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Abstract: Accurate crop classification is of vital importance for agricultural water management.
Most researchers have achieved crop classification by model optimization in the same temporal and
regional domain by adjusting the value of input features. This study aims to improve the accuracy
of crop classification across temporal and spatial domains. Sentinel-2 satellite imagery is employed
for crop classification training and prediction in selected farming areas of Heilongjiang Province
by calculating vegetation indices and constructing sequential input feature datasets. The HUNTS
filtering method was used to mitigate the influence of cloud cover, which increased the stability and
completeness of the input feature data across different years. To address the issue of shifts in the input
feature values during cross-scale classification, this study proposes the hypothesis testing distribution
method (HTDM). This method balances the distribution of input feature values in the test set even
without knowing the crop distribution, thereby enhancing the accuracy of the classification test set.
The results indicate that the HTDM significantly improves prediction accuracy in cases of substantial
image quality variance. In 2022, the recognition accuracy for crop types at all farms processed by the
HTDM was above 87%, showcasing the strong robustness of the HTDM.

Keywords: crop classification; remote sensing; hypothesis testing distribution method (HTDM);
SHAP analysis; cross-scale

1. Introduction

Precise and rapid large-scale crop type recognition is an essential prerequisite for
modern agricultural management and decision making, playing a key role in aspects such
as regional planting structure statistical analysis and optimization [1,2], agricultural water
resource allocation [3], farmland water and fertilizer management [4], and prevention
and control of agricultural non-point-source pollution [5,6]. For instance, according to
Xie et al. [7], spatial optimization of the planting structure at the national scale, based on
crop type identification, could lead to an increase in farmers’ incomes by approximately
2.9% to 7.5% and a reduction in pesticide use by 4.3% to 10.8%. You et al. [8] indicated that
large-scale crop classification aids in mapping crop distribution data. By further integrating
water usage characteristics and fertilizer input of various crops [9], it is feasible to advance
the acquisition of water consumption data from post-usage statistics to pre-usage assess-
ment. This is vital for regional water resource allocation, water resource scheduling, as well
as large-scale water and fertilizer management, and agricultural diffuse pollution assess-
ment [10,11]. Additionally, large-scale precise and rapid crop type identification is closely
related to agricultural finance [12] and agricultural insurance [13]. Crop classification at the
field scale is a prerequisite for processing agricultural insurance claims. Ground surveying,
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the most classical method of obtaining crop type distribution, is not only resource-intensive
but also suffers from temporal lags [14,15].

Due to the continuous temporal nature [16,17] and wide information coverage area of
satellite remote-sensing images [18,19], in recent years, satellite remote-sensing technology
has played a significant role in the identification of crop types over extensive areas [20],
using extracted vegetation indices to train an improved CNN with single-date hyperspectral
images, testing and validating the proposed method on two benchmark datasets. For the
Indian Pines dataset, corn and soybeans achieved an average accuracy of 96.81% and
97.75%, respectively. For the Salinas dataset, fallow lands and lettuce achieved an average
accuracy of 97.93% and 98.01%, respectively. Compared to hyperspectral remote sensing,
multispectral remote-sensing technologies, due to their lower cost and wider availability
of images, have seen broader application. Chakhar et al. [21] conducted data fusion of
Landsat-8 and Sentinel-2 multispectral satellite images and explored the robustness and
classification efficiency of diverse non-parametric classification algorithms for the fused
datasets. Neetu and Ray [22] undertook efficient access to multispectral data on the Google
Earth Engine (GEE) platform, filtering and preprocessing, where high-quality images based
on the percentage of cloud cover were extracted, and explored the accuracy of different
machine-learning classifiers in the task of crop classification.

In terms of implementation tools, many researchers have used machine-learning
frameworks to achieve classification. There are two main research avenues here: one
is to explore the adoption of new model frameworks and compare their classification
accuracy with conventional machine-learning frameworks, and the other is to use different
data sources, comparing various input dimensions, data fusion methods, and different
resolution scales on crop classification imagery. Rohit Uttam Bhagwat designed an effective
technique inspired by transfer learning (which utilizes a convolution neural network (CNN)
as a feature extractor) and a popular gradient-boosting algorithm: XGBoost (as a classifier).
And the results show this framework performed better than state-of-the-art methods, like
random forest and Gaussian Naive Bayes. Stefanos Georganos compared XGBoost with
benchmark classifiers such as random forest (RF) and support vector machines (SVMs)
with very-high-resolution images. The results demonstrate that XGBoost parameterized
with a Bayesian procedure and systematically outperformed RF and SVM, mainly in larger
sample sizes.

However, when using multispectral satellite remote-sensing images for crop classi-
fication, cloud cover can cause information loss on the one hand [23], and on the other
hand, localized cloud cover can significantly reduce the uniformity of image collection,
dramatically increasing the heterogeneity of the samples, which can degrade classification
accuracy [24,25]. Consequently, some researchers have turned to Synthetic Aperture Radar
(SAR) imagery, which operates in longer wavelengths that can penetrate clouds [26,27].
Chakhar et al. [28] combined Sentinel-1 information (VV and VH backscatter and their ratio
VH/VV) with NDVI calculated from Sentinel-2 satellite data to assess the classification
accuracy of various classifiers using SAR data alone and in combination with optical data.
Li et al. [29] used L-band SAR data for crop classification at an agricultural site in Califor-
nia’s San Joaquin Valley and achieved a peak classification accuracy of 90.5%. However,
radar data use is often influenced by various factors such as the speckle noise effect in radar
images [30], difficulties in interpreting the information [31], and numerical changes caused
by terrain variations [32].

Furthermore, drone imagery has been utilized by scholars to mitigate the challenges
posed by cloud interference. Despite the advantages of high resolution and temporal flexi-
bility offered by Unmanned Aerial Vehicle (UAV) images as highlighted by Fan and Lu [18]
and Kwak and Park [33], their coverage area remains relatively small compared to satellite
remote-sensing images. This limitation, coupled with narrow coverage and variability in
image quality due to multiple image dates, restricts their suitability for large-scale crop
identification, as noted by Reedha et al. [34].
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Additionally, existing research predominantly focuses on crop type identification
within the same temporal and regional context, as evidenced by studies conducted by
Bégué et al. [35], Li et al. [36], Yang et al. [19], and Zhong et al. [37]. However, there is
a noticeable decrease in accuracy when extending remote-sensing crop classification to
diverse regions, as observed by Ji et al. [38] and Wang et al. [39]. Sonobe et al. [40] employed
TerraSAR-X data and machine-learning techniques to identify crops in Hokkaido, Japan,
utilizing 2009 data for training and predicting classifications for 2012 images. Their results
indicated an overall cross-classification accuracy of 89.1% for the same year, with a decrease
to 78.0% accuracy for 2012. Similarly, Muhammad et al. [41] utilized data spanning from
2013 to 2019, with a subset of four years for training and one year for model evaluation,
achieving accuracies ranging from 74.4% to 81.9%. These variations in accuracy can be
attributed to differences in climate conditions and vegetation patterns across regions,
leading to discrepancies in vegetation index values for the same crop type, as highlighted
by Wang et al. [39].

Many of the abovementioned studies of crop classification focus on the same temporal
and regional context and model optimization. When conducting cross-temporal and cross-
spatial predictions, the accuracy of classification decreases to varying degrees. Researchers
mostly optimized model structures to enhance proximity to precision. However, there
exists an upper limit to accuracy when altering the model framework under the condition
of equivalent image quality. Therefore, the primary objective of this study is to address the
above issues from the perspective of data preprocessing. This approach aims to address the
challenges related to data quality and completeness arising from cloud cover and temporal
predictions based on single-image information. This paper employs filtered vegetation
indices as inputs, with this processing step ensuring consideration of temporal information
and ensuring the integrity and stability of data acquisition. After that, an iterative named
the “hypothesis testing distribution method” is designed to address the issue of numerical
offsets in cross-temporal and spatial prediction of imagery. This method achieves improved
classification accuracy by adjusting corrections to input features through a gradient descent
optimization logic with gradient descent.

2. Materials and Methods
2.1. Study Area

The study area is located within Heilongjiang Province, which is the northernmost
and highest-latitude province in China, characterized by a cold temperate and temperate
continental monsoon climate. The annual average temperature is around 5 °C. Annual
rainfall is approximately 550 mm. The average annual sunshine duration ranges from
2200 to 2500 h. Within the research area discussed in this paper, there are a total of ten
farms (Figure 1), with a combined planting area of about 5,211,893 hectares. The main
extensively planted crops are rice, corn, soybeans, and wheat. Based on vector files that
include crop types, obtained through the analysis of planting policies and images of the
same year, we can estimate the proportion of each crop in the random sampling points as
representative of the distribution of farm crops (Table 1).
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Figure 1. Distribution map of farms in the research area.
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Table 1. The proportion of planting area of various crops on each farm from 2019 to 2022.
Proportion Proportion Proportion Proportion AREA
Farm Name Year of Rice of Maize of Soybeans  of Wheat (m?)
2019 0.751 0.201 0.048 0 788,374,229.43
Bawulin 2020 0.749 0.178 0.073 0 821,538,859.59
5 2021 0.752 0.222 0.026 0 820,802,304.13
2022 0.72 0.165 0.115 0 820,989,318.27
2019 0.936 0.025 0.039 0 801,388,296.55
Bawub 2020 0.939 0.015 0.046 0 801,942,534.54
awuba 2021 0.927 0.031 0.041 0 801,667,709.59
2022 0.895 0.027 0.078 0 806,883,923.12
2019 0.525 0.171 0.305 0 560,784,029.20
Yunh 2020 0.528 0.215 0.257 0 560,773,507.85
unshan 2021 0.528 0.315 0.158 0 561,091,394.98
2022 0.516 0.165 0.319 0 563,253,919.40
2019 0.827 0.158 0.016 0 842,704,046.51
Junch 2020 0.827 0.129 0.044 0 842,557,865.42
unchuan 2021 0.829 0.159 0.012 0 842,484,184.65
2022 0.822 0.093 0.085 0 845,874,235.93
2019 0.858 0.055 0.088 0 1,489,302,362.59
Qixin 2020 0.847 0.062 0.092 0 1,494,554,545.85
& 2021 0.825 0.081 0.094 0 1,493,962,739.02
2022 0.832 0.076 0.092 0 1,494,063,878.37
2019 0.944 0.008 0.048 0 621,707,476.94
Hongwei 2020 0.939 0.009 0.052 0 625,380,146.97
& 2021 0.928 0.035 0.038 0 625,145,749.98
2022 0.849 0.061 0.089 0 633,873,572.45
2019 0 0.068 0.924 0.008 401,765,003.04
Longmen 2020 0 0.166 0.808 0.026 403,031,764.76
& 2021 0 0.127 0.766 0.107 404,177,043.18
2022 0 0.092 0.836 0.072 404,716,699.72
2019 0.018 0.362 0.619 0 684,490,977.34
Longzhen 2020 0.021 0.303 0.676 0 680,682,141.26
& 2021 0 0.2 0.729 0.071 680,930,624.84
2022 0.017 0.321 0.661 0 681,397,904.22
2019 0 0.374 0.626 0 1,071,868,559.92
Hesh 2020 0 0.377 0.622 0.001 1,067,989,960.08
eshan 2021 0 0.379 0.621 0.001 1,067,959,640.31
2022 0 0.318 0.681 0.001 1,064,687,937.30
2019 0.001 0.297 0.694 0.008 6,695,068,01.95
Rongiun 2020 0.001 0.3 0.687 0.012 6,717,733,51.38
& 2021 0 0.422 0.568 0.01 6,860,031,09.95
2022 0.001 0.236 0.761 0.002 6,861,598,02.83

Table 1 reveals that Longmen Farm and Longzhen Farm primarily cultivate wheat,
while the main crops of the other farms include rice, corn, and soybeans. Spatially, there is
a significant difference in the crop distribution among the different farms, and even within
the same farm, due to crop rotation and the conversion of paddy fields to dry land and other
agricultural management practices, the spatial distribution of crops varies continuously
between different years.

2.2. Image Sources and Input Feature

The remote-sensing image data utilized in this study are sourced from Sentinel-2 Level
2A images (L2A). L2A images are products that have undergone atmospheric correction
based on the spatially corrected Level 1C images (L1C). The imagery encompasses a total
of 13 bands, including three visible-light bands and one near-infrared band, each with a
resolution of 10 m. Their respective central wavelengths are 496.6 nm (B2), 560 nm (B3),
664.5 nm (B4), and 835.1 nm (NIR). The bands with a resolution of 20 m include the red
edge band (B5, B6, B7), narrow near-infrared (B8A), and short-wave infrared (B11, B12),
with central wavelengths of 703.9 nm (B5), 740.2 nm (B6), 782.5 nm (B7), 864.8 nm (BSA),
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1613.7 nm (B11), and 2202.4 nm (B12), respectively. Additionally, the coastal aerosol (B1)
band with a resolution of 60 m and the water vapor band (B9) feature central wavelengths
of 443.9 nm (B1) and 945 nm (B9), respectively. The Sentinel-2 mission operates with two
polar-orbiting satellites in the same sun-synchronous orbit, which are phased at 180 degrees
from each other. This configuration allows for a revisit period of three days in the region
under study for this research.

Based on Sentinel-2 Level 2A remote-sensing imagery, this study selects six types of
vegetation indices: LSWI, GLI, RNDVI, MSAVI, IRECI, and SAVI. The calculation formulas
are given in Equations (1)—(6) [42—45]:

NIR — SWIR
LSWI = iR SWiR @
2G—R—B
GLI_2G+R+B )

\/(ZNIR +1)> —8(NIR —R)
MSAVI =2NIR+1+

2
_ (EDGE3 — R)EDGE2
IRECI = EDCEL (4)
NIR — R
SAVI =+ DRy RT L ©)
EDGE1 —R
RNDVI = ¥56F TR ©)

where NIR is the near-infrared band, SWIR is the short-wave infrared band, G is the green
band, R is the red band, B is the blue band, EDGET1 is the red edge 1 band, EDGE2 is the
red edge 2 band, EDGES3 is the red edge 3 band, and L is an adjustment parameter used to
modify the vegetation index to account for the influence of soil surface exposure, and it is
commonly set to a value of 0.5.

Sentinel-2 imagery was acquired for the study area from 1 April to 1 September, and
the various vegetation indices mentioned above were calculated. The indices were then
organized chronologically, and the HUNTS temporal series smoothing algorithm was
applied to eliminate numerical anomalies caused by disturbances such as cloud cover.
After processing, the filtered results for the features on the 15th of each month from April
to August were extracted, resulting in a total of 30 features. This process was conducted on
the Google Earth Engine (GEE) platform, and the formula for the filtering curve is given in
Equation (7) [46]:

HUNTS = asin(27tt) + bcos(27t) + 27tc 7)

with HUNTS as the feature value after filtering at time t; t is the time, given in years, and 4, b,
and c are calibration parameters, which are independently determined for each pixel point.

3. Model Development and Evaluation
3.1. Hypothesis Testing Distribution Method

The crop classification algorithm used in this study was based on XGBoost. XGBoost
is an optimized version of a Gradient Boosting Machine (GBM) model and likewise belongs
to the category of ensemble machine-learning methods that aim to integrate multiple weak
learners into an efficient model [47]. This algorithm iteratively constructs new base learners
that are highly correlated with the negative gradient of the loss function, to maximally
boost model performance. In XGBoost, the application of the squared loss function not
only penalizes large deviations in the target output but also overlooks small residuals,
thus making the calculation of pseudo-residuals and the optimal solution direction more
efficient in each iteration. By the ingenious use of the squared loss function, XGBoost pays
more attention to the accurate handling of errors during training, thereby enhancing the
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robustness and generalization ability of the model [47,48]. In this study, the experimental
hardware platform consisted of an AMD Ryzen 5 3600 6-Core Processor CPU running in
the Windows 10 operating system, along with an NVIDIA GeForce RTX 2060 GPU and
32 GB of RAM. The code was written using XGBoost 1.7.6 machine learning and developed
using Python 3.9.12.

However, statistical analysis revealed that there is a bias in the values of vegetation
indices for the same crop across different years (Figure 2). This bias originates from
interannual differences in crop growth, atmospheric conditions, and satellite sensors. When
the bias is significant, using raw vegetation index statistics without any processing can, to
varying degrees, decrease the accuracy of crop classification.

0.8

0.6

NDVI

0.4

0.2

0.0
2019-01 2019-03 2019-05 2019-07 2019-09 2019-11 2020-01
Date

Figure 2. Mean NDVI time series for Yunshan Farm for the years 2019-2022.

Therefore, the current study proposes the use of the Index Normalization Method
(INM) to eliminate the influence of interannual biases in vegetation indices. This method
assumes that the distribution of the same type of crop is consistent (reflected in grid data by
the proportion of pixels representing each crop type being constant). By using the training
set to adjust the values within the prediction set, the calculation is given in Equation (8):

NewPixel = plxezp”d — e pred

T Stdpygin + Mmean;, i, (8)
pre

where NewPixel is the corrected feature value, pixel,, is the feature value of the original
prediction dataset, mean,,; is the average value of the feature value in the prediction
dataset, std is the standard deviation of the specified feature in the prediction dataset,
mean;,;y, is the average value of the feature value in the training dataset, and stdy,;, is the
standard deviation of the specified feature in the training dataset.

Considering scenarios such as the transformation of paddy fields to dry fields, dry
fields to paddy fields, and crop rotation, the crop distribution in the same farm can vary
across different years in practice. To address this, our study proposes the HITDM, which
extends the applicability of the Index Normalization Method, previously limited to identical
distributions, to situations where crop distributions differ.

This method assumes that the crop distribution of the prediction set is the same as
the initial distribution. Subsequently, it generates a new dataset based on the training set
where the crop distribution equals the initial distribution and calculates the variance and
standard deviation for each feature of this dataset. The calculation approach utilizes statis-
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tical principles and ensures computational speed by carrying out numerical calculations
throughout the entire process. The calculation formula is given in Equations (9) and (10):

rice,maize,soybean, wheat

mean = Z meancrop Perop )
crop

ice,mai 2
rice,maize,soybean,wheat Std(z;rop (”'Pcrop _ 1) + (memlcrop _ mea”train) '(n'pcrop)

std = —

(10)

crop

where stdcro is the standard deviation of the specified feature for the crop within the
training set, 7 is the number of data points in the training set, pcop is the proportion of data
for the crop in the training set, and meancop is the average value of the crop feature in the
training set.

The variances and standard deviations calculated were applied to correct the validation
set data using the Index Normalization Method (INM). The feature values were then fed into
the trained model to output the classification results. The distribution of crop classification
results was tallied and compared with the initially set distribution. We postulate that
when the initially set distribution was similar to the predicted distribution generated
based on the initial distribution, the initial distribution was considered as the actual crop
distribution of the prediction set. To evaluate the quality of the model’s predictions during
the hypothesis testing process, this study designed a loss function for hypothesis testing,
which is expressed in Equation (11):

rice,maize,soybean, wheat

loss = 2 wcrop(Ppred,crop - PCVOP)Z (11)

crop

where loss is the loss value, Werop is the weight of the crop, which is a hyper-parameter,
Ppred,crop 18 the proportion of crop prediction results, and perop is the assumed proportion for
the crop.

3.2. Gradient Descent

During the iterative process of determining crop distribution, we have chosen the
gradient descent method as the means to refine the distribution. Gradient descent is an
iterative optimization algorithm based on the gradient of the objective function, used to
solve minimization or maximization problems. It is commonly applied in parameter opti-
mization within machine learning, function minimization, and various other optimization
issues. In solving the optimization problem of finding the optimal crop distribution within
the aforementioned hypothesis testing method, the distribution proportions of various
crops serve as variables. The objective function is subject to the constraint that the sum of
the distribution proportions must be equal, with the loss function serving as the objective
function. Due to the issue of local optima in extreme distribution scenarios, the crop dis-
tribution from the training set is used as the initial value for the variables. The steps for
applying gradient descent to iterate the crop distribution within the HTDM are given in
Equations (12)—(18):

Setting initial variables:

bo = (brices bmaizes bsoybeun/ beheat) (12)
Adjusting the input data of the test set based on the assumed distribution:

x" = F(x,b;) (13)
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Inputting the modified test dataset into the model to obtain the classification results:
y=M(x') (14)

Counting the distribution of the predicted classification results:
bl = Statistic(y) (15)

Calculating the loss value:
l; = Loss(b;, bj) (16)

Calculating the gradient and adjusting the distribution of each crop [49]:

grad =3 = (X OV O SOV a7

ob ( byice ’ Iyuaize ’ absoybean ’ I yheat

bi1 = b; —Ir-grad (18)

where by is the initial crop distribution, bcyop is the distribution of the crop, F is the ad-
justment function, b; is the crop distribution during the ith iteration, y is the predicted
classification outcome, M is the crop classification model, b’ is the crop distribution pro-
jected by the predicted classification outcome, Statistic is the statistical function, /; is the
loss function during the ith iteration, Loss is the loss function, grad is the gradient, and Ir is
the learning rate.

In conclusion, the complete computational flowchart of the HTDM is illustrated in
Figure 3.

(mean, std)
for each corp
and feature

Test dataset

1
1
I
_____ " _
i 1 bO _( brir?’ bnni:?’b.smirml’ b\rhen‘)
Predicted [/ = | “===== - 1
classification Revised 1
distribution I b.i+l = b—fr-gmd
1
1
1 o A - N A
i I oy oy oy oy oy
Distribution R grad=—=| = ,——,——
statistics i cb 0Obice Ebmm;v Cbm bean (b heat

Final
classification

Figure 3. HTDM iteration flowchart.

3.3. Method for Evaluating Model Prediction Accuracy

The predictive results of the model were evaluated by comparing the test set labels
with the model’s predictions, adopting the accuracy and the Kappa coefficient to assess
the classification precision under various scenarios. The overall accuracy represents the
proportion of correctly classified pixels relative to the total number of validation pixels.
In comparison to accuracy, the calculation of Kappa was based on the confusion matrix,
which contrasts the model’s classification results with the labels, taking into account the
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randomness and agreement between predictions and labels. This gives the Kappa coeffi-
cient a unique advantage when assessing classification outcomes [50,51]. The calculation
formula for Kappa is given in Equation (19):

Po — Pe
k="——"— 19

where py is the proportion of correctly classified instances, and p, is the probability of
the random prediction, which is calculated as the sum of the products of the actual and
predicted quantities for all categories, divided by the square of the total number of samples.

3.4. Input Feature Evaluation

SHAP (Shapley Additive Explanations), proposed by Lundberg and Lee, is an ana-
lytical method used for interpreting model predictions [52]. Based on game theory and
local explanations, SHAP provides a means to estimate the contribution of each feature.
Within SHAP, the contribution of each feature to the model output is allocated based on
their marginal contributions [51]. The SHAP values can be determined by the following
fundamental formula, which ensures a fair distribution of feature contributions among
the samples:
|S|!(n—|S|—1)!

o [v(SU{i}) —o(S)] (20)

Pi =
SCN{i}
where @; is the distribution of feature 7, N is the input data to the model, # is the number of
features, and v is the model output results.
The linear function of the binary feature g is defined based on the following additive
feature attribution method: y
() = po+ ) oz (21)
i=1
where z;’ is either 0 or 1, with the value being 1 when the feature is observed and 0 otherwise,
and M is the number of input features.

4. Results and Discussion
4.1. Comparison of the Improvement in Forecast Accuracy across Time Domains with the HTDM

The accuracy of random sampling points at Yunshan and Longzhen Farms from
2019 to 2022 has been evaluated by processing with the HTDM (Figure 4). The results
without the HTDM for 2019 were considered as the training set accuracy. The results
show that the training set accuracy for Yushan Farm is 97.65%, and for Longzhen Farm,
it is 97.84%. Prediction accuracies for Yushan Farm for the years 2020 to 2022 are 94.90%,
92.50%, and 38.68%, respectively, while for Longzhen Farm, they are 95.72%, 89.60%, and
84.81%. From the training set results, it can be inferred that using HUNTS filtering to
extract feature indices of each month as input features results in high training set accuracy,
indicating that the feature extraction method captures time series features that effectively
differentiate between crops. The results” accuracy shows that compared to previous studies,
which selected high-quality remote-sensing images and directly composed them into a
time series by time, the filtering-based time series construction method used in this study;,
while retaining sufficient time series information, provides a feasible approach for creating
simple, stable image datasets across different years.

There are certain differences in the imagery of various crops between years; these
differences can lead to a decrease in prediction accuracy, with the lowest accuracy and
largest classification difference due to image quality apparent in 2022. In the 2019 results,
when the hypothesis testing distribution method was applied, there was a slight drop in the
same year’s accuracy for both Yushan and Longzhen farms, possibly because the vegetation
index features for crops in the same year already have certain differences between the farms.
Combining datasets for correction could result in a decrease in classification accuracy. For
cross-temporal prediction results, combining the previous conjectures on the modified
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classification accuracy after applying the hypothesis testing distribution method for the
same year, the 2020 vegetation index features were close to the training set year, possessing
high prediction accuracy before correction, and after applying the HTDM, accuracy might
slightly decrease or increase. For 2022, due to the significant offset in vegetation index
feature values, the prediction accuracies for Yushan and Longzhen farms without applying
the HTDM are 38.69% and 84.82%, respectively, and after processing, they become 87.2%
and 94.7%.

BN Yunshan_handle
B Yunshan_nohandle
B [ongzhen_handle
BN Longzhen_nohandle
1.0
2y
5708
=
=]
3 0.6
bR
0.4
0.2 I
0.0
2019 2020 2021 2022
Year

Figure 4. Accuracy comparison of Yushan Farm and Longzhen Farm from 2019 to 2022 utilizing
the HTDM.

A comparison of crop accuracies before and after using the hypothesis testing distri-
bution method reveals that when the inter-annual differences in image quality are small,
the accuracies with the HTDM were close to the original ones. However, when there
is a significant difference in image quality, applying the hypothesis testing distribution
method can markedly improve crop classification accuracy. However, the primary aim
of the HTDM was to improve accuracy by adjusting input feature values, not optimizing
the model itself. Therefore, this method can be used in conjunction with other domain
adaptation enhancement methods, such as cross-domain alignment modules and domain
feature mapping to a common feature space [26].

As shown in Table 2, the Kappa indices for Yunshan Farm from 2019 to 2022 were 0.958,
0.949, 0.917, and 0.793, respectively. The overall accuracy was relatively high, with the
Kappa index for soybeans in 2021 slightly lower at 0.860, but the rest exceeded 0.9. In 2022,
the Kappa values for rice, maize, and soybeans were 0.970, 0.649, and 0.695, respectively,
with rice classification exhibiting the highest accuracy. There was a tendency for the
soybean pixels to be confused with maize, with soybeans being more likely to be predicted
as maize pixels (Figure 5). The limitation in the information provided by 10 m resolution
multispectral images for maize identification suggests that achieving higher prediction
accuracy may demand the use of texture features from high-resolution images [53]. The
primary crops at Longzhen Farm are maize, soybeans, and wheat, with overall classification
Kappa indices of 0.989, 0.875, 0.868, and 0.794 for the years 2019 to 2022, respectively. The
general trend in Kappa variability is consistent with Yushan Farm, showing a proportional
decline as the difference between years increases. In 2022, the Kappa indices for maize,
soybeans, and wheat were 0.928, 0.790, and 0.585, respectively. It can be observed from
the confusion matrix that wheat is more likely to be predicted as soybeans (Figure 6). In
summary, using the hypothesis testing method to predict various crops has produced
certain degrees of accuracy. As the years change and feature offsets caused by image quality
differences increase, the accuracy using the HTDM significantly improves compared to not
using the method.
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Table 2. Kappa indices for Yunshan and Longzhen Farms from 2019 to 2022.
Kappa Kappa Kappa Kappa
Year Farm Name Kappa of Rice of Maize of Soybeans of Wheat
2019 Yunshan 0.958 0.998 0.987 0.989 -
2020 Yunshan 0.949 0.974 0.937 0.929 -
2021 Yunshan 0.917 0.963 0.905 0.864 -
2022 Yunshan 0.793 0.793 0.967 0.695 -
2019 Longzhen 0.989 - 0.991 0.989 0.972
2020 Longzhen 0.875 - 0.896 0.874 0.755
2021 Longzhen 0.868 - 0.913 0.860 0.827
2022 Longzhen 0.794 - 0.928 0.790 0.585
- 8000 - 8000
rice 1 4 1 rice . 8 44 0
6000 6000
maize 0 1678 27 0 maize 27 2026 94 0
é 4000 é -4000
soybean 4 8 0 soybean 52 82 2430 0
-2000 -2000
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rice maize  soybean  wheat rice maize  soybean  wheat
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rice 2 32 0 rice . 6 54 0
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soybean 50 54 1471 0 soybean 82 922 2189 0
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rice maize  soybean  wheat rice maize  soybean  wheat
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Figure 5. Confusion matrix of annual classification results for Yunshan Farm from 2019 to 2022. The
x-axis represents the classification results obtained after model prediction, and the y-axis represents
the labels of the samples.
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Figure 6. Confusion matrix of annual classification results for Longzhen Farm from 2019 to 2022.
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4.2. Robustness of Hypothetical Distribution Test Method for Different Crop Distributions

The XGBoost model, trained using data from Yushan Farm and Longzhen Farm in
2019, was used to predict the crop types of the remaining farms for different years (Figure 7).
In the figure, “handled” represents the result processed by the HTDM, while “no handled”
represents the unprocessed results. Consistent with the hypothesis in Section 4.1, because
image quality from 2020 to 2021 was similar to that of the training set, applying the HTDM
did not significantly affect accuracy for most farms; with or without the method, accuracies
remained at a relatively high level. However, the accuracies for the 858 farm prior to
HTDM processing in 2020 and 2021 were 0.773 and 0.710, respectively, but after hypothesis
testing, they improved to 0.955 and 0.960, leveling with other farms. In 2022, due to greater
differences in image quality, the classification accuracies for all farms were low without
applying the HTDM. Specifically, Rongjun, Heshan, Longzhen, and Longmen farms had
accuracies of 0.581, 0.669, 0.800, and 0.788, respectively, without using the HTDM; while for
Hongwei, Qixing, and Junchuan farms, the accuracies were 0.117, 0.121, and 0.148. The
disparity in classification accuracies between the two groups of farms was mainly due to
the actual distribution of crops, where the proportion of soybeans in the first four farms
was greater than 0.5, whereas in the latter three farms, the proportion was less than 0.1.
Since feature offsets caused by differences in image quality led to pixels shifting towards
soybeans, the higher the proportion of soybeans on a farm, the higher the classification
accuracy. After HTDM adjustment, accuracies for all farms increased to above 0.85. In
conclusion, the hypothesis testing distribution method can reduce these discrepancies to
improve classification accuracy when overall quality changes in images lead to shifts in crop
input feature values compared to the training set. Moreover, this method still maintains
robustness in diverse crop distributions across multiple farms and years.

Rongjun Rongjun
Heshan Heshan
Longzhen Longzhen
) Longzhen Longzhen
g Hongwei Hongwei
g Qixing Qixing
P~ Junchuan Junchuan
Yunshan Yunshan
Bawuba Bawuba
Bawuling Bawuling
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 no handicd
Rongjun Rongjun Bandled
Heshan Heshan
Longzhen Longzhen
Longzhen Longzhen
E Hongwei Hongwei
g Qixing Qixing
E Junchuan Junchuan
Yunshan Yunshan
Bawuba Bawuba
Bawuling Bawuling
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
Accuracy Accuracy

Figure 7. Accuracy of classification results using the hypothesis testing distribution method among
farms from 2019 to 2022.

There has been little discussion in other scholars’ cross-year predictions about methods
to improve prediction accuracy from the data processing perspective [54]. In the research
by Muhammad et al. [41], the EVI index was used to build a time series input, similar to
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this paper’s approach of using a time series of vegetation indices as inputs. The difference
lies in using the lower-resolution MODIS dataset and constructing a single vegetation
feature sequence, which contains less information. The study trained on multiple years’
data and validated the remaining year’s data, achieving cross-year accuracy rates from
74.4% to 81.9% without the use of other processing methods. In contrast, this study only
used one year’s data for training and achieved accuracies over 87% across all farms and
years after applying the HTDM, thereby avoiding the variability in vegetation features
due to multi-year weather conditions mentioned by Muhammad et al. Likewise, Sonobe
et al. [40] had an accuracy of 89.1% when using same-year data for training and validation,
but the cross-year prediction accuracy dropped to 78%. After implementing the HTDM in
2022, this study was able to raise the lowest accuracy from 11.6% to 87.3%, demonstrating
that the remote-sensing quality differences in this research area were greater than in the
aforementioned study but could be overcome by adjusting the input features to enhance
prediction accuracy.

4.3. SHAP Analysis

During the classification process, we extracted a total of 30 features from the vegetation
indices for every 15th day from April to August (Figure 8). In the figure, the x-axis indicates
the feature values of the selected features, the right y-axis displays the SHAP values of
each sample for that feature, and the left y-axis represents the selected subsidiary features
being analyzed for interactions with the primary feature. It is evident from the graph that
features from August are of higher importance compared to other months, with four out
of the top ten importance indices originating from August, while three features from July
featured in the top ten importance indices. These results suggest that the further along in
the growing season, the more pronounced the differences in vegetation indices between
different crops become, which is consistent with the conclusions drawn by Vuolo et al. [55].
RNDVI and LSWI are the most critical variables, with these two accounting for seven out
of the top ten variables.
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Figure 8. SHAP summary plot.

Analyzing the contribution of features to the identification of each crop in detail, LSWI
is identified as the most critical index for distinguishing rice. This is mainly because LSWI
is an index highly sensitive to water bodies; hence, using LSWI, rice can be relatively easily
differentiated from other dryland crops [56]. The LSWI value from May contributes the
most significantly to identifying rice. This is due to the fact that by mid-May, the paddy
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fields are fully flooded, and since rice is in the earlier stages of its growth cycle at this
time [57], there is minimal obstruction of the water surface by the leaf area, resulting in the
greatest difference in the LSWI characteristic due to the presence of water. The distribution
of SHAP values for individual features of corn and soybean are quite similar, mainly
showing that the SHAP value proportions of rice and corn are more similar to each other
compared to the other two crop types. For wheat, the most critical index is IRECI, with the
IRECI feature from August having the most significant effect in identifying wheat.

A subset of features was selected to construct the SHAP dependency plots (Figure 9).
As shown in Figure 9a—d, it is apparent that the SHAP dependency plot for LSWI in May
shows low sample dispersion and a dense vertical distribution of samples. This implies
that among the samples with the same feature value, there is a high similarity in the
contribution rate of LSWI to the recognition of different crops. Figure 9a reveals a positive
correlation between LSWI5 and LSWIS, indicating that for all crops, the LSWI distribution
among samples does not significantly change over time. Moreover, lower LSWI values have
negative SHAP values for rice, suggesting that higher LSWI values increase the probability
of the crop being rice, whereas for other crops, a higher LSWI leads to lower SHAP values.
This inverse trend in SHAP values makes LSWI especially effective in distinguishing rice
from the other three crops. In Figure 9b,c, the trends of dependency plots of LSWI5 for the
identification of corn and soybeans are similar.
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Figure 9. SHAP dependency analysis. The x-axis indicates the feature values of the selected features,
the right y-axis displays the SHAP values of each sample for that feature, and the left y-axis represents
the selected subsidiary features being analyzed for interactions with the primary feature.
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According to the findings of LM Wang's research, indices such as NDWI and NDVI
have limited impact on improving the accuracy of identifying corn and soybeans [58].
The lower SHAP values for soybeans, combined with previous confusion matrix analysis
results, indicate that soybeans are more likely to be misclassified as corn during the crop
classification process. An analysis of interactions with other features shows that there is no
significant correlation between LSWI and MSAVI, whereas a higher RNDVIS8 contributes
more to identifying a pixel as soybean with respect to LSWI5. Figure 9d depicts the LSWI6
dependency plot for corn identification. Compared to LSWI5, both dependency plots
exhibit a similar distribution trend, but with greater sample dispersion, indicating that
the stability of using this feature for crop identification begins to diminish. This suggests
that using LSWI as an input feature makes it easier to distinguish between crops at an
earlier stage. In Figure 9e, we ascertain that the highest SHAP value for identifying wheat
is for the feature IRECI8. Additionally, higher RNDVIS8 values tend to bring the sample
SHAP values closer to one. Figure 9f presents the RNDVI8 dependency plot for corn, where
IRECI8 and RNDVI8 have a positive correlation, and a smaller RNDVI8 leads to higher
SHAP values, thus increasing the probability of predicting the sample as corn.

5. Conclusions

In this study, the Sentinel-2 remote-sensing imagery was selected, and time series
were constructed by sequentially calculating vegetation indices such as LSWI and SAVI.
Subsequently, the HUNTS filtering method was employed to remove cloud-cover-induced
image artifacts. The crop classification datasets were compiled from 10 farms spanning
the years 2019 to 2022, with major crop types including rice, corn, soybeans, and wheat. A
portion of the 2019 dataset was utilized for model training, while data from other years
and farms were used for model analysis and evaluation. For feature selection, mid-filtered
vegetation indices from April to August of each year were chosen to ensure cloud-free
feature extraction and consider temporal information.

After that, given significant variations in image quality, the study proposed the hy-
pothesis testing distribution method. This method, based on adjusting the numerical
distribution of the test set through the training set, first hypothesizes and verifies the
distribution, employs gradient descent to adjust the hypothetical distribution, and finally
predicts more reliable classification results using the modified test set. The results indicate
that the hypothesis testing distribution method significantly improves crop classification
accuracy in cases of large differences in image quality. Additionally, the method demon-
strates significant effectiveness across different farms with varying crop distributions in
different years. For instance, Farm 858 showed unprocessed accuracy of 77.3% and 71.0%
in 2020 and 2021, respectively, which increased to 95.5% and 96.0% after applying the
hypothesis testing method.

As this study represents the first attempt to apply an iterative optimization algorithm
for remote-sensing crop image classification, and the selected sites are farms with rela-
tively few crop types, the computational power requirements may increase when dealing
with more complex crop types. Furthermore, the effectiveness of gradient-based decay
distribution optimization during the iterative process remains to be further investigated.
Additionally, the optimization logic of the hypothesis testing method proposed in this paper
may not be perfect, as it relies on assumptions about crop distribution. Therefore, using
this method for iterative optimization may lead to reduced loss rates but potentially large
discrepancies between classification results and actual label values. While extreme cases
did not occur in this paper’s results, addressing this issue will be a focus for future research
optimization. In addition to the specific application, the HTDM can also be extended to
other application scenarios. Since this method and model framework optimization, as well
as input data design, are not within the same design phase, it can be combined with other
optimization methods to improve cross-scale accuracy, thus maximizing improvement. The
primary purpose of modifying input values is to address the issue of input data quality
offsets, so this method may be applied to break down barriers between different satellite
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images, enabling the application of models based on one remote-sensing image to another
satellite image.
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