactions (Bosch and Gabrielson, 2003). In our study,
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the Drivers category represented macro- and meso-scale external factors
(e.g. subsidies, producer prices, costs of digital technologies) influencing
the adoption of agricultural digitalization. The Pressures category was
used to represent digital agricultural management as an intervention.
The States category represented intermediary social and ecological
conditions (e.g. ecosystem connectivity, wages, health hazards) that
lead to Impacts. The Impacts category represented major domains of
influence that agriculture is expected to have in the future (e.g. biodi-
versity, food security, regional identity). The Response category repre-
sents actions taken by society to affect impacts by influencing other
elements, including Drivers, Pressures and States within the system.
These actions commonly involve policy measures related to compensa-
tion, prevention and adaptation. To facilitate a focused analysis of the
impacts arising from digital agriculture and streamline the assessment
process, the study deliberately excluded responses from consideration.

Given the complexity of interactions in agricultural systems, it was
necessary to narrow down the range of variables considered for devel-
oping the BBN to a manageable number. Considering this and in order to
stay within the time limits of the workshops, we imposed constraints on
the number of variables each group was allowed to select. The focus of
the study was on identifying Impacts (differentiated with 9 variables) of
digital agricultural management (Pressure, differentiated with 3 vari-
ables). However, we recognize there may be a multitude of intermediate
processes that connect digital agriculture management with impacts.
Therefore, we decided to allow for a higher limit on the maximum
number of States, or intermediate variables, that could be included in
the model (20 variables). Lastly, we allowed for 5 variables to differ-
entiate the Drivers. The decision on the number of variables stem from
earlier experiences with participatory assessment workshops (König

et al., 2013; Hermanns et al., 2017; Hamidov et al., 2022). To provide a
familiar means to the workshop participants for conceptualizing system
components, the variables in the Impact and State categories were
divided according to environmental, economic and social dimensions.
To promote a fair and balanced approach to selecting Impacts, we
instructed the participants to choose three Impact variables from each of
the three dimensions of sustainability, with the aim of ensuring that each
dimension is given equal consideration in the modelling process.

After completing the variable selection process, the groups were
instructed to arrange their variables into network diagrams using arrows
to indicate causal relationships between the variables. With the help of a
moderator, the group participants were encouraged to draw as many
connecting arrows as needed, while explaining the reason behind these
connections as they were made. The conceptual models of each stake-
holder group can be seen in the Supplementary Material III.

3.5.2. Desk analysis: construction of a unified conceptual model
After the first workshop, the three individual conceptual models of

the stakeholder groups were merged into a unified conceptual model. To
limit model size and complexity, only variables that were common to
two or more of the three stakeholder group models were included in the
unified conceptual model. All connecting arrows between these com-
mon variables as found in the individual conceptual models were
included in the first elaboration of the unified conceptual model.

3.5.3. Workshop 2: discussions of individual group models and joint
conceptual model

In the second workshop, similarities and differences between the
individual stakeholder conceptual models were highlighted and mixed-

Fig. 3. Variable selection and construction of conceptual models using the DPSIR framework.
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group discussions were held to allow for in-depth exchanges on view-
points between groups. After that, the participants were divided back
into their respective stakeholder groups, where they were presented the
unified conceptual model. The participants were then requested to re-
view the model for logical consistency, such as clarifying the reasoning
behind connections, while identifying superfluous and missing connec-
tions. Their feedback was then later incorporated into the second elab-
oration of the unified conceptual model (Supplementary Material III).

During this workshop, participants were also introduced to the
Digital agriculture variable (i.e. Pressure) and the specific digital agri-
cultural technologies encompassing it, as selected by the groups in the
first workshop. This was done to establish an initial conceptual basis
between the participants to help define digital agriculture. Since the
focus of this study was on the broader implications of digital agriculture
rather than on any specific digital technology, we simplified the
modelling process by grouping these technologies under a single vari-
able. This variable was assigned different degrees (i.e. scenarios) of
digitalization: intensive, moderate, and limited (corresponding to
business-as-usual) (Table 1). The delineations for these distinct sce-
narios were partially drawn from the work of Dönitz et al. (2020) and
were employed to provide comprehensive descriptions and a common
understanding of digital agriculture among participants.

3.5.4. Desk analysis: indicator selection for unified conceptual model
Following the second workshop, the system variables of the unified

conceptual model were assigned indicators. This was done for two rea-
sons: first, to transfer the qualitative conceptual model into a quantita-
tive one and, second, to become more precise about the variables and
their interactions for the next workshop. Through a review of the liter-
ature, policy documents and expert consultations, a set of Brandenburg-
specific indicators for the variables in the unified conceptual model was
produced. This set of indicators was then sent via email to the workshop
participants for their feedback. After receiving and incorporating their
feedback, the authors assigned discrete values to each indicator in order
to reasonably describe a condition the variable could possess in the case
study region. This was also done through literature analysis. Additional
information and sources of the indicators used in the BBN is available in
Supplementary Material II.

3.5.5. Workshop 3: quantifying probabilities
In the third workshop, probability estimates were elicited from the

stakeholder groups for quantifying the conditional probability distri-
butions of the variables in the network. For each group, a set of blank
CPT formulas were provided where they were requested to input per-
centage probabilities that aligned with their expertise and knowledge.
Due to time limitations, it was not feasible for each group to derive es-
timates for all CPTs. Instead, the groups were assigned a limited number
of CPTs to complete. Certain CPTs were completed by all three groups,
specifically focusing on variables and connections that were shared
among their conceptual models. Estimates from CPTs that were common
to each group were summed and averaged as input for the final model.

3.5.6. Desk analysis: analysis of workshop results in Netica
The elicited network structure and CPTs obtained from the work-

shops were then entered into Netica (Netica V5.18, 2015). We then ran
scenario analyses on the final BBN using different degrees of digitali-
zation to observe marginal changes in probabilities of nodes, allowing us
to identify areas of certainty and uncertainty in the model.

3.5.7. Workshop 4: presentation of results and reflection on process
In the fourth and final workshop, the participants were presented the

final BBN and a short demonstration was conducted using Netica. An
open discussion was held where the participants were given the chance
to express their views on the BBN and the overall modelling process.

4. Results

Using the procedure outlined above, each stakeholder group devel-
oped a conceptual model to determine crucial agricultural system
components affected by digitalization as well as the relationships that
lead to these effects. The commonalities between the various conceptual
models were then used to construct a unified BBN (Fig. 4), portraying
the three stakeholder groups' shared understanding of the impacts of
agricultural digitalization. The unified Bayesian network included a
total of 28 variables, consisting of 1 Pressure variable (i.e., digital
agriculture), 4 Driver variables, 14 State variables and 9 Impact vari-
ables. The network contained a total of 44 causal relationships (i.e.,
conditional dependencies) between variables and 272 unique proba-
bility values quantifying these relationships.

Table 2 presents the connections identified in the BBN, along with
descriptions of each (the numbers in Fig. 4 correspond to the connec-
tions listed in this table). Table 3 provides a comprehensive overview of
the characteristics of variables within the Impact category, including
indicators, corresponding values, and probability estimates for different
scenarios of agricultural digitalization. Table 4 presents the same
respective details for variables within the State category, while Table 5
lists the Drivers and their corresponding indicators and values.

In the following, key findings based on the analysis of the unified
BBN related to Impacts, States, Pressures and Drivers are outlined. For
the Impacts and States categories, we describe a scenario with an
intensive degree of digitalization as compared with a limited degree of
digitalization (i.e., business as usual). To assess the level of certainty
regarding the effects of digitalization for each variable, we adopted a
categorization technique. This involved categorizing the variable range
of probabilities, derived from the percentage point difference between
intensive and limited degrees of digitalization, which spanned from 0 %
to 56 %, taking all variables into account. The resulting categorization
scheme consisted of three equally partitioned levels: low certainty
(0–18 %), medium certainty (19–38 %), and high certainty (39–56 %).

Table 1
Different levels of digitalization as used in the BBN for Digital agriculture
variable.

Degrees of digitalization

Intensive Sensors and automated decisions (AI-based) are fully integrated at
every stage of production. Drones and small autonomous robots are
widespread. Farmers are contractually integrated into larger
systems/associations, and management is carried out at a higher
level with AI support. Precise use of inputs and environmental
impacts are monitored in real time.

Moderate Mixture of large, manually operated machines and small
autonomous robots. Precision farming is used to reduce
environmental impacts. Some sensors and robots are used to
monitor plant and animal health and soil moisture. Farmers use
apps and other decision support systems to follow real-time
developments.

Limited
(BAU)

Only certain parts of the cultivation process are digitized and most
of the processes remain analogue, performed by humans and large
machines (e.g. tractors with GPS-RTK). Digital technology is only
used to support analogue processes. This scenario represents
business as usual.
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Table 2
Connections within the BBN and their descriptions under an intensive degree of digitalization.

Nr. Connection Description Nr. Connection Description

1 Legal framework to Digital
agriculture

Clear agri-digital laws promote innovation
and technology use while safeguarding the
rights of farmers and the environment

12 Digital agriculture to Working
conditions

Automation reduces labour units per hectare,
easing workload on farmers

2 Data harmonization to
Digital agriculture

Standardizes data exchange and
integration across digital devices and
databases facilitates the use of digital tools
in agriculture

13 Digital agriculture to Risk
management (predictability)

Use of decision support tools and big-data analytics
improves on-farm risk management strategies

3 Payments for ecosystem
services to Digital agriculture

Subsidies that support provision of
ecosystem services incentivize farmers to
adopt digital practices that enhance
ecosystem services

14 Risk management
(predictability) to Product
(crop) diversification

Improved risk management reduces operational
uncertainties of crop diversification and associated
market risks

4 Producer prices to Digital
agriculture

Higher producer prices improve farm
revenue, allowing farmers to invest in
digital equipment and machinery

15 Product (crop) diversification
to Regional self-sufficiency

The diversity of crops grown regionally improves
the ability of the region to produce enough
nutritious food to meet the dietary needs of the
local population

5 Digital agriculture to Field
size

The use of autonomous machines allows
reduction of field sizes and fine-scale
operations with no drawback on labour
costs

16 Product (crop) diversification
to Economic stability
(variability in revenue)

The diversity of crops grown reduces variability in
revenue and improves economic stability through
spreading production and market risks across
different crops

6 Digital agriculture to
Nutrient (nitrogen) balance

Site-specific fertilizer technology
optimizes and reduces the amount of
nitrogen applied to fields

17 Product (crop) diversification
to Regional value chains

The diversity of crops grown regionally increases
the number of products that flow into regional
value chains

7 Digital agriculture to Energy
consumption (diesel)

The substitution of electric-powered robots
for tractors reduces diesel consumption

18 Working conditions (Labour
unit /100 ha) to Attractiveness
for farm successors

Improved working conditions and reduced
workload improve the appeal of farming as a
profession and the likelihood of attracting farm
successors

8 Digital agriculture to Field
(water holding) capacity

The use of lightweight field robots reduces
soil compaction and improves water
holding capacity of soils

19 Ammonia emissions to Social
acceptance of agriculture

Ammonia emissions, associated with strong odours,
may affect societal acceptance of agriculture (no
CPT)

9 Digital agriculture to Plant
diversity (Shannon-Index)

Site-specific management technologies
improve diversity of crops within fields or
per unit area

20 Field (water holding) capacity
to Soil quality (humus content)

Improved water holding capacity may affect soil
quality in terms of promoting microbial activity
and humus accumulation (no CPT)

10 Digital agriculture to
Ecologically valuable
agriculture (organic farming)

Digital tools may support organic farming
practices

21 Nutrient (nitrogen) balance to
Resource efficiency (kg CO2-
eq/ product)

Reduction of nitrogen inputs increases resource use
efficiency by decreasing embedded CO2-eq per
product produced

11 Digital agriculture to
Ammonia emissions

Site-specific fertilization technology
reduces the amount of ammonia emissions

22 Nutrient (nitrogen) balance to
Water quality (N concentration
of wells)

Reduced nitrogen inputs improve water quality by
decreasing runoff and infiltration of nitrates into
ground water

Nr. Connection Description Nr. Connection Description

23 Field size to Biodiversity
(farmland birds)

Smaller field sizes may affect the diversity of
cropping systems over a larger area thereby
improving habitat conditions for farmland
birds

34 Soil quality (humus content) to
Productivity (grain yields in t/
ha)

Soil quality and humus content may affect
the growth of crops and potential yields (no
CPT)

24 Field size to Landscape diversity
(landscape elements)

Field sizes may affect the amount of field
edges and space available for linear landscape
elements

35 Attractiveness for farm
successors to Social
appreciation for agriculture

Farm successors and the perception that
farming is a viable career may affect social
appreciation of agriculture (no CPT)

25 Landscape diversity (landscape
elements) to Biodiversity
(farmland birds)

Edge habitats provided by landscape elements
may affects biodiversity and farmland bird
abundance

36 Productivity (grain yields in t/
ha) to Social appreciation for
agriculture

Productivity and yields may affect the
perception and appreciation of society for
agriculture (no CPT)

26 Landscape diversity (landscape
elements) to Water quality (N
concentration of wells)

Landscape elements act as buffer zones that
reduce runoff of nitrates into water bodies

37 Productivity (grain yields in t/
ha) to Attractiveness for farm
successors

Higher productivity and yields have a
positive influence on the perception of
farming as a viable career for farm
successors

27 Landscape diversity (landscape
elements) to Plant diversity
(Shannon-Index)

Landscape elements may provide edge
habitats for a diversity of plant species

38 Attractiveness for farm
successors to Regional value
chains

New farmer successors are more likely to
innovate and improve marketing for
products for local value chains

28 Plant diversity (Shannon-Index)
to Biodiversity (farmland birds)

In-field plant species diversity and longer crop
rotations may affect food sources for farmland
birds

39 Risk management
(predictability) to Variability of
yield

Improved risk management and
predictability of environmental events
improves management and variability of
yield

29 Plant diversity (Shannon-Index)
to Soil quality (humus content)

In-field plant species diversity and longer crop
rotations affect soil quality and humus content

40 Variability of yield to
Productivity

Variability of yield may affect total
productivity and yields (no CPT)

30 Ecologically valuable agriculture
(organic farming) to Soil quality
(humus content)

Organic farming practices may affect
microbial activity and humus accumulation
(no CPT)

41 Variability of yield to Economic
stability (variability in revenue)

Reduced variability in yields mitigates
variability of revenue, thereby improving
economic stability

31 Ecologically valuable agriculture
(organic farming) to Food quality

Organic farming practices may affect nutrient
content and safety of food

42 Productivity (grain yields in t/
ha) to Economic stability
(variability in revenue)

Higher yields increase incomes thereby
buffering impacts of variability in revenue

32 Ecologically valuable agriculture
(organic farming) to Social
appreciation for agriculture

Organic farming may affect the societal
reputation of farming as a profession (no CPT)

43 Energy consumption (diesel) to
Resource efficiency (kg CO2-eq/
product)

Energy consumption and the amount of
diesel used in operations contributes to the
embedded CO2-eq per product produced

(continued on next page)
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4.1. Impacts

A total of nine Impact variables and respective indicators were
included in the unified BBN, representing the key impact areas that
digital agriculture in Brandenburg is likely to influence in the future
(Table 2). According to the stakeholders in our study, digitalization is
perceived to have a positive impact on Resource use efficiency (with

medium certainty), specifically in terms of reducing the carbon footprint
per product. This is primarily attributed to two main factors: decreased
energy consumption of diesel fuel and reduced usage of synthetic fer-
tilizers, both of which contribute to greenhouse gas emissions (e.g.,
regarding the usage of fertilizers, the indirect emission associated with
their production is emphasized). Economic stability, or variability in
revenue from crop production, is expected to be positively impacted by

Table 2 (continued )

Nr. Connection Description Nr. Connection Description

33 Soil quality (humus content) to
Variability of yield

Stable soil quality and humus content
improves nutrient availability for plant
growth and reduces variability of yield

44 Soil quality (humus content) to
Attractiveness for farm
successors

Good soil quality and humus content
improve economic viability of farming and
appeal for farm successors

Fig. 4. The unified Bayesian belief network (BBN) in Netica. Blue variables = Drivers; orange variable = Pressure; pink variables = States; Green/Yellow/light
Orange = environmental/social/economic impacts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 3
Impact variables, corresponding indicators, values and probabilities under different degrees of digitalization.

Impacts Degree of digitalization

Variable Indicator Value Limited
(BAU)

Moderate Intensive Level of
certainty

Biodiversity Farmland bird occurrence
Good 50,2 % 50,2 % 50,2 % Low
Bad 49,8 % 49,80 % 49,8 % Low

Economic stability Variability in revenue from crop production (€/ha
UAA)

Good (<16 % variability) 47,2 % 70,0 % 75,2 % Medium
Bad (>16 % variability) 52,8 % 30,0 % 24,8 % Medium

Food quality Not defined High 41,2 % 44,6 % 50,9 % Low
Low 58,8 % 55,4 % 49,1 % Low

Productivity Yield in t/ha (only grains)
High (> 5.1 t/ha)

N/ALow (< 5.1 t/ha)

Regional value chain
Share of agricultural products that are marketed
locally/regionally

More local products 50,9 % 58,4 % 61,0 % Low
Less local products 49,1 % 41,6 % 39,0 % Low

Resource efficiency kg CO2-eq/product

High (less kg CO2-eq/
product)

60,0 % 78,8 % 93,2 % Medium

Low (more kg CO2-eq/
product)

40,0 % 21,2 % 6,8 % Medium

Social appreciation of the
agricultural sector Not defined

High
N/ALow

Soil quality Humus content
Good

N/ABad

Water quality Share (in %) of wells with a nitrate concentration
of 50 mg/l

Increase (% wells <50
mg/l N)

43,9 % 59,4 % 72,3 % Medium

Decrease (% wells >50
mg/l N)

56,1 % 40,6 % 27,7 % Medium
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digitalization (with medium certainty), primarily through increased
product diversification and decreased variability of yields, two factors
that are strongly influenced by improved risk management. Water
quality, specifically the nitrate concentrations in water wells, is expected
to improve (with medium certainty) through the reduction of total ni-
trogen fertilizer inputs as a result of site-specific fertilizer application.
Digitalization was perceived to have a marginal positive effect on Food
quality and security (with low certainty) through improved regional self-
sufficiency. The impacts of digital agriculture on Biodiversity, particu-
larly farmland bird abundance, and Regional value chains, measured by
the share of agricultural products marketed locally, are unclear.
Regrettably, due to time limitations in the workshops, it was not possible
to obtain the CPTs for the Impact variables on Societal appreciation for the
agricultural sector, Soil quality, and Productivity.

4.2. States

The unified BBN encompasses fourteen state variables and their cor-
responding indicators, effectively capturing the intermediate processes
that link digital agriculture to its impacts (Table 3). The analysis highlights
the considerable positive influence of digitalization on Risk management
(with high certainty), specifically through enhanced risk predictability,
facilitated by data-driven decision support tools and AI. This improvement
in risk management is expected to have positive impacts on Product
diversification, measured by the average number of crops per farm, and the
mitigation of Variability of yield for a typical crop rotation in Brandenburg
(with medium certainty). Furthermore, the BBN shows that Nutrient bal-
ance will improve (with medium certainty) by optimizing the application
of synthetic nitrogen fertilizers through data-driven, site-specific ap-
proaches. Moreover, by substituting diesel-powered machinery with

electric-powered field robots, digital agriculture is likely to decrease En-
ergy (diesel) consumption (with medium certainty). A shift toward auto-
mation will also contribute to improved Working conditions for farmers
(withmedium certainty), allowing them towork larger areas of land in less
time, positively impacting the Attractiveness of farming as a profession for
successors (with low certainty). Additionally, the utilization of lightweight
field robots instead of heavy machinery is expected to mitigate soil
compaction, resulting in an increase in Field (water holding) capacity (with
medium certainty). Digitalization and site-specific fertilization were
anticipated to have only a minor effect on reducing Ammonia emissions
(with low certainty). There was only a slight inclination toward smaller
Field sizes (with low certainty) through the adoption of autonomous crop
machines. The impact of digitalization on variables such as Regional self-
sufficiency, Ecologically valuable agriculture, Plant diversity, and Structural
diversity of landscapes remained uncertain.

4.3. Pressures

To conceptualize digital agriculture and establish common ground
between participants on the diverse array of technologies falling under
its purview, a discussion was held where eight specific technologies
were identified between the three stakeholder groups: AI, DSS, VRT, in-
situ sensors, GPS, satellites, yield maps, and robotics. As it would have
been impractical to include all selected technologies in the BBN, these
technologies were subsequently bundled together under a single pres-
sure variable named Digital agriculture in the unified BBN. For modelling
purposes, the digital agriculture variable was differentiated by varying
conditions (i.e. degrees) of digital integration (see Table 1).

Table 4
State variables, corresponding indicators, values and probabilities under different degrees of digitalization.

Impacts Degree of digitalization

Variable Indicator Value Limited
(BAU)

Moderate Intensive Level of
certainty

Ammonia emissions NH3 emissions (in kt) from the agricultural sector
Decrease (< 23,7 kt) 27,8 % 32,8 % 44,4 % Low
Unchanged (23–28 kt) 51,1 % 51,1 % 44,4 % Low
Increase (> 28 kt) 21,1 % 16,1 % 11,2 % Low

Attractiveness for farm
successors

Share (%) of farm managers under 55 years old Increase 47,5 % 56,6 % 63,5 % Low
Decrease 52,5 % 43,4 % 36,5 % Low

Ecologically valuable
agriculture

Share (%) of organic farms in the total agricultural area Increase 46,7 % 50,0 % 63,3 % Low
Decrease 53,3 % 50,0 % 36,7 % Low

Energy consumption Average diesel consumption in L/ha-a

Decrease (< 110 L/ha-
a) 53,3 % 73,3 % 90,0 % Medium

Increase (> 110 L/ha-
a) 46,7 % 26,7 % 10,0 % Medium

Field capacity (water) % Vol. of water available to plants in the root area up to
100 cm

Increase 46,7 % 63,3 % 80,0 % Medium
Decrease 53,3 % 36,7 % 20,0 % Medium

Field size Average field size in hectares
Large (> 40 ha) 58,3 % 48,7 % 43,8 % Low
Medium (10–40 ha) 23,1 % 25,6 % 25,7 % Low
Small (< 10 ha) 18,6 % 25,7 % 30,5 % Low

Nutrient balance Nitrogen balance

Decrease (< 60 kg N/
ha) 56,7 % 76,7 % 93,3 % Medium

Increase (> 60 kg N/
ha)

43,3 % 23,3 % 6,7 % Medium

Plant diversity Shannon index (HS)
Optimal (>2.2) 37,5 % 37,5 % 37,5 % Low
Tolerable (1.25–2.2) 31,2 % 31,2 % 31,2 % Low
Unsustainable (<1.25) 31,2 % 31,2 % 31,2 % Low

Product diversification Average number of crops per farm
Increase (> 5.43) 65,0 % 85,0 % 93,3 % Medium
Decrease (< 5.43) 35,0 % 15,0 % 6,7 % Medium

Regional self-sufficiency Percentage of food produced and consumed in a region
Increase 49,5 % 56,0 % 58,0 % Low
Decrease 50,5 % 44,0 % 42,0 % Low

Risk management Risk predictability Increase 30,0 % 73,3 % 86,7 % High
Decrease 70,0 % 26,7 % 13,3 % High

Landscape diversity
Share (%) of the area of landscape elements in the total
agricultural area

Increase 50,0 % 50,0 % 50,0 % Low
Decrease 50,0 % 50,0 % 50,0 % Low

Working conditions for
farmers Labor Unit per hectare

Decrease (< 1.5) 50,0 % 60,0 % 80,0 % Medium
Increase (> 1.5) 50,0 % 40,0 % 20,0 % Medium

Variability of yield Coefficient of variation for typical crop rotation
Decrease (< 20 %) 39,5 % 67,6 % 76,4 % Medium
Increase (> 20 %) 60,5 % 32,4 % 23,6 % Medium
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4.4. Drivers

The Drivers category includes several key variables that influence the
adoption and implementation of digital agriculture (Table 4). Based on
agreement between the stakeholder groups, four drivers were included
in the unified BBN. One important driver of agricultural digitalization is
Data harmonization, which involves the standardized exchange and
integration of data across digital devices and databases. Another driver
is the Legal framework surrounding digital agriculture. For example,
clear agri-digital laws balance innovation and technology use while
protecting the rights of farmers, the public, and, by extension, the
environment. In contrast, unclear laws can have the opposite effect,
leading to negative societal and environmental impacts. Payments for
ecosystem services also play a role in driving the adoption of digital
agriculture: subsidies that support technology-assisted agricultural
measures can incentivize farmers to adopt these practices and support
ecosystem service provision. Lastly, Producer prices, measured by the
producer price index, impacts the revenue and cost situation in
agriculture¸ thereby affecting a farms ability to invest in new equipment
and machinery.

5. Discussion

Our study highlights the potential impacts of digital agriculture as
perceived by key stakeholder groups from a region characterized by
highly mechanized arable systems. The findings on the perceived ben-
efits align closely with prior studies, suggesting that resource efficiency
and economic stability will benefit from digitalization (Barrett and Rose,
2022; Regan, 2019; Metta et al., 2022). These advantages are attributed
to precision farming technologies and improved risk management,
respectively. However, our study raise new questions about the risks of
digitalization on biodiversity-related factors, where the impacts on
landscape diversification are acknowledged but remain unclear to
stakeholders.

Our study contributes to the growing body of empirical research
embracing a Responsible Research and Innovation (RRI) approach by
engaging stakeholders in the process of co-creating a BBN to anticipate
various impacts of digitalization. It builds on prior studies assessing the
risks and opportunities of digitalization by utilizing a quantitative
approach to address uncertainty and ambiguity and by encouraging in-
depth dialogue to collectively explore diverse perceptions and values, as
well as future options (Regan, 2019; Fleming et al., 2021; Zscheischler
et al., 2022). In this context, the acknowledgment of differing percep-
tions, knowledge uncertainties and values, as well as their integration
into a collectively agreed-upon model, speaks to the value of employing
our method to enhance reflexivity in RRI-driven impact assessment.

In the remainder of this section, we present and discuss key findings
on the impact of digitalization on resource use, risk mitigation, and
biodiversity. Additionally, we reflect on the novelty of our approach, as
well as the strengths and limitations of using BBNs for participatory
modelling.

5.1. Digitalization and resource savings

The stakeholders in our study perceived that digital agriculture will
lead to a more efficient use of resources, such as fuel, fertilizer, and la-
bour, which is consistent with the majority of research and asserted
benefits on the topic (Basso and Antle, 2020; Finger et al., 2019; Bala-
foutis et al., 2017; Schimmelpfennig, 2016). It is not unexpected that
stakeholders held this opinion given that some farmers in the area,
including those involved in our study, have experience using precision
farming technologies such as GPS guidance and yield mapping. Preci-
sion farming technologies, such as variable rate spraying, have been
accessible in the market for quite some time, though their adoption re-
mains low (Nowak, 2021). More importantly, stakeholders also pointed
out the value of these technologies in relation to addressing broader
environmental and political challenges the region's agriculture sector is
currently facing. For instance, the group of farmers brought up a concern
regarding the use of nitrogen fertilizers and expressed that the agricul-
ture industry is under constant political pressure to decrease N-fertilizer
inputs, as mandated by the EU Nitrates Directive 91/676/EEC. To
address this issue, the group of farmers suggested that digitization could
minimize nitrogen fertilizer usage by enhancing the efficiency of site-
specific fertilizer application as well as play a role in ensuring regula-
tory compliance through more accurate and automated record keeping.

Given persistent labour shortages of farm workers (permanent and
seasonal) in the case study region (Prause, 2021), our group of stake-
holders had a favourable impression of the potential labour-saving as-
pects as well as improved working conditions that digitalization could
entail. For instance, it was mentioned by the workshop participants that
automation would reduce the amount of a farmer's working hours,
which would improve attractiveness of the farming profession and,
thereby, attract permanent workers and farm successors. It was also
mentioned that a higher degree of automation (e.g. self-driving tractors)
would make work easier, reducing the level of skill needed for per-
forming certain tasks and thereby attracting capable workers. These
results are largely in line with findings and positive views on the impacts
of digitalization on labour availability of many other stakeholder-based
studies (McGrath et al., 2023), but contradict arguments made con-
cerning the negative impacts of ‘de-skilling’ and displacement of
workers due to digitalization (Carolan, 2020; Rotz et al., 2019a;
Zscheischler et al., 2022; Prause, 2021). However, it should be high-
lighted that the majority of studies pointing toward labour displacement
frequently focus on seasonal labourers and, more specifically, horticul-
ture systems that rely heavily on low-skilled, manual labour. The dif-
ference in viewpoints here relates to the fact that large-scale arable
farming (mainly grains, maize, rape seed) is the predominant mode of
production in our case study region, which necessitates a certain level of
expertise and training to operate relatively complex farm machinery
such as tractors and harvesters. Of course, for farmers to operate more
advanced machinery in the future, such as robots, they will also be
required to learn new (digital) skill sets (Prause, 2021). The same holds
true for farm advisors who will also need to be upskilled to use new and
more complex digital tools (Fielke et al., 2019; Fleming et al., 2021). In
this case, we should expect that the quality of work would change for
farmers, as they would take on new roles in managing their enterprises,
which likely to impact job satisfaction (Rose and Chilvers, 2018;
McGrath et al., 2023).

It is important here to note that the current study's focus on large-
scale arable farming, along with its longstanding prevalence in Bran-
denburg, may help explain why concerns about a digital divide between
large and small farms, as noted in other studies (Bronson, 2019; Regan,
2019; Hackfort, 2021), were not raised during the workshops. This in-
dicates that when examining the implications of digitalization on la-
bour, a differentiated assessment of local labour markets, potential
alternatives and pertinent farming operations is required (Martin et al.,
2022).

Although the stakeholders in our study generally had a positive

Table 5
Selected Drivers, indicators and values of agricultural digitalization.

Drivers

Variable Indicator Value

Data harmonization Standardized data Standardized
Not standardized

Legal framework Agri-digital law Clear, supportive
Unclear, unsupportive

Payments for ecosystem services Subsidies Yes
No

Producer prices Producer price index High
Medium
Low
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viewpoint on the labour-saving potential of digitalization, the adoption
of digital agriculture could also result in a ‘technology treadmill’, where
the need to scale up operations to stay competitive arises because
technological advancements often lead to increased productivity,
driving down prices and forcing farmers to expand their operations,
thereby increasing their workload (Cochrane, 1958; McGrath et al.,
2023). Additionally, the financial investments required to adopt costly
digital technologies could result in capital lock-in, where farmers are
financially bound to pay off debts, compelling them to work more.

In light of rising oil prices and mounting public pressure to halt
climate change, digitalization may be advantageous (Pearson et al.,
2022). Participants in our case study believed that digital agriculture, e.
g. electrification, field robots and precise fertilizer application, would
result in fuel savings (diesel) and lower carbon emissions per product.
However, as it was not taken up in the BBN, it is important to note that a
highly digitalized agriculture at scale and the energy required to power
data centres (e.g. cloud computing, data storage, data analysis), drones,
robots, sensor networks and electric tractors require significant amounts
of energy, which, depending on the source, may not result in a sub-
stantial overall reduction of carbon emissions (Leroux, 2020). Similarly,
indirect rebound effects from digitalization should also be considered
(Lange et al., 2020). However, while evaluating the carbon footprint of
digital agriculture, it is also important to take into consideration the fact
that the manufacture and disposal of electronic equipment also entail
carbon and other emissions (Singh and Ogunseitan, 2022). A clearer
understanding of whether digital agriculture would ultimately result in
lower carbon emissions from farming activities could be obtained
through Life Cycle Assessment (LCA)., To date, there appears to be a
dearth of LCA studies applied to digital agriculture technologies and
digital agricultural systems.

While there appears to be an absence of research focusing on how
digital agriculture could affect soil water retention, there is evidence
that tractor-induced soil compaction reduces water infiltration (Keller
et al., 2019). This concern was raised by the stakeholders in our study. It
was proposed that lighter-weight autonomous machinery could replace
heavy, manually operated tractors, thus decreasing soil compaction (i.e.
soil bulk density) and improving infiltration and soil water-holding ca-
pacity. Although time constraints prevented us from deriving probabil-
ity estimates for the soil quality variable, it is key to emphasize the
importance of soil water holding capacity for soil quality, particularly
for farmers in our case study region, as decreasing precipitation and
increasing severity of droughts continues to be a major issue affecting
plant health and productivity (Reyer et al., 2012; Wolff et al., 2021).
This suggests that digitalization could have important implications for
soil health and climate change adaptation in the future, meriting further
scientific exploration.

5.2. Supporting economic robustness through mitigating risks

Stakeholders acknowledged the potential of digital agriculture to
contribute to regional economic stability by mitigating major sources of
uncertainty associated with environmental and market risks. Data-
driven decision-making has the capacity to improve risk management
and foster economic resilience during phases of climate and market
instability (McFadden et al., 2022; Wolfert et al., 2017). Specifically, in
terms of weather risks, the utilization of agri-climatic databases in
conjunction with big data analytics (AI-based) can assist farms in
adapting to climate change and identifying hazards related to weather
extremes, thereby enhancing production stability at specific sites
(Martinez-Feria and Basso, 2020). Considering the impact of increased
weather extremes on production (Webber et al., 2020) and the resulting
(in-) stability of crop yields in the region (Macholdt et al., 2021; Döring
and Reckling, 2018), it is logical for the stakeholders in our workshop to
have recognized the potential of leveraging digital technologies to
address such risks.

Similarly, a farmer's willingness to diversify his or her production

systems may also be constrained by production risks. In this regard,
digital agriculture could improve risk management related to crop
diversification (Hernández-Ochoa et al., 2022). The participants agreed
that better decision support could reduce production risks associated
with introducing new crops as well as provide better market analytics on
consumer demand for new products. In turn, crop diversification could
improve economic stability (von Czettritz et al., 2023) and ecosystem
functionality (Tamburini et al., 2020). However, due to region-specific
policies in Germany subsidizing the production of certain types of en-
ergy crops, more diverse crop portfolios do not necessarily translate into
a higher stability of income for farmers (Weigel et al., 2018). This means
that regions characterized by larger farms specializing in energy crop
production may not benefit from increased crop diversification.
Considering this and given the relatively large farm sizes and high levels
of energy crop production in Brandenburg, digitalization to facilitate
crop diversification may have limited impact on reducing economic
risks and promoting regional economic stability. On the other hand, as
pointed out by the stakeholders in our study, higher crop diversity
within a region can promote regional value chains and regional self-
sufficiency (Vicente-Vicente et al., 2021). However, both factors are
strongly dependent on regional consumption habits and preferences
(Zasada et al., 2019), a driving factor not explicitly included in the BBN.

Even though not mentioned by the stakeholder in our study, it is
important to acknowledge that increased data availability and analytical
capabilities could contribute to greater market volatility. For example,
when commodity traders and speculators leverage weather and farm
data to make yield predictions, it can lead to rapid adjustments in fu-
tures markets and crop prices. This heightened sensitivity of market
prices to data-driven forecasts can cause significant fluctuations in
producer prices, which may ultimately harm farmers and their ability to
plan production and profit in good years of harvest. It is also worth
noting that the substantial costs associated with investing in new ma-
chinery and digital technologies can pose a significant risk to enterprises
if the return on investment is not realized (Duncan et al., 2021).

5.3. Uncertainties concerning the impacts of digitalization on landscape
diversification

There was uncertainty regarding how digitalization will affect the
structural diversity of landscapes. On the one hand, the stakeholders in
our study perceived that digital agriculture, specifically autonomous
cropmachines, could lead to smaller average field sizes and the ability to
operate on finer scales. On the other hand, it was not clear whether
smaller field sizes would result in an increase or decrease of landscape
elements and structures, since automation might open what was once
considered unproductive, marginal land to more intensive agronomic
management, thereby reducing the amount of land available for semi-
natural habitats. Similar results based on stakeholder perceptions were
shown in other studies (Zscheischler et al., 2022). However, digitaliza-
tion might boost productivity per unit of land, reducing the amount of
land required to generate the same quantity of output, freeing up — or at
least maintaining — land for natural features that support habitat
quality (Daum, 2021).

Historical context may help shed light on the source of this ambi-
guity. For example, in the past, technological innovation, specifically
mechanization, have resulted in ever-larger field and farm sizes,
monocultures and a notable reduction of landscape diversity in the case
study region DBD, (2001). If digitalization is seen as a continuation of
this historical tendency toward increasing mechanization and econo-
mies of scale, then it is reasonable to believe that productivity- and
efficiency-driven digitalization could lead to more of the same
(Lajoie-O'Malley et al., 2020). However, recent political and societal
developments indicate movement in the opposite direction. As pointed
out by the stakeholders in our case study, policymakers and consumers
today are becoming more aware of the detrimental consequences that
conventional, large-scale agriculture has on the environment, and as a
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result, they are placing more pressure on farmers to operate sustainably
and to ‘think’ on smaller scales. Moreover, there appears to be a growing
trend among farmers in the region to embrace funding from the EU's
Common Agricultural Policy by incorporating greening measures. The
success of such measures till now has been limited and varies according
to region (Gocht et al., 2017). Ehlers et al. (2021) suggested that digi-
talization may significantly lower costs related to monitoring such
agri-environmental schemes in the future and may lead to new forms of
results-based payments tailored to local conditions. In this respect,
digitalization could be an important tool for promoting
biodiversity-related societal objectives under the appropriate political
guidance and legal framework (MacPherson et al., 2022; Garske et al.,
2021). Additionally, building on practical research in this field could
facilitate the implementation of more effective greening measures in the
future (Mouratiadou et al., 2023).

Ambiguity surrounding the impacts on biodiversity and landscape
diversification may also reflect the stakeholders' opinion in our study
that digital agriculture would not have an overall effect. Given the
consensus among stakeholders in our study that there is connection
between field size, landscape elements and biodiversity, a deeper ex-
amination of the BBN by the participants and perhaps more focused
analysis on this relationship is warranted. In this regard, gaining more
stakeholder knowledge on the implication of agricultural digitalization
on biodiversity would complement other research currently working on
this topic (Grahmann et al., 2024).

The impacts on biodiversity resulting from digitalization may man-
ifest over longer time periods than that used for modelling in the current
study (i.e. 10 years), which could partly account for the ambiguity of
stakeholder perspectives in our study surrounding this topic. In other
words, while rapid digitalization is a plausible scenario, its effects on
biodiversity through, for example, changes in landscape elements, may
not be immediately observable due to time lags (Fahrig et al., 2011).
Overall, the findings suggest that the impacts of digitalization on
biodiversity-related factors are not obvious to stakeholders, which may
be due to lack of evidence base, or insufficient communication between
researchers and other stakeholders.

5.4. Reflections on the method

Our study introduces a novel approach to assessing the impacts of
agricultural digitalization through the application of a participatory
BBN. Namely, our approach sets itself apart from other studies exam-
ining stakeholder perceptions of agricultural digitalization, such as
through group concept mapping (Monteiro et al., 2023) or the socio-
cyber-physical systems framework (Metta et al., 2022), by explicitly
incorporating uncertainties into a probabilistic modelling framework.
As such, the scenario-driven analysis enabled by BBNs provides a more
dynamic exploration of stakeholders perception, including thier un-
certainties, on digitalization's multi-dimensional impacts. Moreover,
unlike other stakeholder engagement methods commonly employed in
the field, such as surveys (Kernecker et al., 2020) and interviews
(Fleming et al., 2018; Barrett and Rose, 2022), which primarily focus on
unidirectional acquisition of knowledge, the participatory BBN
approach provides an interactive means for facilitating dialogue and co-
creation of knowledge among stakeholders and researchers, culminating
in the development of a formalized, consensus-driven model. This type
of consensus building is particularly critical in contexts characterized by
high uncertainty, where causal relationships are complex and stake-
holders possess diverse, often conflicting values (Moallemi et al., 2023),
as is the case of assessing the impacts of agricultural digitalization and
many other envrinmontel problems.

Consensus was derived through an iterative process of constructing
the BBN, where through a visual representation of causal dependencies
and quantification of uncertainties via probabilities, stakeholders were
able to transparently see how their knowledge was incorporated in the
model over time. In this way, the procces of consturing the BBN helped

to focus communication, facilitating discussion and learning (Barbrook-
Johnson and Penn, 2022). As such, the BBN served as a ‘boundary ob-
ject’ (Kenny and Castilla-Rho, 2022), bridging the different perceptions
of the participants, providing a mutual understanding on the issues at
hand, while helping to mitigate emotion to the greatest possible extent
during discussions. This process of creating a collective understanding,
or co-learning, is arguably the key product behind participatory
modelling (Yassine et al., 2020; Voinov and Bousquet, 2010; Gray,
2016). In other words, the process of creating the BBN as a boundary
object helped stakeholders engage with and gain a deeper understanding
of the implications of digital agriculture, which might even be consid-
ered as more useful than the output of the BBN itself (Barbrook-Johnson
and Penn, 2022). This highlights the notion that participatory BBNs are
better suited as a tool for thinking, rather than serving as a rigid decision
support tool (Cain, 2001).

Greater clarity and mutual understanding could be attained by uti-
lizing indicators as selected by our group of stakeholders. While in-
dicators are frequently applied in quantitative studies, their
incorporation of stakeholder perspectives often remains limited. In
contrast, qualitative studies often deal with themes or topics that are
broad and less well defined. Through the substantiation of variables
with quantitative indicators, the combined strengths from both quanti-
tative and qualitative domains can be utilized, as demonstrated by this
study. Nevertheless, it is essential to acknowledge that the indicators
employed in our BBN were tailored to the unique circumstances of
Brandenburg. As the efficacy of the BBN as a boundary object is
contingent upon the contextual understanding and the consensus among
the participants who constructed it, it may not be easily replicable in
different settings. Therefore, transferring the results of the BBN to
another context poses challenges due to differences in local agricultural
and environmental condition, as well as variations in in stakeholder
perceptions and priorities.

5.5. Limitations

In our study, stakeholders from diverse groups including farmers,
researchers, civil society organizations, and public administration were
included in the workshops, providing a broad range of perspectives on
digital agriculture in the Brandenburg region. However, the absence of
other agri-food system actors including agri-tech companies, farm ad-
visors, supply chain actors, retailers, consumer representatives or small-
scale farmers might have limited the scope of feedback, potentially
overlooking impacts related to market dynamics, technology provision,
consumer acceptance and equity concerns. Limiting the number of
participants in workshops, however, is a necessary trade-off for facili-
tating highly engaging, semi-guided methods such as participatory
BBNs. Ensuring more focused discussions and effective engagement re-
quires smaller groups, which reduces sample size and potentially com-
promises the robustness and generalizability of the quantification
outcomes of the BBN. Due to this, it is important to carefully select
participants through stakeholder mapping and proper vetting proced-
ures while acknowledging biases when interpreting results.

One possible artefact of methodological bias in our study relates to
an absence of negative impacts from digitalization included in the BBN.
This finding is unexpected considering the numerous concerns raised in
existing literature and the initial scepticism expressed by participants.
Although we attempted to conceptualize digital agriculture by discus-
sing and selecting specific digital technologies and describing their use
in various scenarios, it's important to note that understanding of digital
technologies and the definition of digital agriculture may vary across
different contexts and individual perspectives. Generally speaking, the
farmers in our study could be considered non-adopters as they only
appeared to make use of basic digital tools like farming apps, GPS-
guided tractors, and social media and did not report using more com-
plex digital technologies such as robotics, AI, or remote sensing tech-
nologies. Even though the farmers in our study had some degree of
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knowledge about advanced digital applications, there were varying and
somewhat emotional opinions concerning their implementation. For
example, some participants held scepticisms regarding the effectiveness
of digital technologies, such as FMIS, questioning their ability to match
the value of traditional experience and expertise (Barnes et al., 2019b).
These same individuals simultaneously believed that digital tools could
simplify certain tasks in the future. Here, a general lack of knowledge of
digital technologies may have led to an overly optimistic view of digital
agriculture. Furthermore, it is important to recognize that stakeholders'
prior technical familiarity with digital agriculture technologies, or lack
thereof, may have resulted in overestimation or underestimation of
impacts (Kuhnert et al., 2010), affecting the reliability of probability
estimates and outputs of the BBN. To address issues of potential bias in
future research, assessing stakeholder knowledge both before and after
the PM exercise could help determine the influence of bias in the out-
comes of the BBN. Additionally, the literature frequently indicates that
the advantages of digitalization, such as enhanced efficiency and pro-
ductivity, tend to benefit large-scale enterprises primarily. Conse-
quently, as previously noted regarding labor-saving aspects, the
potential negative impacts of digital agriculture on smaller farms might
have been neglected due to a focus on large scale arable farming in the
study.

Although it was possible to derive probability estimates for the ma-
jority of CPTs within the given timeframe of the workshops, several CPTs
were left blank due to time limitations. To overcome this, we suggest the
use of an alternative elicitation method. For example, 3-point elicitation
methods may reduce fatigue of participants by simplifying the proba-
bility estimation process (Cain, 2001). Use of improved elicitation
methods will enhance data completeness, maintain participant
engagement, and ultimately improve the overall quality and reliability
of results.

6. Conclusions

The transition to digital agriculture is poised to bring about signifi-
cant systemic changes that will have far-reaching impacts on produc-
tion, consumption, governance, and the environment of agricultural
systems. Digitalization will not necessarily happen overnight, but will
most likely occur as a gradual, background transition over the next
decades (Klerkx and Rose, 2020). While it appears that we are at the
beginning of this transition, society has an opportunity to guide agri-
culture digitalization toward sustainability through anticipation and
inclusion. The objective of this study, therefore, was to investigate the
impacts of digitalization on agricultural systems by engaging stake-
holder knowledge and values, specifically focusing on the Brandenburg
region. To achieve this, our study employed a participatory modelling
approach to co-construct a Bayesian belief network with key stakeholder
groups from the area, including farmers, researchers and representatives
from civil society organizations and public administration.

Through our study, we found that there is a significant amount of
uncertainty among stakeholders regarding the impact of digital agri-
culture on landscape heterogeneity and biodiversity, pointing to a
research gap. Once more evidence is ascertained on this topic, it will be
important for research and policy endeavours to effectively communi-
cate these effects to stakeholders. Here, effective communication be-
tween research, the public as well as decision makers still seems to be
lacking. On the other hand, the results of our study showed there was
more certainty regarding the socioeconomic benefits of digitalization,
specifically in terms of promoting economic stability through enhanced
risk management, labour saving improvements, as well as postivie
knock-on effects of improved resource use efficiency on certain envi-
ronmental factors. In this case, stakeholders' perceptions validate gen-
eral claims already made regarding resource use efficiency. However the
consensus among stakeholders regarding the interplay between digita-
lization, risk management, and diversification warrants closer attention,
as it is currently under researched and could potentially serve as a strong

lever in the future for promoting economic robustness.
Ultimately, the instrumentalization of digital agriculture, or the ob-

jectives for which it is being used to achieve, depends on the underlying
paradigm it is associated with. For instance, within the sustainable
intensification paradigm, digitalization is a means to mitigate environ-
mental pollution and land expansion pressures by enhancing efficiency
and productivity through improved input management (Lindblom et al.,
2017). From the angle of conventional agriculture, the potential effi-
ciency and productivity gains of digitalization are typically considered
from a profit-maximization perspective, with less concern for wider
impacts on social sustainability and ecosystem services (Lajoie-O'Malley
et al., 2020). From an alternative perspective, digitalization and ecology
can be seen as complementary (Schnebelin et al., 2021; Brunori, 2023),
where technology is used to promote multifunctional and diversified
agriculture landscapes by building on principles of agroecology
(Mouratiadou et al., 2023). In this way, digital agriculture has the po-
tential to shape the future of farming, including sustainability outcomes,
based on the values and priorities of the system in which it is embedded.
It is therefore useful not to view digital agriculture as a paradigm in
itself, but as a versatile tool adaptable to different agricultural visions
and normative framings.

Our studymakes important contributions to our understanding of the
various perspectives about digitalization according to key stakeholder
groups in the region, which can direct future research initiatives in
conveying the opportunities and risks of digital agriculture to a larger
societal audience. In general, by recognizing and addressing differing
perspectives, we can bridge the gap between stakeholders, researchers
and policy makers, facilitating a more inclusive and informed dialogue
and, consequently, promoting research that is socially, economically
and environmentally more responsible.
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