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A B S T R A C T

Results-based agri-environmental schemes (AES) hold significant potential to promote biodiversity and 
ecosystem services within agricultural landscapes. However, a key obstacle to their widespread adoption is the 
practical challenge of verifying target species (result indicators) accurately and cost-effectively. This study 
presents a digital and automated approach to verify (result) indicators in grasslands to facilitate the imple-
mentation of Eco-Scheme 5, a results-based AES introduced in Germany. The presented approach employs a deep 
learning-based object detection framework to automatically detect indicator plant species in high-resolution RGB 
images acquired using unmanned aerial vehicles (UAVs). Additionally, the study explores whether incorporating 
ground-based imagery into the UAV training dataset could enhance model performance on UAV imagery, hy-
pothesizing robust generalization across these image domains. The Baseline model, trained exclusively on UAV 
imagery, achieved an average precision (AP50) of 74.0, with performance affected primarily by insufficient 
training data and class imbalance, particularly affecting species with fewer instances. In contrast, the Enhanced 
model, trained on UAV imagery enriched with ground-based data, achieved a significantly higher AP50 of 94.2 on 
the UAV test dataset, demonstrating improved detection accuracy and robust cross-domain generalization. These 
findings validate the benefits of cross-domain training in improving model performance and emphasize the 
potential of UAV-integrated artificial intelligence for efficient biodiversity monitoring and supporting the 
implementation of results-based AES.

1. Introduction

Intensified land and sea use, largely driven by food production, 
significantly contributes to biodiversity decline and the degradation of 
associated ecosystem services (IPBES, 2019). Agriculture continues to be 
the primary driver of this intensification, and with over half of the 
world’s inhabited land under agricultural use, high-intensity farming 
practices have contributed significantly to the current biodiversity crisis 
(EEA, 2015; Tscharntke et al., 2024). Conversely, biodiversity is 
fundamental to achieving more productive, sustainable, and profitable 
agriculture. It provides essential ecosystem services for agricultural 
production, including nutrient recycling, climate and water regulation, 

pollination, and pest control (Altieri, 1999; Bengtsson et al., 2019; 
O’Mara, 2012). As these services are inherently biological, their loss due 
to biological simplification can result in significant ecological and eco-
nomic repercussions (Altieri, 1999). For instance, the absence of such 
services necessitates increased reliance on external inputs such as 
chemical fertilizers, pesticides, and artificial pollination. Consequently, 
conserving and promoting biodiversity within agricultural landscapes is 
an essential societal task to ensure food security, human well-being, and 
healthy agroecosystems.

Agri-environment schemes (AES) serve as a key policy instrument 
used by governments or conservation bodies, particularly in Europe, to 
promote biodiversity and other environmental objectives within 
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agricultural landscapes, predominantly by incentivizing land managers 
to implement specific farming practices through payments (Allen et al., 
2014; Batáry et al., 2015; Baylis et al., 2008; Melzer et al., 2025; 
Simoncini et al., 2019; Wätzold et al., 2024). In conventional 
management-based payment schemes, land managers receive a flat-rate 
compensation for implementing predefined land management practices, 
rather than being rewarded for delivering measurable environmental 
results (Burton and Schwarz, 2013). However, there are a number of 
serious concerns about these schemes, including their often limited 
effectiveness in protecting target species and promoting overall biodi-
versity, as well as their lack of flexibility, which restricts land managers’ 
ability to innovate and adapt practices to local conditions (Allen et al., 
2014; Bartkowski et al., 2021; Burton and Schwarz, 2013).

In light of these concerns, results-based payment (RBP) schemes have 
emerged as a promising alternative to management-based payment 
schemes, as they have a high potential to deliver targeted and verifiable 
biodiversity objectives in a cost-effective manner (Allen et al., 2014; 
Elmiger et al., 2023; v. Haaren and Bathke, 2008). Under RBP schemes, 
land managers are rewarded solely on the basis of delivering environ-
mental results, such as demonstrating the presence of target species 
(Burton and Schwarz, 2013; Kaiser et al., 2019). These schemes not only 
increase farmers’ intrinsic interest in achieving environmental objec-
tives but also allow them, at least in principle, to innovate based on their 
experience and local knowledge to achieve more beneficial environ-
mental outcomes (Bartkowski et al., 2021; Birge et al., 2017; Burton and 
Schwarz, 2013). To date, the majority of RBP schemes have primarily 
targeted biodiversity conservation in permanent grasslands (Krieger 
et al., 2022).

Eco-Scheme 5 is one such RBP scheme implemented in Germany 
under the European Union’s Common Agricultural Policy (CAP) to 
promote extensive management of permanent grasslands (EC., 2022; 
Pe’er et al., 2022). The objective of Eco-Scheme 5, results-based extensive 
management of permanent grassland areas with evidence of at least four 
regional indicator plant species (hereafter referred to as indicators), is to 
promote biodiversity in permanent grasslands. To receive payments, 
land managers are required to demonstrate the presence of at least four 
regionally typical indicators on their grasslands. Only areas of perma-
nent grasslands are eligible under this scheme, and the indicators used 
for the assessment come from a list of species or species groups of semi- 
natural grasslands, as determined by the respective federal state. It is 
irrelevant how the eligible grassland is managed; the only decisive factor 
is the presence of indicators (BMEL, 2023).

Despite the generally positive reception of RBP schemes, including 
Eco-Scheme 5, which provide flexibility in implementing conservation 
measures to achieve predetermined environmental results (target spe-
cies), the uncertainty and verification of environmental results are the 
major obstacles to the widespread implementation of these schemes 
(Matzdorf and Lorenz, 2010). In Eco-Scheme 5 and other analogous RBP 
schemes that use plants or plant organs as outcomes of the implemented 
conservation measures, field surveys (or expert monitoring) are peri-
odically conducted to verify the results. However, these field-based 
surveys are laborious, costly, and can potentially damage the vegeta-
tion. This underscores the need for a reliable, cost-effective, and scalable 
monitoring and evaluation system that, where possible, readily provides 
evidence of the presence of target or indicator species. The use of un-
manned aerial vehicles (UAVs) combined with cutting-edge artificial 
intelligence (AI), such as deep learning (DL), is a promising approach to 
this problem. Furthermore, automated and digitalized plant species 
recognition systems are useful in other use cases beyond biodiversity 
monitoring in grasslands, such as estimating the distribution of nutri-
tious forage and identifying toxic plants.

Recent advancements in UAV-based remote sensing and DL have 
opened up a wide range of applications in agriculture and conservation, 
including crop and weed identification (Liu et al., n.d.; Lottes et al., 
2017), classification of habitat types and land-cover classes (Buchelt 
et al., 2024), and wildlife monitoring (Kellenberger et al., 2018; Reddy, 

2021). For grassland ecosystems, satellite- and UAV-based remote 
sensing applications have been applied to identify and monitor natural 
vegetation areas at different spatial levels, ranging from the landscape 
level to the community level (Lu and He, 2017; Stenzel et al., 2017). 
Nevertheless, the limited spatial resolution of satellite imagery makes it 
unsuitable for mapping species at the individual level. While UAV- 
assisted DL applications have shown great potential for crop and weed 
monitoring in arable landscapes (Osco et al., 2021; Shamshiri et al., 
2024), the number of studies applied to grassland landscapes is very 
sparse (Basavegowda et al., 2024b; Valente et al., 2019). The intricate 
spatio-temporal dynamics of grasslands, coupled with their lower eco-
nomic returns compared to high-value crops, make them a less attractive 
focus for technological investment (Lowenberg-DeBoer et al., 2020; 
Schellberg and Verbruggen, 2013).

Furthermore, there is limited research specifically addressing the 
integration of UAVs and DL approaches to assist RBP schemes (Schöttker 
et al., 2023), particularly in grassland ecosystems (Basavegowda et al., 
2024a). At present, the costs associated with automated monitoring 
remain relatively high compared to traditional expert monitoring 
methods (Schöttker et al., 2023), primarily due to the high costs of UAV 
and sensing technology, as well as the initial investment and complexity 
involved in developing AI-based autonomous monitoring systems for 
grassland plant species. Nevertheless, ongoing technological advance-
ments in image sensing, artificial intelligence (AI), and UAV tech-
nology—coupled with the increasing availability of high-quality open 
data (GBIF.Org, 2025)—are expected to significantly reduce these costs 
over time. Consequently, it remains largely uncertain whether UAV- 
assisted DL can reliably detect plant species at the individual level in 
grasslands and thereby support the implementation of biodiversity- 
focused RBP schemes, such as Eco-Scheme 5.

Accordingly, this study aims to address this research gap by 
exploring how recent advancements in remote sensing and artificial 
intelligence, particularly deep learning (DL), can be leveraged for reli-
ably detecting indicators characterized by distinctive morphological 
traits in grassland ecosystems. Using Eco-Scheme 5 as a practical case 
study, the study focuses on developing and evaluating an automated DL- 
based detection framework using high-resolution UAV imagery. Spe-
cifically, this study has three main objectives: i) to develop a DL-based 
detection model to assess the reliability of DL in identifying indicator 
plants in grasslands using UAV imagery, ii) to assess and discuss the 
practical relevance and potential usefulness of this automated approach 
in supporting the implementation of RBP schemes, with a specific focus 
on Eco-Scheme 5, and iii) to investigate the feasibility and impact of 
integrating UAV-acquired imagery with ground-based imagery (close-up 
images) to mitigate common challenges in UAV datasets, such as data 
scarcity and class imbalance. For this, we hypothesize that a trained 
model would remain robust in generalizing across ground-based and 
high-resolution UAV imagery.

2. Materials and methods

2.1. Indicator species

Each indicator used to evaluate Eco-Scheme 5 is either a single plant 
species or a group of plant species within a genus (BfN, 2020). In most 
cases, a group of plant species within a genus is counted as one indicator, 
but this categorization is not applied consistently across all regions. For 
instance, in most regions, all species of the Campanula genus are counted 
as one indicator, except in the MW region, where Campanula glomerata is 
counted as an additional indicator alongside other Campanula species, 
resulting in two indicators from the same genus (BfN, 2020). Fig. 1(a) 
illustrates the number of indicators used in each region, while Fig. 1(b) 
categorizes plant species based on their exclusivity to a single region or 
their recognition as indicators in multiple regions. This categorization 
information offers valuable insights for developing automated species 
recognition systems. By identifying indicators recognized across 
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multiple regions, redundant efforts can be minimized at the national 
level.

For this study, six indicator species were selected: Armeria maritima, 
Centaurea jacea, Cirsium oleraceum, Daucus carota, Knautia arvensis, and 
Lychnis flos-cuculi (see Fig. 2). Among these, Centaurea jacea, Cirsium 
oleraceum, Knautia arvensis, and Lychnis flos-cuculi are common in-
dicators across all regions, whereas Armeria maritima and Daucus carota 
are specific to the NO region. The selected species exhibit distinct and 
diverse morphological traits, resulting in varying levels of detection 

difficulty. For instance, in grasslands, Armeria maritima is very chal-
lenging to identify because of its narrow, needle-shaped (grass-like) 
leaves, whereas Cirsium oleraceum is relatively easier to identify because 
of its broad leaves. Furthermore, identifying plants in grasslands is an 
extremely challenging task due to the intricate spatio-temporal dy-
namics of vegetation cover (Lopatin et al., 2017; Schmidt et al., 2018), 
particularly in the context of semi-natural and natural grasslands. The 
selected indicators also differ in their ecological requirements. Armeria 
maritima and Knautia arvensis thrive in dry grasslands, Centaurea jacea 

Fig. 1. (a). Number of indicators used to assess grasslands in various regions of Germany (status in 2020). The regions are grouped as follows: NO - Mecklenburg- 
Vorpommern and Brandenburg, NW - Schleswig-Holstein and Lower Saxony, MW - Hesse, Rhineland-Palatinate and Saarland, MO - Saxony-Anhalt and Thuringia, SN 
- Saxony, BW - Baden-Wuerttemberg and BY - Bavaria. Fig. 1 (b). Distribution of indicators based on their commonality across the regions. For example, 31 plant 
species and/or genera (left-end) are region-specific indicators, recognized only in any one of the seven regions, whereas five species and/or genera (right-end) are 
common indicators recognized in all seven regions.

Fig. 2. Sample images of the selected indicators from the UAV and ground-based image (GBI) datasets, illustrating variations in perspective, resolution, and 
development stages. GBIs I refers to ground-based images from our previous work, whereas GBIs II includes images sourced from the Global Biodiversity Information 
Facility database (GBIF).
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and Daucus carota are typical of semi-dry grassland, and Cirsium oler-
aceum and Lychnis flos-cuculi are moist grassland species. Consequently, 
it is very unlikely that all these species would naturally occur in one 
location.

2.2. Data enrichment

A significant challenge in developing a reliable and robust UAV- 
assisted plant recognition system for grasslands is developing a detec-
tion model that can be generalized to multiple grasslands. In DL, model 
generalization is generally enhanced by training on high-quality data-
sets. For plant species identification, a dataset is considered to be of high 
quality if it contains a substantial number of images exhibiting sufficient 
variations, such as images from multiple fields representing different 
growth stages, significant inter- and intraspecific variations, and diverse 
image acquisition conditions representing multiple spatial resolutions 
and lighting conditions (Wäldchen et al., 2018). The generalization 
problem is further exacerbated by the higher complexity gradient of 
grasslands compared to other agricultural landscapes, driven by their 
complex spatio-temporal dynamics.

In general, data preparation is a costly and labor-intensive process 
(Paton, 2019), and preparing high-quality UAV datasets for grassland 
species is even more resource- and effort-intensive work. This is pri-
marily due to: i) grasslands are home to a considerable part of Europe’s 
flora and fauna (Eurostat, 2020), requiring the identification of a vast 
array of plant taxa, and ii) the high plot-level diversity of grasslands 
(Brunbjerg et al., 2018), which poses challenges for both ground- 
truthing and image annotation tasks. In the context of indicator spe-
cies, these challenges are further amplified, as indicators serve as proxies 
for high biodiversity in grasslands, which is rapidly declining nowadays, 
making some species extremely difficult to find. Additionally, catego-
rizing multiple species within a genus as a single indicator necessitates 
the development of a recognition system capable of identifying 
numerous species within that genus. For instance, selected species under 
the genus Centaurea, which has a diversity of more than 700 species 
(Mabberley, 1997), is counted as a single indicator across all regions 
(BfN, 2020).

Therefore, designing a cost-effective data pipeline is of great interest 
when developing automated species recognition systems using UAVs. In 
this context, we propose a practical and scalable approach that involves 
collecting a limited amount of time-series UAV data for the target spe-
cies from a fixed number of representative grassland sites and enriching 
it with publicly available ground-based image datasets—such as those 
provided by GBIF (GBIF.Org, 2025)—to pretrain or adapt deep learning 
models to the UAV image domain. As illustrated in Fig. 3, the study 
investigates the potential of this approach by evaluating the 

effectiveness of ground-based imagery in enhancing model performance 
in the UAV image domain. For this, we hypothesize that a trained model 
would remain robust in generalizing between ground-based and high- 
resolution UAV imagery, based on the assumption that DL techniques 
can be applied to learn universal representations (Bilen and Vedaldi, 
2017)—specifically, in our case, domain-invariant features that are 
transferable across the image domains. Furthermore, this data 
enhancement approach aims to address the common issue of class 
imbalance in UAV datasets (Alirezazadeh et al., 2024; Johnson and 
Khoshgoftaar, 2019) by enriching the representation of under-sampled 
species classes, thereby improving model performance and reliability 
on tail classes.

2.3. Data

2.3.1. UAV data
For the UAV data collection, the indicators were planted on a 20 m ×

30 m experimental grassland plot at the Field Lab for Digital Agriculture, 
Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 
Potsdam-Marquardt, Germany. Planting activities took place between 
the third week of April and the second week of May 2022, and again in 
the first week of May 2023. For this study, 50 to 100 plants per species 
were planted in total. This approach minimized logistical hurdles asso-
ciated with data collection activities, given the inherent difficulty of 
identifying all these indicators in a single, naturally occurring location. 
UAV flights were carried out between May and August of both 2022 and 
2023 using a DJI Matrice 300 RTK (SZ DJI Technology, Shenzhen, 
China). The UAV was equipped with one of two RGB image sensors: a 
Zenmuse P1 (SZ DJI Technology, Shenzhen, China) with a 45-megapixel 
(MP) resolution or a Sony α-6000 (Sony Group Corporation, Tokyo, 
Japan) with a 24.7 MP resolution. Images were captured from a nadir 
perspective, with a ground sampling distance (GSD) ranging from 0.5 
mm to 1 mm.

The study used images from 10 UAV field campaigns, each of which 
was conducted approximately once per month between April and August 
of both years. The raw images had dimensions of 8192 × 5460 pixels 
(Zenmuse P1) and 6000 × 4000 pixels (Sony α-6000). To reduce 
redundancy and streamline the annotation process, the UAV flights were 
conducted with minimal image overlap settings. Approximately 20 % of 
the grassland plot was reserved for preparing the test dataset. The raw 
images were tiled to preserve the resolution and facilitate the annotation 
and training. Zenmuse P1 images were split into 2048 × 1820-pixel tiles, 
yielding 12 tiles per image, while Sony α-6000 images were divided into 
2000 × 2000-pixel tiles, resulting 6 tiles per image. These tiles were 
manually annotated with bounding boxes to prepare the training and 
validation datasets. Tiles without indicators were programmatically 

Fig. 3. Schematic overview of the proposed data enhancement approach for cross-domain knowledge transfer between UAV and ground-based image domains. The 
high-resolution UAV training dataset was enriched with ground-based imagery to enhance model generalization and improve species detection in UAV images. The 
data enhancement approach was based on the assumption that deep learning models can be applied to learn universal representation across these two 
image domains.
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filtered out to optimize dataset quality and reduce computational 
overhead. Prior to training, all retained tiles were resized to 768 × 768 
pixels to standardize input dimensions across datasets. The number of 
image instances per indicator species across different datasets is sum-
marized in Table 1, while Fig. 2 shows representative samples from 
different datasets used in the study.

2.3.2. Ground-based data
To enrich the UAV training dataset and thus to improve the model 

generalization, we incorporated ground-based images (GBIs) from two 
sources: curated image data from our previous work on indicator species 
identification (Basavegowda et al., 2024b) and open-sourced images 
retrieved from the Global Biodiversity Information Facility database 
(GBIF.Org, 2025). By integrating these heterogeneous datasets, we 
aimed to provide the model with diverse visual perspectives and 
morphological variations, thereby enhancing its robustness across 
different imaging conditions and viewpoints. For each indicator species, 
the combined dataset—including UAV imagery and ground-based 
images—was balanced to include approximately 3000 annotated in-
stances. Detailed information on the number of image instances per 
species across the multiple datasets is presented in Table 1.

2.3.2.1. Ground-based images (GBIs I). This dataset comprises images 
collected from the experimental grassland plot and several grassland 
sites around Eberswalde and Potsdam, Germany (see Table 1). Images 
acquisition was carried out during multiple field campaigns under 
varying field conditions and growth stages, using either a smartphone or 
a Sony α-6000 camera. For further details on the data collection work, 
please refer to Basavegowda et al., 2024a, 2024b. In preparing the 
training dataset, priority was given to images from our own fieldwork 
over those retrieved from the GBIF, as these images were captured from 
a nadir perspective—closely resembling UAV-acquired imagery—and 
were more consistently centered on the target plant species. To prevent 
potential spatial and temporal data leakage and ensure a clear separa-
tion between training and validations sets, ground-based images 
collected from the experimental plot during UAV flight periods were 
excluded from the training dataset.

2.3.2.2. Ground-based images (GBIs II). To achieve a target of approxi-
mately 3000 annotated image instances per species for model training, 
additional images were sourced from the GBIF database (Basavegowda, 
2025) for those species where our own data collection (GBIs I) efforts 
provided insufficient samples. However, it was observed that GBIF- 
sourced images exhibited several limitations, including a strong bias 
toward specific phenological stages—particularly flowering—as well as 
issues such as variable image quality, non-nadir viewing angles, and 
occlusion by surrounding vegetation. To address these inconsistencies 
and improve the dataset quality, a systematic data curation process was 
applied. This process aimed to minimize reduce overrepresentation of 

flowering-stage images, without entirely removing such images, while 
also removing distorted or low-quality images to improve overall quality 
and consistency.

2.4. Object detection

In this study, we used a single-stage object detection model based on 
the EfficientDet architecture to develop a real-time detection model with 
higher accuracy (Tan et al., 2020). The standard outputs of the object 
detection models include the predicted classes and the spatial locations 
of the detected objects, represented by bounding box coordinates. 
Average precision (AP) is a widely used metric for evaluating object 
detection model performance. To compute AP, a threshold for Inter-
section over Union (IoU) is first set to distinguish between true positive 
(TP), false positive (FP), and false negative (FN) detections. IoU is the 
ratio of the area of overlap to the area of union, b∩bg

b∪bg
, where b is the area 

of the predicted bounding box, and bg is the area of the ground-truth 
bounding box. A detection is classified as a TP if the predicted class c 
matches the ground-truth class cg, and the IoU value exceeds the pre-
defined threshold. Otherwise, the prediction is considered FP. FN is 
counted when a ground-truth object is not detected. Precision (P) in-
dicates what proportion of the positive identification was actually 
correct P = TP

TP+FP. Recall (R) indicates what proportion of actual posi-
tives was correctly identified R = TP

TP+FN. Finally, average precision (AP) 
is computed by averaging precision values over recall values ranging 
from 0 to 1. 

AP =

∫1

R=0

P(R)dR (1) 

AP was computed according to the COCO (Common Objects in 
Context) object-detection evaluation standards (Lin et al., 2014). It is 
calculated by averaging precision values across ten IoU thresholds, 
ranging from 0.5 and 0.95 in increments of 0.05 (AP at IoU = 0.50: 0.05: 
0.95), considering all classes. A higher AP indicates that a model ach-
ieves both high precision and recall, meaning it can accurately identify 
objects while minimizing false positives and false negatives. For AP 
calculation at a specific IoU value, the area under the precision-recall 
curve for that specific IoU value is used. The choice of IoU threshold 
determines how strictly detections are considered correct or incorrect. 
For example, APIoU=0.50 (AP50) counts detections at IoU values of 0.5 
and above as correct, and APIoU=0.75 counts detections at IoU values of 
0.75 and above as correct, with a perfect match occurring at IoU = 1.

2.5. Implementation details

The images were annotated using LabelImg, an open-source image 
annotation tool, and were resized to 768 × 768 pixels prior to training. 
Model training was performed using Stochastic Gradient Descent (SGD) 
optimizer with a momentum of 0.9 and weight decay of 4 × 10− 5. 
Learning rate was linearly increased from 0 to 0.05 in the first training 
epoch and then annealed down using the cosine decay rule. Focal loss 
function was applied with a focusing parameter (γ = 1.5) and weighting 
factor (α = 0.25). Training was conducted for 300 epochs with a total 
batch size of 12, utilizing four NVIDIA GeForce RTX 2080Ti GPUs, each 
with 11 GB of memory. TensorFlow 2 and Python 3 were used for the 
implementation.

3. Results

3.1. Model generalization across UAV and ground-based imagery

Our findings strongly support the hypothesis that a trained DL model 
remains robust in generalizing across ground-based and high-resolution 
UAV imagery. As shown in Table 2 and Table 3, the enhanced models 

Table 1 
Number of image instances of each indicator species across different datasets 
used for training and evaluation. Ground-based images (GBIs) were exclusively 
used for model training together with the UAV training data, while model 
evaluation was conducted solely on the UAV test dataset. GBIs I refers to ground- 
based images from our previous work, whereas GBIs II includes images sourced 
from the Global Biodiversity Information Facility database (GBIF).

Species name Train data Test data

UAV GBIs I GBIs II UAV

Armeria maritima 771 1831 455 55
Centaurea jacea 436 1057 1488 73
Cirsium oleraceum 630 2500 150 68
Daucus carota 1042 1986 – 196
Knautia arvensis 518 1143 1480 93
Lychnis flos-cuculi 488 805 1700 58
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(Enhanced and Enhanced-PreTr), which were trained on the UAV data 
enriched with ground-based images, demonstrated superior perfor-
mance in comparison to the baseline models (Baseline and Baseline- 
PreTr) that were trained exclusively on UAV imagery. The baseline 
models were trained using a total of 3885 indicator image instances, 
with sample sizes of species ranging from 436 to 1042 instances. On the 
other hand, the enhanced models were trained on 18,480 image in-
stances, ensuring a minimum of 3000 instances per species. (see 
Table 1). In terms of performance on the UAV test dataset, the Baseline 
and Baseline-PreTr models achieved an average precision (AP) of 40.4 
and 54.4, respectively, whereas the Enhanced and Enhanced-PreTr 
models attained AP scores of 59.2 and 57.8, respectively (see 
Table 2). The Enhanced model demonstrated a substantial performance 
improvement of approximately 19 average precision (AP) points over 
the Baseline model, underscoring the value of integrating ground-based 
imagery to enrich UAV training datasets.

When evaluated individually, the baseline models detected all in-
dicators, though their performance varied significantly across the in-
dicators. For instance, the Baseline model achieved an AP of 22.2 for 
Daucus carota and 64.3 for Armeria maritima (see Table 3). The relatively 
higher AP scores for Armeria maritima, Cirsium oleraceum, and Knautia 
arvensis contributed to an overall higher AP of the baseline models. In 
contrast, the enhanced models demonstrated improved performance 
across all the indicators compared to the baseline models. This suggests 
that enriching the training data with ground-based imagery enhanced 
the models’ ability to generalize to the UAV dataset while also helping to 
address the class imbalance problem in the UAV dataset. For instance, 
Centaurea jacea and Knautia arvensis were underrepresented in the UAV 
training dataset, with only 436 and 518 image instances, respectively. 
The Baseline model achieved AP scores of 35.7 for Centaurea jacea and 
43.0 for Knautia arvensis. In comparison, the Enhanced-PreTr model 
demonstrated significantly improved performance, achieving 60.5 AP 
and 59.8 AP, respectively, for these species (see Table 3).

3.2. Fine-tuning vs. or training from scratch

Fine-tuning enables the transfer of learned representations from 
large-scale datasets to more specialized tasks (Zhuang et al., 2021), of-
fering a significant advantage in computer vision tasks where datasets 
are often insufficient for training from scratch. To examine the benefits 
of fine-tuning a pre-trained model on the UAV training data, 

characterized by limited and imbalanced data, we fine-tuned the model 
(Baseline-PreTr) by unfreezing all layers and compared its performance 
with the Baseline model, which was trained from scratch with randomly 
initialized weights. The pre-trained model used in this study was trained 
on the COCO dataset (Lin et al., 2014). The Baseline-PreTr model 
attained 54.4 AP and 89.3 AP50 on the UAV test dataset, outperforming 
the Baseline model by approximately 14 AP points. Notable improve-
ments were observed across all indicator species. For instance, Centaurea 
jacea showed a performance gain of nearly 19 AP points, with the 
Baseline-PreTr model achieving significantly higher AP than the Base-
line model (see Table 3). These results demonstrate that fine-tuning a 
model pre-trained on a large-scale, diverse dataset can substantially 
improve detection performance, particularly for specific species. How-
ever, it is important to note that both enhanced models, which incor-
porated ground-based imagery into training, surpassed the Baseline- 
PreTr model in overall detection performance, highlighting the added 
value of data enrichment beyond pretraining alone.

To assess the effect of fine-tuning in scenarios where a substantial 
amount of training data is available, we further fine-tuned the model 
(Enhanced-PreTr) using the UAV dataset enriched with ground-based 
images and compared its performance to the Enhanced model, which 
was trained from scratch. The Enhanced-PreTr model achieved 57.8 AP 
and 90.8 AP50 on the UAV test dataset (see Table 2). However, the 
comparative results between the Enhanced and Enhanced-PreTr models 
were ambiguous. While the Enhanced model slightly outperformed the 
Enhanced-PreTr model in overall performance—by 1.4 AP and 3.4 AP50 
points—the Enhanced-PreTr model showed superior detection perfor-
mance for certain indicator species, particularly broad-leaved species. In 
contrast, performance declined for others (see Table 3). For instance, the 
Enhanced-PreTr model outperformed the Enhanced model by 3.2 AP 
points for Cirsium oleraceum, but underperformed by 4.1 AP points for 
Daucus carota.

3.3. Species-specific detection accuracy

All indicators, except Armeria maritima and Lychnis flos-cuculi, were 
detected during both the vegetative and flowering phases. Detection 
scores for broad-leaved indicators were higher than other indicators, 
especially for Cirsium oleraceum. Interestingly, Daucus carota had the 
lowest detection score among all indicators, despite being one of the 
most represented species in the UAV training dataset. Armeria maritima 

Table 2 
Model evaluation results on the UAV test dataset across different experimental setups. Performance is reported using standard Average Precision (AP) and AP at an IoU 
threshold of 0.5 (AP50), which are widely used metrics for object detection performance. The table provides a comparative analysis illustrating how enriching UAV 
training data with ground-based imagery and applying pretraining strategies improved model generalization and detection performance.

Experimental setup UAV test data

No. Models Trained on Training settings AP AP50

(i) Baseline UAV data Training from scratch 40.4 74.0
Baseline-PreTr Fine-tuning with pre-trained weights 54.4 89.3

(ii) Enhanced Enriched data (UAV and ground-based) Training from scratch 59.2 94.2
Enhanced-PreTr Fine-tuning with pre-trained weights 57.8 90.8

Table 3 
Evaluation results for individual indicator species across different experimental setups. The table presents species-specific AP values, illustrating variation in detection 
performance due to species-specific characteristics as well as the effects of data availability and fine-tuning strategies. The results highlight how model performance is 
affected by morphological traits, class imbalance, and the availability of diverse training data.

Models Armeria 
maritima

Centaurea jacea Cirsium oleraceum Daucus carota Knautia arvensis Lychnis 
flos-cuculi

Flowering Flowering

Baseline 64.3 35.7 43.5 22.2 43.0 35.7
Baseline-PreTr 64.7 54.4 65.3 41.0 55.2 46.9
Enhanced 69.4 60.5 67.2 46.2 58.8 53.0
Enhanced-PreTr 67.3 60.5 70.4 42.1 59.8 48.2
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and Lychnis flos-cuculi were only detected during the flowering phase, as 
the UAV dataset lacked images of these species from the vegetative 
growth phase. Armeria maritima was annotated based on the presence of 
flowers in UAV images, as it is extremely challenging to distinguish it 
from grass during the vegetative phase. In the case of Lychnis flos-cuculi, 
the plants were visible in UAV images, but as the vegetation density 
increased, identifying them without flowers became increasingly diffi-
cult. For this reason, there were insufficient images of Lychnis flos-cuculi 
from the vegetative phase.

4. Discussion

Verifying environmental outcomes in agricultural landscapes re-
mains a significant challenge for the widespread implementation of 
results-based payment (RBP) schemes, as it necessitates the periodic 
identification of (result) indicators across the enrolled areas (Matzdorf 
and Lorenz, 2010). This study demonstrates the feasibility and reliability 
of an automated approach using UAVs and deep learning (DL) to identify 
indicator plant species in grasslands, thus facilitating biodiversity- 
focused RBP schemes. Despite the distinctive morphological traits of 
the selected indicators—including size variations and diverse leaf 
characteristics—all species were successfully detected using UAV im-
agery. Furthermore, we explored the potential of enriching UAV data 
with ground-based imagery to enhance model learning and improve 
detection accuracy, hypothesizing that a trained DL model would 
remain robust in generalizing across ground-based and high-resolution 
UAV imagery. The superior performances of the enhanced models 
(Enhanced and Enhanced-PreTr) compared to the baseline models 
(Baseline and Baseline-PreTr) support this hypothesis.

4.1. Indicator species detection and potential of ground-based imagery

The enhanced models achieved significantly higher detection per-
formance than the baseline models (see Table 2 and Table 3), confirming 
that the inclusion of ground-based imagery improved model general-
ization, resulting in more accurate detections on UAV data. Although 
UAVs and ground-based vehicles, including agricultural robots, are the 
two most commonly used platforms for data collection and computer 
vision applications in agriculture (Patrício and Rieder, 2018), the cross- 
platform applicability of deep learning models remains largely unex-
plored. This gap is largely due to substantial domain differences between 
UAV and ground-based imagery, particularly regarding resolution, 
scale, and perspective (Gao et al., 2024). To address these challenges 
and improve cross-domain generalization, we used high-resolution UAV 
imagery. Additionally, nadir-perspective ground-based images (GBIs I) 
were incorporated as an intermediate domain to bridge the gap between 
UAV data and crowd-sourced data (GBIs II). The performance gain 
observed in the enhanced models demonstrates successful transfer of 
learned features from the ground-based image domain to the UAV image 
domain. Furthermore, EfficientDet’s architectural design (Tan et al., 
2020) likely enhanced this domain-invariant feature extraction.

Nevertheless, this study relied on high-resolution UAV imagery for 
this cross-domain feature transfer, and further research is needed to 
identify the threshold at which increasing the GSD—implying coarser 
spatial resolutions—would significantly degrade model performance. 
Enriching the UAV training dataset with ground-based images collected 
from multiple grasslands, along with crowd-sourced images from the 
GBIF data infrastructure, effectively addressed the data scarcity problem 
and helped mitigate class imbalance, challenges that commonly hinder 
UAV-assisted AI applications in biodiversity monitoring (Alirezazadeh 
et al., 2024). The comparative analysis highlighted the critical role of 
dataset size, as demonstrated by the lower performance of the Baseline 
model trained from scratch. Meanwhile, the improved performance of 
the Baseline-PreTr model highlighted the importance of transfer 
learning (Zhuang et al., 2021) for smaller, less diverse datasets. The 
higher performance of the enhanced models underscores the importance 

of training on large, high-quality datasets to improve model general-
ization and detection performance. Although the Enhanced model ach-
ieved slightly higher overall performance than the Enhanced-PreTr 
model, species-specific performances varied between these models, 
highlighting that the benefits of transfer learning depend on the simi-
larity between the source and target datasets.

The Enhanced–PreTr model achieved higher detection performance 
for broad-leaved plant species, particularly for Cirsium oleraceum (see 
Table 3). This improvement is likely due to the pre-trained model used in 
the study, which was trained on the COCO dataset (Lin et al., 2014), a 
dataset containing numerous images of broad-leaved plants. This 
finding aligns with the principle that feature transferability improves as 
the similarity between the base and target tasks increases (Yosinski 
et al., 2014). Species with visually distinctive morphological charac-
teristics, both from the background and from one another, such as 
Centaurea jacea, Cirsium oleraceum, and Knautia arvensis, resulted in 
higher detection scores, due to their easily distinguishable features like 
leaf shape (Wäldchen et al., 2018) and flower color (Gröschler and 
Oppelt, 2022). The detection scores for Daucus carota are relatively 
lower than other indicators, despite its substantial representation in the 
UAV training dataset. This discrepancy can be attributed to its 
morphological complexity, particularly its intricate leaf structure and 
spatial clustering of individuals. In dense stands, smaller plants were 
frequently overshadowed by larger ones, complicating both annotation 
and detection tasks and reducing the model’s ability to reliably distin-
guish individuals.

Although detection accuracy for Armeria maritima was high, its re-
sults are not directly comparable to other indicators, as it was exclu-
sively trained and evaluated using images from the flowering period. 
The visually distinctive (floral) features (LeCun et al., 2015) from the 
background likely contributed to the consistently high detection scores 
across all experiments, even when the baseline models were trained on 
limited data. However, Armeria maritima is among the most difficult 
species to detect during its vegetative period, as its foliage closely re-
sembles the surrounding grass, making it visually indistinct in images 
(Basavegowda et al., 2024b). Identifying it in the vegetative period re-
quires close inspection, making annotation and detection particularly 
difficult in UAV images. Similarly, Lychnis flos-cuculi, which has narrow, 
lanceolate leaves, is also difficult to identify in grasslands during the 
vegetative period without close inspection, especially when partially 
obscured by other vegetation. For these reasons, we relied on images 
from the flowering period to train and evaluate these two species. 
However, unlike Armeria maritima, the leaves of Lychnis flos-cuculi were 
distinguishable from grass and were visible in UAV images, enabling 
models to learn more contextual features beyond just floral features. 
This may explain why detection rates for Lychnis flos-cuculi were lower 
than Armeria maritima.

4.2. Opportunities and challenges of UAV-assisted deep learning for 
grassland monitoring

Our results (see Table 2 and Table 3) demonstrate that DL models can 
effectively identify indicators in grasslands, provided that at least part of 
the plant remains visible in UAV images. To assess the effectiveness of 
DL models in detecting plant species with distinct morphological char-
acteristics, we selected and evaluated species of varying sizes and leaf 
shapes. UAV images were initially collected at high spatial resolutions, 
with ground sampling distances (GSDs) ranging from 0.5 mm to 1 mm. 
However, prior to model training, the tiled images (e.g., 2000 × 2000 
pixels) were resized to 768 × 768 pixels, effectively increasing the GSDs 
to an estimated range of approximately 1.3 to 2.5 mm per pixel. While 
we did not directly evaluate model performance using the original, finer- 
resolution images, the results from the resized images suggest that 
reliable species detection remains feasible within this reduced spatial 
resolution range. Nonetheless, the optimal GSD value for a species 
detection depends on its morphological characteristics, often imposing 
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constraints on UAV flight altitude. For example, the exclusion of Armeria 
maritima from the detection list would have allowed UAVs to operate at 
higher altitudes, as the remaining indicators could be detected at rela-
tively coarser GSDs. This finding aligns with Gallmann et al. (2022), who 
reported greater difficulty in identifying smaller Lotus Corniculatus 
flowers compared to relatively larger Knautia arvensis flowers at coarser 
GSDs.

Additionally, the spatio-temporal dynamics of grasslands signifi-
cantly influence detection accuracy. As vegetation density increases, 
individual plants become increasingly obscured by surrounding 
biomass, making accurate identification and annotation more chal-
lenging and resulting in a noticeable decline in species detection per-
formance over time. This observation highlights the impact of 
phenological changes and increasing canopy cover on the appearance 
and visibility of plants, which in turn constrains a model’s ability to 
learn and generalize robust visual features for species detection. These 
challenges become more pronounced in species-rich grasslands, where 
overlapping foliage and structural complexity further obscure target 
plants. Given these challenges, we do not anticipate significant im-
provements in detection accuracy for understorey species, even with the 
development of more advanced detection models in future studies 
(Lopatin et al., 2017). Computer vision models fundamentally rely on 
visual features, meaning species that are not visible in RGB imagery will 
remain undetectable, regardless of model advancements. Therefore, 
despite the use of high-resolution UAV imagery, several factors continue 
to hinder the reliable detection of plant species in grasslands through 
spatial-based remote sensing. These include: i) species whose spatial 
features blend homogeneously with the background, as seen with 
Armeria maritima during the vegetation phase, making it indistinguish-
able from the surrounding vegetation, ii) (understorey) species that are 
obscured by overstorey vegetation, as observed with Lychnis flos-cuculi, 
reducing their visibility, and iii) species with high morphological simi-
larity, leading to frequent misclassification, such as Anthriscus sylvestris, 
Conium maculatum, and Daucus carota.

Addressing these challenges will require both methodological in-
novations and strategic integration of domain-specific knowledge about 
plant morphology, phenology, and spatial context into detection work-
flows. Leveraging distinct morphological and phenological traits—such 
as unique leaf shapes, flowering times, or growth habits—can provide 
more robust cues for models. Utilizing multi-temporal data and fusing 
data from multiple sensors can significantly enhance the robustness of 
automated monitoring systems, shifting the emphasis from purely visual 
features toward a deeper ecological understanding. Integrating such 
contextual information into the model training and verification process, 
while carefully accounting for the capabilities and limitations of UAV 
remote sensing with RGB image sensors, can substantially improve 
species detection and system reliability. For instance, enhancing UAV 
survey planning and species identification hinges on answering pivotal 
questions, including: What is the optimal time window for species 
detection? Which species can be monitored together? How can UAV 
flight parameters, such as altitude, be optimized? Species that can only 
be identified when in bloom should be monitored during their flowering 
periods, while species that remain identifiable throughout the season 
can be surveyed alongside them to maximize efficiency. Selecting an 
appropriate time window for identifying understorey species is crucial, 
as their visibility decreases with increasing vegetation density and is 
further influenced by factors such as grazing and mowing. Nonetheless, 
some of these challenges could potentially be mitigated with hyper-
spectral imaging (Li et al., 2021), which provides finer spectral infor-
mation, allowing for better differentiation of plant species in grasslands. 
Furthermore, exploring advanced architectures like transformer-based 
object detection models (Carion et al., 2020) could further enhance 
detection accuracy by leveraging their ability to capture complex spatial 
relationships.

4.3. Transferability of the approach to support RBP schemes

Our findings suggest that a UAV-assisted DL-based monitoring sys-
tem holds significant potential to facilitate the result verification process 
in results-based AES schemes such as Eco-Scheme 5. This study 
demonstrated the capability of such a system in identifying (result) in-
dicator plants in grasslands, supporting the implementation of 
biodiversity-focused RBP schemes. However, progressing toward an 
operational approach necessitates further research, specifically to: i) 
validate the approach with coarser GSDs, ii) determine the optimal time 
window for indicators detection, and iii) integrate contextual informa-
tion, such as flowering period, co-occurrence patterns, habitat type, and 
geographic location, to further improve species detection. Additionally, 
we explored how data from open-access and public biodiversity data-
bases, such as GBIF, can be leveraged to enhance model generalization, 
thereby improving species detection in the UAV image domain. The 
potential of this integrated approach is immense: as UAV and AI tech-
nologies advance, coupling high-resolution remote sensing with large- 
scale biodiversity databases could revolutionize biodiversity assess-
ment, making conservation monitoring more cost-effective, scalable, 
and automated worldwide.

Ongoing technological advances, particularly in remote sensing and 
artificial intelligence (AI), coupled with the increasing availability of 
high-quality annotated datasets, are significantly improving monitoring 
capabilities and reducing associated costs. These developments offer 
opportunities to rethink the way AES are designed and implemented, 
particularly in the context of RBP schemes (Zavalloni et al., 2025) and 
collective agri-environmental action (Reichenspurner and Matzdorf, 
2025). Potential improvements include selecting more ecologically 
meaningful indicators, targeting biodiversity conservation and 
ecosystem service provision at the landscape scale through collective 
action, and fostering societal appreciation for farming. Traditionally, 
indicator species are largely selected based on distinct morphological 
traits that are visually recognizable by human experts, along with their 
alignment with intended environmental objectives (Ruas et al., 2021). 
The technology advancements enable the capture and analysis of subtle 
information beyond human visual capabilities, allowing for the inclu-
sion of previously overlooked species as indicators. This shift could lead 
to the development of more ecologically meaningful indicator sets, 
where species are selected based on their ecological significance rather 
than purely morphological traits, potentially enabling earlier detection 
of ecological changes and ultimately improving the overall effectiveness 
and adaptability of biodiversity conservation schemes.

The effective use of digital technologies in conservation depends not 
only on their technical capabilities but also on the willingness of farmers 
to engage with them, as the implementation measures, adoption of 
related technologies, and resulting conservation outcomes rely on their 
voluntary participation (Prager and Nagel, 2008). To foster meaningful 
adoption, it is therefore essential to understand farmers’ perspectives on 
digital tools. While farmers acknowledge the potential benefits of these 
technologies, they often express significant reservations. These reser-
vations are shaped by a range of factors, including the usability and 
technological complexity of the tools, associated costs, access to reliable 
digital infrastructure, and the compatibility of different solutions 
(Kernecker et al., 2020; Schulze Schwering et al., 2022). Trust also plays 
a pivotal role in shaping adoption decisions. Uncertainties regarding the 
transparency of digital platforms and the credibility of the institutions 
behind them can further undermine farmers’ willingness to engage. 
Moreover, as highlighted by Reichenspurner and Matzdorf (2025), 
farmers’ attitudes toward the use of digital applications often reflect 
their different attitude toward AES, which are closely linked to their 
identity as a food-producer and good farmer, with digitalization some-
times challenging traditional notions of what it means to be a farmer.

Therefore, the successful adoption of digital technologies to support 
the transition toward digitally enabled implementation of AES requires 
clear communication of practical purposes and demonstrable benefits, 
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such as reduced workload and simplified compliance processes 
(Reichenspurner and Matzdorf, 2025). Building institutional trust 
through the provision of reliable, mature technological solutions and 
transparent institutional frameworks is essential for sustained farmer 
engagement (Sander et al., 2024). For example, AI-based monitoring 
systems can enhance efficiency and reduce monitoring costs, but their 
credibility and acceptance improve significantly when human expertise 
is integrated at a higher verification level. Land managers and other 
stakeholders are more likely to trust and adopt AI-based monitoring 
systems if they are actively involved in the verification process, which 
aligns with the Human-in-the-Loop (HITL) approach. HITL systems are 
grounded in the belief that human-machine collaboration yields supe-
rior results, fostering trust by inserting human oversight into the AI life 
cycle (Middleton et al., 2022).

Addressing technological complexity through tailored training and 
participatory development processes that include direct farmer input 
can bridge gaps between technology providers and end users, enhancing 
the relevance and acceptance of digital tools (Geppert et al., 2023; 
Mouratiadou et al., 2023). Early adopters, those farmers who already see 
clear benefits from digital applications, should be strategically targeted 
to promote broader acceptance among more skeptical groups. Further-
more, demonstrating ecological benefits through scientifically validated 
monitoring results can strengthen the perceived value and trust in dig-
ital solutions (Dessart et al., 2019; Finger and Möhring, 2022; Wilson 
et al., 2009). Social dynamics also play a crucial role; farmer networks 
and peer interactions significantly influence technology uptake. As such, 
digital tools should complement—not replace—personal exchanges, 
facilitating communication, networking, and peer learning within 
farming communities (Finger, 2023; Massfeller and Storm, 2024; 
Schiller et al., 2021). It is equally important to highlight practical, 
successful examples, such as a decision support system (DSS) like DAKIS 
(Mouratiadou et al., 2023), through accessible media. Finally, while 
digital technologies hold considerable potential to improve the effi-
ciency and effectiveness of agri-environmental action, they cannot fix 
the structural deficits of the (AES) system; rather, the system itself must 
be improved, with digital tools serving as supportive instruments to 
facilitate and strengthen these necessary reforms (Reichenspurner and 
Matzdorf, 2025).

5. Conclusion

This study successfully demonstrates the significant potential of 
integrating UAVs and deep learning (DL) for scalable biodiversity 
monitoring in grasslands, effectively addressing a major barrier to the 
broader implementation of results-based payment (RBP) schemes: the 
reliable verification of environmental outcomes. Our research provides a 
viable approach to support the implementation of biodiversity-focused 
agri-environmental schemes (AES) like Eco-Scheme 5. A key finding 
was that enriching UAV training data with ground-based imagery 
effectively addressed data scarcity and class imbalance issues commonly 
observed in UAV datasets, particularly for grassland plant species, 
leading to improved model generalization and species detection accu-
racy. This data enhancement approach has immense potential to 
significantly advance biodiversity monitoring, making it more cost- 
effective and scalable.

The integration of UAVs and DL for biodiversity monitoring is an 
area of active research, attracting increasing attention from the scientific 
community. However, developing such monitoring tools exclusively for 
RBP schemes may be economically unviable. To enhance feasibility and 
economic appeal, it is crucial to explore broader applications of auto-
mated plant species recognition in grasslands beyond RBP schemes. For 
instance, integrating indicator species identification with applications 
such as biomass estimation, forage quality assessment, invasive and 
toxic plant detection, and pest and disease management could increase 
the economic viability of these technologies. Additionally, the precise 
species-level information provided by UAV and AI technologies can 

positively impact biodiversity conservation by enabling precision agri-
culture practices that reduce reliance on synthetic fertilizers and pesti-
cides, promoting more sustainable land management.
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Middleton, S.E., Letouzé, E., Hossaini, A., Chapman, A., 2022. Trust, regulation, and 
human-in-the-loop AI: within the European region. Commun. ACM 65 (4), 64–68. 
https://doi.org/10.1145/3511597.

Mouratiadou, I., Lemke, N., Chen, C., Wartenberg, A., Bloch, R., Donat, M., Gaiser, T., 
Basavegowda, D.H., Helming, K., Hosseini Yekani, S.A., Krull, M., Lingemann, K., 
Macpherson, J., Melzer, M., Nendel, C., Piorr, A., Shaaban, M., Zander, P., 
Weltzien, C., Bellingrath-Kimura, S.D., 2023. The digital agricultural knowledge and 
information system (DAKIS): employing digitalisation to encourage diversified and 
multifunctional agricultural systems. Environmental Science and Ecotechnology 16, 
100274. https://doi.org/10.1016/j.ese.2023.100274.

O’Mara, F.P., 2012. The role of grasslands in food security and climate change. Ann. Bot. 
110 (6), 1263–1270. https://doi.org/10.1093/aob/mcs209.

Osco, L.P., Marcato Junior, J., Marques Ramos, A.P., de Castro Jorge, L.A., Fatholahi, S. 
N., de Andrade Silva, J., Matsubara, E.T., Pistori, H., Gonçalves, W.N., Li, J., 2021. 
A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 
102, 102456. https://doi.org/10.1016/j.jag.2021.102456.

Paton, N.W., 2019. Automating Data Preparation: Can we? Should we? Must we? 
International Workshop on Design, Optimization, Languages and Analytical 
Processing of Big Data. http://ceurws.org/Vol-2324/Paper00-InvTalk2-NPaton.pdf. 

Patrício, D.I., Rieder, R., 2018. Computer vision and artificial intelligence in precision 
agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 
69–81. https://doi.org/10.1016/j.compag.2018.08.001.

Pe’er, G., Finn, J.A., Díaz, M., Birkenstock, M., Lakner, S., Röder, N., Kazakova, Y., 
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Tscharntke, T., Batáry, P., Grass, I., 2024. Mixing on- and off-field measures for 
biodiversity conservation. Trends Ecol. Evol. https://doi.org/10.1016/j. 
tree.2024.04.003.

v. Haaren, C., Bathke, M., 2008. Integrated landscape planning and remuneration of 
Agri-environmental services: results of a case study in the Fuhrberg region of 
Germany. J. Environ. Manag. 89 (3), 209–221. https://doi.org/10.1016/j. 
jenvman.2007.01.058.

Valente, J., Doldersum, M., Roers, C., Kooistra, L., 2019. DETECTING <i>RUMEX 
OBTUSIFOLIUS</i> WEED PLANTS IN GRASSLANDS FROM UAV RGB IMAGERY 
USING DEEP LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and 
Spatial. Inf. Sci. 179–185. https://doi.org/10.5194/isprs-annals-IV-2-W5-179-2019. 
IV-2/W5. 
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