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Abstract. Humans have substantially altered soil and landscape patterns and properties due to agricultural use,
with severe impacts on biodiversity, carbon sequestration and food security. These impacts are difficult to quan-
tify, because we lack data on long-term changes in soils in natural and agricultural settings and available sim-
ulation methods are not suitable for reliably predicting future development of soils under projected changes in
climate and land management. To help overcome these challenges, we developed the HydroLorica soil–landscape
evolution model that simulates soil development by explicitly modeling the spatial water balance as a driver of
soil- and landscape-forming processes. We simulated 14 500 years of soil formation under natural conditions for
three scenarios of different rainfall inputs. For each scenario we added a 500-year period of intensive agricultural
land use, where we introduced tillage erosion and changed vegetation type.

Our results show substantial differences between natural soil patterns under different rainfall input. With
higher rainfall, soil patterns become more heterogeneous due to increased tree throw and water erosion. Agri-
cultural patterns differ substantially from the natural patterns, with higher variation of soil properties over larger
distances and larger correlations with terrain position. In the natural system, rainfall is the dominant factor influ-
encing soil variation, while for agricultural soil patterns landform explains most of the variation simulated. The
cultivation of soils thus changed the dominant factors and processes influencing soil formation and thereby also
increased predictability of soil patterns. Our study highlights the potential of soil–landscape evolution modeling
for simulating past and future developments of soil and landscape patterns. Our results confirm that humans have
become the dominant soil-forming factor in agricultural landscapes.
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1 Introduction

Soils provide valuable functions for nature and society by
supporting plant growth and agriculture, managing water and
solute flow, sequestering carbon, preserving archaeological
heritage, creating habitats for plants and animals and provid-
ing support for infrastructure (Dominati et al., 2010; Greiner
et al., 2017). However, soils are currently degrading by agri-
cultural intensification and climate change, forming one of
the largest threats to global food security and biodiversity
(Bai et al., 2008; Montanarella et al., 2016; Tscharntke et al.,
2012). A drastic change in land management is needed to re-
store healthy soils and soil functions (IPCC, 2019). Combat-
ing soil degradation and promoting sustainable land manage-
ment therefore stands high on the agenda of the soil science
community (Bouma, 2014; Cowie et al., 2018; Keesstra et
al., 2018; Kust et al., 2017; Minasny et al., 2017).

The first step towards sustainable land management and a
return to healthy, natural soils is a fundamental understand-
ing of the development and characteristics of natural soil pat-
terns and how these change under human influence. There-
fore, we will focus in this paper on gently to strongly slop-
ing undulating landscapes that are suitable for agricultural
use (maximum slope ∼ 20 %, Bibby and Mackney, 1969).
Soil-forming processes are controlled by at least five envi-
ronmental factors: climate, organisms, relief, parent material
and time (the ClORPT model, Jenny, 1941). Different fac-
tors dominate in natural and agricultural settings. In natural
settings with flat or undulating topography, soil erosion gen-
erally occurs at very low rates or is absent (Alewell et al.,
2015; Wilkinson, 2005). Some soil redistribution can occur
as a consequence of creep or tree throw (Gabet et al., 2003).
More importantly, tree throw creates local pits and mounds,
which temporarily change hillslope hydrology and act as lo-
cal hotspots for soil development due to a larger influx of wa-
ter (Šamonil et al., 2015; Shouse and Phillips, 2016). These
seemingly random processes create a high degree of hetero-
geneity in soil patterns, which shows little to no correlation
with relief (Vanwalleghem et al., 2010). In contrast, inten-
sively managed agricultural landscapes show soil patterns
that closely follow the relief (Phillips et al., 1999; Van der
Meij et al., 2017). This reflects the fact that erosion pro-
cesses are relief-dependent, and this propagates into the soil
patterns, unless erosion and deposition patterns are affected
by field margins such as hedges or banks. The switch from
such natural to agricultural soil systems can occur abruptly,
e.g., by deforestation or the implementation of highly mech-
anized agriculture in a few decades. Sommer et al. (2008)
described this switch in boundary conditions and its implica-
tions with a time-split approach: over a short time period –
relative to Holocene soil evolution – the soil system changes
from natural, progressive pedogenesis, where profile deep-
ening and horizon formation dominate erosive processes, to
regressive pedogenesis, where – vice versa – erosion and de-

position dominate progressive pedogenic processes (Johnson
and Watson-Stegner, 1987).

The coexistence of both progressive and regressive pro-
cesses in a defined period of time has been described by sev-
eral authors. In a progressive phase there are also regressive
processes that change soils, terrain and hydrological path-
ways (Phillips et al., 2017; Šamonil et al., 2018). In a re-
gressive phase, progressive processes still have a substantial
effect on soil development (Doetterl et al., 2016; Montagne
et al., 2008). Colluvic soils might be influenced by ground-
water or subject to continuous clay illuviation (Leopold and
Völkel, 2007; Van der Meij et al., 2019; Zádorová and Pení
žek, 2018). Furthermore, the changes in boundary conditions
are not always as abrupt as, e.g., deforestation. Historic ero-
sion processes with rates much lower than current erosion
processes might have given pedogenic processes the time to
alter soil and colluvium (Van der Meij et al., 2019).

To disentangle complex history and causes of soil forma-
tion, data are required on both natural and agricultural soils
that have formed under similar conditions, and preferably
from the same region. However, there is limited undisturbed
natural land left, often rapidly declining, in places that are
unsuitable for agriculture and/or indirectly influenced by an-
thropogenic climate change (e.g., tropical and boreal zones,
IPCC, 2019). Moreover, (historical) cultivation occurred in
areas and soils most suitable for agriculture (Pongratz et al.,
2008; Vanwalleghem et al., 2017), leaving less suitable land
undisturbed. This complicates comparison and empirical in-
ference. Because of the complex interactions between pedo-
genic and geomorphic processes, and the lack of field data,
we heavily depend on process knowledge and model simu-
lations for mechanistic inference about how natural soil pat-
terns develop as a function of their environments and how
this changes in agricultural settings (Opolot et al., 2015).

Soil evolution models simulate a range of physical, chem-
ical and biotic processes that affect the properties of soils
through space and time (Minasny et al., 2015; Stockmann et
al., 2018; Vereecken et al., 2016). Such models have been
developed for a range of scales, varying from 1D soil pro-
files to 3D soil landscapes (Finke, 2012; Minasny et al.,
2015; Temme and Vanwalleghem, 2016). One-dimensional
soil profile models generally provide a high level of detail
and process coverage, but they lack the simulation of essen-
tial feedbacks and interactions that can occur between soils
on a landscape scale (Van der Meij et al., 2018). For example,
the spatial redistribution of water or the exchange of soil ma-
terial through erosion and deposition processes affects soils
differently at different landscape positions. Soil landscape
evolution models (SLEMs) do simulate lateral distribution
of solids by geomorphic processes and consider soils to be
continua rather than discrete units. Current SLEMs perform
reasonably well in landscapes where lateral soil movement
is substantial (e.g., Temme and Vanwalleghem, 2016; Van
Oost et al., 2005). However, these models are not developed
to simulate soil development in relatively stable landscapes
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where lateral water redistribution is the dominant driver caus-
ing soil heterogeneity, because this hydrologic control is not
explicitly modeled (Van der Meij et al., 2018).

To summarize, we are currently lacking data and methods
that can quantify the effect of changing soil-forming factors
on soil development and spatiotemporal soil patterns. This
knowledge is essential for the transition to sustainable land
management and adaptation to the changing climate. The ob-
jective of this study is to develop a suitable model for quan-
tifying the variation and predictability of soil patterns as a
function of varying environmental factors. We will address
three questions.

1. What are the basic characteristics of soil patterns in nat-
ural and agricultural landscapes?

2. What are the major factors driving soil formation in nat-
ural and agricultural landscapes?

3. How does the predictability of soil patterns change
through time and after cultivation?

We developed a soil–landscape evolution model that can
simulate natural soil and landscape evolution by incorporat-
ing dominant natural processes such as soil creep, tree throw,
vegetation dynamics and infiltration-dependent pedogenesis
driven by the soil-forming factors climate, organisms, relief,
parent material and time. We simulated soil formation for
14 500 years under three scenarios of rainfall (dry, humid,
wet) to quantify the effect of water availability and distri-
bution on soil variation in natural systems. Each run was
concluded with 500 years of intensive agricultural land use,
where we introduced the process of tillage erosion. Tillage
erosion is a dominant process redistributing soil material
in intensively managed agricultural fields (Van Oost et al.,
2005).

We expect that before intensive cultivation, spatial soil het-
erogeneity will be larger for greater rainfall, due to more in-
tense erosion and translocation processes and effects of veg-
etation. Moreover, we expect that the spatial heterogeneity
will increase by erosion processes under cultivation, also re-
sulting in larger correlations between soil properties and to-
pographic properties, because of the topographic dependence
of erosion processes. This would imply that soil patterns be-
come more predictable due to cultivation, at least for circum-
stances without hedges or banks that would modify the spa-
tial distribution of erosion and deposition areas.

For our simulations, we created a hypothetical loess-
covered, hilly landscape with a range of characteristic slope
positions as the spatial setting. We choose loess, because it
is a relatively homogeneous parent material, widely spread
globally and favored for agricultural practices due to its high
water-holding capacity and resulting fertility (Catt, 2001).
The long-term use of loess areas for agriculture and unsus-
tainable management has resulted in severe land degradation
(e.g., Zhao et al., 2013).

2 Methods

2.1 Model

Here we describe our model named HydroLorica. HydroLor-
ica is based on the model Lorica (Temme and Vanwalleghem,
2016), but includes explicit simulation of water flow and
water availability as drivers of natural soil, landscape and
vegetation change (Van der Meij et al., 2018). HydroLorica
is a reduced-complexity model, which means that it simu-
lates processes affecting soil and landscapes using simpli-
fied process descriptions. Reducing model complexity pro-
motes critical evaluation of essential processes, reduces cal-
culation time and prevents extensive data requirements and
over-parameterization (Hunter et al., 2007; Kirkby, 2018;
Marschmann et al., 2019; Snowden et al., 2017; Temme et
al., 2011).

2.1.1 Model architecture

HydroLorica is a raster-based model, where a digital ele-
vation model (DEM) determines the shape of the terrain.
Below each raster cell of the DEM there is a predeter-
mined number of soil layers with layer thicknesses variable
in space and time. Each layer can contain a specific mix-
ture of gravel, sand, silt and clay and two types of organic
matter (quickly and slowly decomposing, Yoo et al., 2006),
depending on parent material and occurring pedogenic pro-
cesses. Pedogenic and geomorphic processes affect the con-
tents of the layers, leading to differences in soils in space
and time. Changes in soil properties and contents modify
layer thicknesses and surface elevation through a pedotrans-
fer function (PTF) of bulk density. The use of a pedotransfer
function allowed the model to calculate variations in layer
thicknesses due to pedogenic and geomorphic processes. We
used the same PTF for bulk density as the original Lorica
model (Tranter et al., 2007). We refer to Temme and Vanwal-
leghem (2016) for more information about the spatial model
architecture of Lorica, which we maintained in our adapta-
tion HydroLorica. In this project, we worked with 25 soil
layers, with an initial uniform thickness of 0.15 m. When a
layer got very thick or very thin (55 % thicker or thinner than
its initial value), the layer was split or combined with another
layer.

The annual changes in texture classes tex (kg) and organic
matter classes om (kg) in layer l at location xy and time t

are governed following Eqs. (1) and (2) (for abbreviations
of processes, see Table 1). The changes in mass of texture
and organic matter are converted to a change in layer thick-
ness (m) using a pedotransfer function (Tranter et al., 2007).
We calculated the bulk density of the fine mineral fraction
(kg m−3) with Eq. (3) using the sand and silt fraction (–) and
the depth below the surface (m). HydroLorica includes a cor-
rection of bulk density taking into account the effects of the
coarse fraction and the organic fraction using Eq. (4), using
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a density of 2700 kg m−3 for the coarse fraction (Temme and
Vanwalleghem, 2016) and a density of 224 kg m−3 for the
organic fraction (Tranter et al., 2007). In our study, there is
no coarse soil material present. This pedotransfer function
does not directly take into account changes in bulk density
stemming from soil structuring, weathering or bioturbation.
Instead, depth below the surface is used as a proxy for these
factors. The used PTF has a relatively low fit with the data it
was derived from (R2

= 0.41, Tranter et al., 2007). However,
PTFs that yield a higher accuracy often require advanced cal-
culation methods (Chen et al., 2018; Ramcharan et al., 2017)
or soil properties that are not readily available in HydroLor-
ica. As we discuss in Van der Meij et al. (2018), the estima-
tion of such properties often gives biased or highly uncertain
results, which would propagate into the calculation of bulk
density. Rather than stacking pedotransfer functions, we de-
cided to use a PTF that required input that is readily available
in HydroLorica and could be calculated within the model it-
self.

The sum of changes in layer thickness of all layers L cal-
culated through changes in bulk density and mass of the lay-
ers results in the annual change in elevation z (Eq. 5). Clay
translocation and water erosion are directly driven by the to-
tal annual water flow, while occurrence of tree throw and
rates of creep, bioturbation and organic matter accumulation
are indirectly driven by water availability via vegetation con-
trols. Infiltration I is the difference between precipitation P

and spatially explicit actual evapotranspiration ETa, runon
ROnn and runoff ROff (Eq. 6). HydroLorica works with dy-
namic time steps as suggested by Van der Meij et al. (2018) to
capture process dynamics at their relevant scales while opti-
mizing calculation time. Hydrologic processes are calculated
with a daily, monthly, or yearly time step, with smaller time
steps selected during wetter conditions for more accurate
simulation. Annual sums of infiltration and overland flow are
used to drive geomorphic, pedogenic and biotic processes.

1texxy,l,t =1texCR,xy,l,t +1texWE,xy,l,t

+1texTT,xy,l,t +1texTI,xy,l,t

+1texCT,xy,l,t +1texBT,xy,l,t (1)

1omxy,l,t =1omCR,xy,l,t +1omWE,xy,l,t

+1omTT,xy,l,t +1omTI,xy,l,t

+1omCAB,xy,l,t +1omBT,xy,l,t (2)

BDfine,xy,l,t = 1000(1.35+ 0.452(fsand+ 0.76fsilt)

+ (100(fsand+ 0.76fsilt)− 44.65)2

×− 0.000614+ 0.06 · log10 (depth)
)

(3)

BDsoil,xy,l,t =
masstotal,xy,l,t

massfine,xy,l,t

BDfine,xy,l,t
+

masscoarse,xy,l,t

2700 +
massorganic,xy,l,t

224

(4)

1zxy,t =

∑L

l=1
1BDsoil

(∑
texxy,l,t +

∑
omxy,l,t

)
(5)
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Ixy,t = Pt −ETaxy,t +ROnnxy,t −ROffxy,t (6)

2.1.2 Process formulation and parameters

In our model we considered only the impact of physical and
biological processes on soil properties. The current model
architecture does not facilitate the simulation of soil chem-
ical processes. The selected processes are described below.
Drivers and impacts of each process are summarized in Ta-
ble 1. We summarized the drivers per soil-forming factor. We
mostly used the processes and parameters of Lorica as re-
ported in Temme and Vanwalleghem (2016), which we sum-
marize here. When we added a new process or changed its
parameters, the adjustments are reported in this section. We
provided a detailed overview of the equations and selected
parameters in Supplement 1.

We aim to understand the functioning of general soil–
landscape systems. Therefore, we parametrized and cali-
brated the model processes using regional data or process
rates from the literature that are valid for larger regions. We
did not calibrate the parameters on data from one specific
study site to avoid the effect of any idiosyncrasies that can be
present in those data. For other processes where there were
no regional data available, we estimated the parameters so
that the effects of those processes were on the same order of
magnitude as processes with rates based on the literature. An
overview of the process parameters is provided in Table S1
in the Supplement.

Hydrologic processes

The hydrological module partitions spatially uniform rain-
fall (P ) into three spatially explicit components: evapotran-
spiration (ET), infiltration (I ) and surface flow (ROnn and
ROff, Eq. 6). Potential ET is calculated from prescribed tem-
perature using the Hargreaves–Samani equation (Hargreaves
and Samani, 1985) and corrected for topographical position
(Swift, 1976) and vegetation type (Allen et al., 1998). Sur-
face flow is calculated on a daily basis, and only when rainfall
intensity (amount / duration, mm h−1) exceeds the saturated
hydraulic conductivity of the topsoil, which is a function of
soil properties and slope (Morbidelli et al., 2018; Wösten et
al., 2001), or precipitation in the form of snow is melting.
The excess water is routed over the surface using the multi-
ple flow algorithm (Holmgren, 1994) and can re-infiltrate in
places with higher hydraulic conductivity, in local surface de-
pressions, or can leave the catchment. HydroLorica can thus
deal with DEMs that contain depressions and actively forms
depression by simulating tree throw. The annual sum of daily
surface flow is used to calculate annual water erosion and de-
position using the stream power law. To account for seasonal
differences, actual ET is calculated on a monthly basis from
the potential ET and rainfall using the topsoil water budget
model of Pistocchi et al. (2008). Infiltration is the sum of (re-
)infiltrated surface water and the monthly difference between

rainfall and actual ET (Eq. 6). The annual water balance is
used as a driver of various geomorphic and pedogenic pro-
cesses and to determine vegetation type. The hydrological
module is described in detail in Appendix A of Van der Meij
et al. (2018).

Determination of vegetation type

We considered two types of natural vegetation: grassland and
forest. The vegetation type depends on the water availabil-
ity; where rainfall plus re-infiltration exceeds potential evap-
otranspiration, there is no water stress and forests can grow.
Otherwise, there is water stress and there will be grassland.
This threshold is based on a hypothesis from Thompson et
al. (2010), who used the Budyko curve (Budyko and Miller,
1974) to estimate vegetation type. By extending this relation-
ship with re-infiltration, this relation can be used to assess lo-
cal but spatially explicit vegetation type. Vegetation type thus
has a climatic control and a topographic control in the form
of hillslope aspect and local convergence of water flow in
gullies and depressions (e.g., Metzen et al., 2019). This vari-
ation in moisture and vegetation can occur very locally, espe-
cially in semi-arid regions. Vegetation type influences evapo-
transpiration (Allen et al., 1998), bioturbation and creep rate
(Gabet et al., 2003) and the occurrence of tree throw, and
also controls organic matter input. Under intensive agricul-
tural use, we convert the vegetation type to arable crops. We
assume that soil and landscape processes are similar to land-
scapes under grassland vegetation. The differences are that
arable crops have lower potential evapotranspiration and the
process of tillage is introduced.

Our method of estimating vegetation type can lead to an-
nual changes in vegetation type depending on water avail-
ability, because we do not consider ecological processes such
as resilience or succession. The portion of years with grass-
land and forest vegetation aggregated over longer time spans
(>100 yr) provides an estimate for the forest cover of that
specific location (see the animations in Supplement 2). The
vegetation distribution should thus be considered on an ag-
gregated level rather than an annual level to yield meaningful
results. This implementation suffices for our focus on long-
term changes in soils and terrain, but should not be used to
study systems on annual to decadal timescales.

(Bio-)geomorphic processes

The main (bio-)geomorphic processes affecting topography
in loess areas are soil creep, tree throw, water erosion and
tillage erosion. Soil creep is a bio-geomorphic process that
causes a diffuse movement of soil material on a hillslope,
driven by various factors such as (micro)climate, organisms
and terrain (Pawlik and Šamonil, 2018; Regmi et al., 2019;
Roering et al., 2002). The potential creep rate is a function
of vegetation type and slope (Gabet et al., 2003). We adopt
higher creep rates in forested areas, because of the deeper
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rooting depth and higher root abundance. We divided the po-
tential creep rate at a certain location over all soil layers,
with exponentially decreasing rates deeper in the soil. The
transport of soil material from a layer to layers in its lower-
lying neighboring cells is proportional to the surface slope
and shared layer boundaries.

Tree throw is a bio-geomorphic process that has a distinct
effect on the terrain and water routing; the created pit can act
as a hotspot for soil formation by the increased infiltration of
water (Šamonil et al., 2018). We simulated tree throw as a
random process, with on average 0.2 trees falling per hectare
per year. This rate is lower than other rates found in natu-
ral forests around the world (0.3–1.5 trees ha−1 yr−1, Finke
et al., 2013; Gallaway et al., 2009; Phillips et al., 2017), be-
cause some factors controlling tree uprooting like shallow
rooting depths due to impermeable layers or steep slopes are
not present in our spatial setting. The dimensions of the root
clump that is transported by tree throw were scaled with the
age of the falling tree, which was also randomly selected.
We assumed that tree growth occurs in the first 150 years
of a tree’s existence, after which size remains stable until a
maximum age of 300 years. These numbers and trends are
loosely based on Rozas (2003). A pit and mound topography
is only formed when the dimensions of the root clump ex-
ceed the size of the raster cell (1.5 m in our case) and that
material is transported to a cell downslope. When the root
clump is smaller than the cell size or when the slope of the
terrain does not lead to downward transport of the material,
tree throw will only cause a (partial) turbation of the upper
layers in the affected raster cells.

Water erosion and deposition are calculated using the
same approach as the original Lorica model (Temme and
Vanwalleghem, 2016). Sediment uptake and deposition are
calculated as a function of discharge and surface gradients
(Schoorl et al., 2002). Sediment uptake is simulated as a se-
lective process, where smaller particles are easier to erode
and more difficult to deposit. Organic matter behaves the
same as clay under erosion, because we assumed that or-
ganic matter occurs in associations with clay particles. Water
erosion is limited by the occurrence of coarse soil particles
(surface armoring) and vegetation. The role of water erosion
in forested loess catchments is limited (Vanwalleghem et al.,
2010); the vegetation protects the soil below from erosion.
However, disturbances such as forest fires can temporarily
increase erodibility of the soil. Therefore, we did simulate
water erosion in forested landscapes, but with lower rates
than in grassland. We simulated this by including a high veg-
etation protection constant (value of 1) in forested sites. In
grasslands we used the aridity index between 0 and 1 as the
vegetation protection constant.

Tillage erosion was simulated as a diffusive process, simi-
lar to creep, with some differences: tillage homogenized the
soil over the reach of the plough depth, erosion only occurred
from the top layer contrary to the whole soil profile as with

creep, and the erosion rates were much higher due to the in-
tensive land management.

(Bio-)pedogenic processes

We simulated three dominant (bio-)pedogenic processes that
change texture and organic matter properties in loess land-
scapes. These are clay translocation, bioturbation and soil
organic matter accumulation and breakdown.

We adapted a new way of simulating clay translocation,
using the advection equation of Jagercikova et al. (2017).
The diffusive part of clay translocation as described by Jager-
cikova et al. (2017) is separately modeled by bioturbation.
We scaled the parameters of clay translocation with local in-
filtration to develop an infiltration-dependent equation. Not
all clay in the soil is available for translocation. Part of it is
not available to the percolating water, because it is bonded
to other minerals and organic matter. We used the equations
of Brubaker et al. (1992) to estimate the part of the clay
that is water-dispersible, i.e., that is available for translo-
cation by water. We estimated the required cation exchange
capacity (CEC) with a pedotransfer function from Ellis and
Foth (1996), as a function of clay content and organic matter
content. Following from these equations, the fraction of non-
dispersible (remaining) clay is 5.9 % in soils without soil or-
ganic matter (SOM) and increases with 1.2 % for every extra
percent of SOM. This approach is similar to the one used in
soil profile model SoilGen2 (Finke, 2012).

Bioturbation works as a diffusive processes, homogeniz-
ing the soil vertically (Yoo et al., 2011). We used the same
rates for bioturbation as for creep, because these processes
are driven by the same organisms reworking the soil. The
potential bioturbation rate was divided over each soil layer
by integrating the exponential depth function over the layer
thickness and then dividing by the integration of the function
over the entire soil profile. Every layer exchanges a certain
fraction of its contents, based on initial bioturbation rate and
depth, with all other layers. The amount of exchange between
two layers decreases with increasing distance.

SOM accumulation and breakdown were simulated as
in earlier soil–landscape evolution models (Minasny et al.,
2008; Temme and Vanwalleghem, 2016; Vanwalleghem et
al., 2013; Yoo et al., 2006). Accumulation of SOM is con-
trolled by the potential input and depth in the soil. The ac-
cumulation is divided over a young and old SOM pool us-
ing a fractionation factor. These pools differ in their rate of
decomposition. We calibrated the SOM cycle in agricultural
settings with the average depth distribution of organic car-
bon in agricultural soils on the Chinese loess plateaus (Liu et
al., 2011). We simulated 5000 years of soil development us-
ing different process parameters. We selected the parameter
set that simulated an organic matter distribution most simi-
lar to the reference distributions from Liu et al. (2011). The
reported depth distributions for pasture and forest soils by
Liu et al. (2011) were not useful for this project. Soils under
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these vegetation types on the Chinese loess plateau generally
contain lower SOM stocks than natural landscapes, because
these positions often have recently been replanted to combat
soil erosion or because they occur in topographic positions
which are not favorable for plant growth and agriculture. In-
stead, we calculated reference carbon stocks for forest and
grassland soils by adjusting the agricultural carbon stocks of
Liu et al. (2011) with changes in carbon stocks after conver-
sion from forest to crop and from forest to pasture (Guo and
Gifford, 2002). With the resulting reference carbon stocks for
natural vegetation we ran additional calibrations to calculate
the potential SOM input for forest and grassland.

2.2 Experimental setup

We developed an artificial topographic setting in which we
performed our simulations. The use of an artificial setting
rather than a field setting avoids the effect of local distur-
bances and idiosyncrasies which can disturb general signals
we look for in the model results.

The input DEM is an artificially created U -shaped val-
ley of 150 by 150 m, with a cell size of 1.5 m (Fig. 1). The
slopes facing northward and southward have a sinusoid form,
and valley depth increases eastward, from 0 to 9 m. Random
noise of maximum 1 cm was added. The maximum slope
is 12◦ (21 %), which reaches the limit for agricultural use
(Bibby and Mackney, 1969). The small cell size of 1.5 m
is required to simulate the effect of pit and mound topog-
raphy created by tree throw on spatial infiltration patterns.
The landscape was designed to display typical topographic
features present in loess areas, but we exaggerated the spa-
tial variation of slope positions to limit catchment size and
reduce calculation time.

As parent material we chose a homogeneous loess without
carbonates and a soil texture of 15 % sand, 75 % silt and 10 %
clay, which falls in the typical range of loess deposits (Muhs,
2007; Pécsi, 1990). We assumed an infinite loess thickness to
avoid any effects of layers underneath with different litholo-
gies. However, for computational reasons, we worked with
an initial loess layer of 3 m with free leaching of water and
dispersed clay at the lower boundary. This approach reduced
the number of soil layers and prevented numerical instabil-
ity from the pedotransfer function for depth-dependent bulk
density. The selected thickness left sufficient soil material so
that the bottom of the loess was not reached by erosion dur-
ing any of the model runs.

The model requires a latitude to calculate solar inclina-
tion on the slopes. We selected the latitude of 50◦ N, which
is in the center of the range for loess occurrence reported
by Muhs (2007, 40–60◦ N). We selected the rainfall scenar-
ios based on most common rainfall in loess areas. For this,
we made an overlay of a coarse-resolution global loess map
(Dürr et al., 2005) with a global annual rainfall map (Fick and
Hijmans, 2017). The distribution of rainfall from the overlay
showed peaks at ∼ 600 and ∼ 900 mm (Fig. 1). We selected

these annual quantities of rainfall as input for our scenar-
ios and we added a scenario of 300 mm to capture a wider
range of climates. The model requires as input daily data on
rainfall (m), rainfall duration (h), and minimum, mean and
maximum temperature (◦C). Rainfall amount is required to
calculate how much water flows through the soil landscape.
Rainfall intensity is required to determine whether and how
much overland flow occurs, by comparing rainfall intensity
with soil hydraulic conductivity. Rainfall intensity is calcu-
lated by dividing the rainfall amount by the daily duration
(m h−1). Temperature data are required to calculate poten-
tial evapotranspiration (Hargreaves and Samani, 1985). As
we want to simulate general trends in soil and landscape evo-
lution, we do not need site-specific data for the different sce-
narios. Instead, an arbitrary weather dataset was scaled to
the total amount of rainfall from the different climate sce-
narios. We used weather data from German weather station
Grünow, which is located at 53.3◦ N, 13.9◦ E (DWD Climate
Data Center (CDC), 2018a, b). The potential evapotranspi-
ration is around 600 mm yr−1 for this dataset and is applied
to all simulations. Combined with the rainfall scenarios, the
scenarios can roughly be classified as dry (300 mm rainfall),
humid (600 mm rainfall) and wet (900 mm rainfall). In the
rest of this paper, we will use the terms dry, humid and wet
to refer to the different rainfall scenarios.

We simulated the development of soils and landscapes for
15 000 years, resembling the age of most post-glacial soils.
In the first 14 500 years of the simulations, soil and land-
scape development occurred under natural conditions and
land cover. In the last 500 years of the simulations, we intro-
duced agricultural land use by changing vegetation type and
introducing tillage erosion. This duration was selected be-
cause it loosely reflects the onset of Medieval intense agricul-
ture in many areas (Van der Meij et al., 2019) and should be
seen as an upper limit of the onset of intensive tillage. Each
of our simulations assumes a constant climate throughout the
15 000 simulated years. Although we expect our model to be
suitable for investigating the effects of a changing climate on
soil and landscape evolution, this is beyond the scope of this
study.

2.3 Analysis and evaluation

The model potentially outputs all soil properties for each
layer at each location at each time step. Additionally, ele-
vation change resulting from all processes at each location at
each time step can be saved. In order to be able to interpret
the results, we had to aggregate the results in several ways.
We focused on select soil and terrain properties. The selected
soil properties are soil organic matter stock (kg m−2), which
is the total amount of SOM in a soil column, and the depth
to the Bt horizon (m), which we defined as the depth where
the clay content first exceeds the initial clay fraction of the
soil. The selected terrain properties are slope (◦), topographic
position index (TPI; m), calculated with square windows
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Figure 1. (a) Annual rainfall in loess areas, derived from WorldClim. Red lines indicate the rainfall scenarios in this study: 300 (dry), 600
(humid) and 900 (wet) mm per year. (b) Maps of input DEM with corresponding slope map (c). The extent of the DEM is 150×150 m, with
a cell size of 1.5 m. The different classes indicate elevation classes used in the analysis of variance (ANOVA) (Table 3). The blue dots and
line indicate the location of the soil profiles and transect displayed in Figs. 2 and 3.

Figure 2. Transect through the catchment at the end of the natural phase and the end of the agricultural phase for the humid scenario
(P = 600 mm). The black line indicates initial topography. See Fig. 1 for the location of the transect.

15× 15 cells (22.5× 22.5 m), and the topographic wetness
index (TWI; –). In most figures, we present two moments in
time. These are the end of the natural phase (t = 14500) and
the end of the agricultural phase (t = 15000). We present the
results in the following ways.

– To show the development of soils and catenae, we show
transects across the catchment (Fig. 2), and plots of soil
profile evolution, for three landscape positions and three
rainfall scenarios (Fig. 3).

– To compare natural and agricultural soil properties, we
show catchment-averaged depth distributions of clay
and SOM fractions (Fig. 4).

– To show the impact of geomorphic processes on the ter-
rain, we show cumulative elevation changes at the end
of the natural and agricultural phases, and we show con-
tributions to elevation change for each geomorphic pro-
cess over time (Fig. 5).

– To quantify the spatial heterogeneity of the selected
soil and terrain properties, we calculated experimental
semivariograms (Fig. 6), using the gstat package in R
(Pebesma, 2004). Experimental semivariograms give a
measure of the variation between properties of soils as
a function of distance between soils. We compared the
semivariograms of depth to the Bt horizon with semi-
variograms made from field observations in a natural
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Figure 3. Evolution of soil profiles through time (x axis) on a stable, eroding and depositing position (rows), for the different rainfall
scenarios (columns). The colored bars atop the plots indicate land cover (natural) and land use (agricultural). The points indicate the SOM
stocks (right y axis). Note that the natural and agricultural systems have different x axis scales to visualize both systems. In the agricultural
system, an observation is shown every 500 years, in the agricultural phase, every 50 years. See Fig. 1 for locations of the soil profiles. See
Fig. 2 for the soil color legend.

and agricultural site. The experimental semivariograms
from the model results were calculated with a lag of 2 m,
while the experimental semivariograms from the field
data were calculated with a lag of 20 m.

– To visualize soil–landscape relations, we show how the
selected soil properties and terrain properties are corre-
lated and how these correlations change through time
(Fig. 7).

– To disentangle the effects of various factors on soil
properties, we performed an analysis of variance (Ta-
ble 3). We selected the depth to Bt and the carbon
stock at the end of the natural and agricultural phases
as dependent variables. As independent variables we
selected climate (three rainfall classes), land cover or
use (natural or agricultural), and landforms (three ele-
vation classes with equal elevation ranges, representing
plateau, slope and valley; Fig. 1).

3 Results

Here we present the results from the HydroLorica model.
Section 3.1 shows the patterns, distributions and changes of
soil and terrain properties in space and time. Section 3.2
shows the results from the statistical analyses to quantify and
summarize spatial and temporal soil and terrain patterns. In
Supplements 2 and 3 we provided two animations to help vi-
sualize the simulated soil and landscape evolution. The an-
imations show (1) maps of soil and terrain properties and
forest cover and their changes through time, and (2) maps
of elevation change by each geomorphic process and their
changes through time.

3.1 Simulated soil and landscape evolution

The results of HydroLorica show clear differences in the de-
velopment of soil profiles at different landscape positions,
for the different rainfall and land-cover/land-use scenarios
(Figs. 2, 3). In the natural phase, the forest cover shows
a clear climatic and topographic dependence (animation in
Supplement 2). For greater rainfall, there is a higher for-
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Figure 4. Probability density functions (PDFs) showing the multi-modal distributions of soil properties throughout the catchment per 10 cm
depth increment. We only show probabilities larger than 5 % for clarity. The presented soil properties are clay fraction (a, b, c) and SOM
fraction (d, e, f), for the different rainfall scenarios (columns). Grey colors represent the natural soils, while red colors represent agricultural
soils. The horizontal dotted line indicates the ploughing depth used for simulations (20 cm).

Figure 5. (a) Average erosion rates throughout the catchment for the different geomorphic processes over time. The colors represent different
geomorphic processes, and the line types represent different rainfall scenarios. Note that the y axis is log scaled. (b) Cumulative elevation
change at the end of the natural and agricultural phase compared to the initial DEM for the different rainfall scenarios.

est cover. The spatial pattern is mainly controlled by slope
orientation. The north-facing slopes display a higher for-
est cover due to lower evapotranspiration. The valley and
the hillslope depressions show a higher forest cover due to
the higher moisture availability as a consequence of surface
runoff. Higher rainfall also leads to deeper eluviation of clay
at each landscape position, showing more pronounced Bt
horizons. Also, the soil profiles get more disturbed by tree

throw with higher rainfall, as can be seen by the fluctuations
in elevation and SOM stocks. The depth to the Bt horizon re-
mains at the same position below the surface at the eroding
position. At all locations, SOM stocks reach an equilibrium
after ∼ 3000 years, but most of the SOM is generated in the
first 500 years.

In the agricultural phase, relief changes much more
quickly, leading to truncation of the eroding soil profile
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(Fig. 3). Also, SOM stocks decrease substantially in the soil
profiles due to lower input. At the deposition site, there is a
small increase in SOM stocks at the end of the agricultural
phase, caused by the continuous input of soil material. The
increased elevation change is clearly visible in Fig. 2. After
the natural phase, there is limited elevation change on the
slopes, with some water erosion at the valley bottom forming
a v-shaped gulley. After the agricultural phase, the hillslopes
are heavily eroded, while the valley bottom is filled with col-
luvium. The high erodibility of clay that we simulated in the
model affected the clay distributions in the model results. In
the natural phase, topsoil clay gets laterally relocated from
the hillslopes to tree throw pits and the valley bottom. This
clay was partly replenished from the subsurface by biotur-
bation. This led to a net loss of clay from the entire depo-
sitional profile in the wet scenario, due to higher water flow
and erosion potential (Fig. 3). In the agricultural phase, clay
does not get trapped in tree throw pits anymore, but leaves
the catchment with the water. This reduced the clay contents
even more at the valley bottom (Fig. 2).

Figure 4 shows how clay and SOM fractions vary with
depth throughout the entire catchment. The presented prob-
ability density functions (PDFs) show multi-modal distribu-
tions of the soil properties, which cannot simply be captured
using summary statistics. Both higher rainfall and agricul-
tural land use increase the heterogeneity of clay profiles in
the landscape, as can be seen by the wider ranges of the dif-
ferent PDFs throughout the entire depth profile. Also, the oc-
currence of Bt horizons decreases with higher rainfall, due to
losses of clay by lateral erosion rather than vertical transport
as mentioned in the previous paragraph. With higher rainfall,
the percentages of soils with a Bt horizon occurring in the
natural settings are 98 %, 93 % and 62 %. For the SOM pro-
files, higher rainfall also leads to more heterogeneity. Espe-
cially in the topsoil a larger spread is simulated. Cultivation
reduces the fraction and the topsoil variation, due to lower
input and vertical and lateral topsoil homogenization (Fig. 4
and Table 2).

All scenarios show a net elevation loss in the natural phase
(Fig. 5a). Creep transported hillslope material to the val-
ley bottom, which water erosion partly removed from the
catchment. The terrain becomes rougher with higher rainfall,
due to increased water erosion and a higher occurrence of
tree throw. Indirectly, the rougher terrain leads to increased
creep rates, because of the locally increased relief gradients.
Tillage erosion has had by far the largest impact on the ter-
rain (Fig. 5), overprinting the effects of natural geomorphic
processes.

3.2 Statistical analysis of soil and terrain properties

Semivariograms summarize the spatial autocorrelation of
soil and terrain properties as a function of distance between
soil locations (Fig. 6). The semivariogram contains three pa-
rameters. The nugget is the intercept with the y axis, rep-

resenting the local variability of the data and (in empirical
studies) measurement uncertainty. The sill is the asymptote
of the semivariogram and represents the maximum variabil-
ity between pairs of observations at a distance where their
proximity no longer matters. The range is that distance where
the semivariogram levels off, approaching the sill. The range
thus represents the maximum distance over which properties
from two locations are autocorrelated.

In the natural phase, higher rainfall substantially increases
the sill of soil and terrain properties regardless of distance;
soils and terrain are thus more variable in space for higher
rainfall, but do not display stronger spatial autocorrelation.
Especially the SOM stock shows high semivariance over all
distances in the wet scenario, due to a larger spatial redistri-
bution by water.

In the agricultural phase, the differences between the rain-
fall scenarios are much less pronounced; the variations in
the properties are similar for each rainfall scenario. The lo-
cal variation, expressed by the nugget, decreases in the agri-
cultural phase because of short-range homogenization by
ploughing. For the soil properties (Fig. 6a, b), the range and
sill general increase compared to the natural situation, while
the topographic properties show sills and ranges similar to or
lower than the natural settings. The differences in semivari-
ance of the depth to Bt horizons in natural and agricultural
settings appear also in semivariograms calculated from field
data (Fig. 6c). The data from Meerdaal (a natural forest in
the loess belt in Belgium) show a semivariogram that fluctu-
ates around a constant value, while the data from agricultural
field CarboZALF-D (located on a glacial till in northeastern
Germany) show increasing semivariance with distance. The
shapes of the field semivariograms match those of the model
results, but note that the distances of the field data are 5 times
larger than those of the model results, while the sills are about
half.

The correlations between soil and terrain properties also
differ between rainfall and land-use options (Fig. 7). In the
natural phase, soil–landscape correlations are generally lim-
ited to 0.25, with the exception of the correlation between
depth to Bt and slope in the humid scenario. In the agricul-
tural phase, the correlations initially increase for each com-
bination of soil and terrain property, up to 0.8. The correla-
tions generally approach constant values in the agricultural
phase. An exception to these patterns are the same correla-
tions between slope and depth to the Bt horizon in the humid
scenario. Those correlations increase to 0.4 and decline again
in the agricultural phase. These large correlations in the nat-
ural phase appear from relatively little disturbance by tree
throw and sufficient water to redistribute in the landscape.
The small wiggles in the correlation lines are caused by mi-
nor uncertainties in our algorithm to derive soil properties
from the model results.

Table 3 shows the results from the analysis of variance,
which shows how much of the variance in soil properties
at the end of the natural and agricultural phases can be ex-
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Figure 6. Experimental semivariograms of the model results showing semivariance for different soil (a, b) and terrain properties (d–f) with
different precipitation scenarios (line types) at the end of the natural (black) and agricultural (red) phases. For comparison, panel (c) shows
experimental semivariograms of depth to Bt from a natural area (Meerdaal forest, P = 800 mm, Vanwalleghem et al., 2010) and an agri-
cultural area (CarboZALF-D, P = 500 mm, Van der Meij et al., 2017). Note that these field data are presented with different axes. The
experimental semivariograms are displayed with lines rather than points for easier visual comparison.

Table 2. Model and field organic carbon stocks (kg m−2) for different depth ranges, averaged over the catchment (average ± standard
deviation). The model results were converted from SOM to SOC by multiplying the SOM stocks by 0.58 (Wolff, 1864).

Carbon stocks (kg m−2)

Natural phase (t 14 500) Agricultural phase (t 15 000) Liu et al. (2011)

Depth range (m) Dry Humid Wet Dry Humid Wet
(grassland) (mixed) (forest)

0–0.2 4.7± 0.3 4.6± 0.9 4.1± 2.1 2.9± 0.1 2.9± 0.3 2.8± 0.4 3.0± 1.9
0–0.4 8.7± 0.4 8.5± 1.1 7.8± 2.8 5.5± 0.2 5.4± 0.5 5.3± 0.6 5.4± 3.2
0–1 17.1± 0.4 16.8± 1.2 15.7± 3.5 10.9± 0.6 10.8± 0.8 10.6± 0.8 8.8± 4.4
0–2 24.1± 0.4 23.7± 1.3 22.3± 3.8 15.7± 1.2 15.6± 1.2 15.4± 1.1 14.5± 5.2
Complete profile 27.7± 1.3 27.1± 1.7 25.3± 8.5 18.6± 16.1 18.4± 9.1 17.8± 10.1 –

plained by different factors (Table 3). The variance in depth
to the Bt horizon can be partly explained by rainfall (18 %)
and landscape position (23 %), when considering all data to-
gether. However, the largest part of the variance remains un-
explained. For the SOM stocks, most of the variance can be
explained by the land use (72 %). When grouped per land
cover/use, about half of the variance of depth to Bt can be
explained by either rainfall (natural phase) or landform (agri-
cultural phase). For the SOM stocks the dominant factors are
the same, but the variance in the natural soil landscape can

only be partly explained by rainfall (14 %), and a large part
remains unexplained.

4 Discussion

4.1 Soil patterns and properties

4.1.1 Soil patterns

Soils have been affected by humans for over 1000s of years,
either directly by agricultural use or indirectly by adjust-
ing factors that form the soil, such as vegetation or climate
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Table 3. Results from the analysis of variance, indicating the proportion of variance in soil properties explained by the different soil-forming
factors. The data are both considered in total and grouped per land use (natural or agricultural). The bold numbers indicate the largest part of
the variance, either explained by one of the factors or unexplained. All responses are significant (p<0.05).

Depth Bt SOM stock

Total Natural Agricultural Total Natural Agricultural

Rainfall 0.18 0.49 0.08 0.02 0.14 0.02
Landform 0.23 0.04 0.51 0.04 0.01 0.56
Land use 0.01 – – 0.72 – –
Unexplained 0.58 0.47 0.41 0.22 0.85 0.42

Figure 7. Correlations (R2) between selected soil properties (line
types) and topographic properties (colors) through time (left to
right), for the different rainfall scenarios (top to bottom). In the
natural system, the correlations are presented every 500 years,
while in the agricultural system, the correlations are presented every
50 years. Note that for the latter phase the x axis is stretched.

(Amundson et al., 2015; Bajard et al., 2017; Dotterweich,
2008; Stephens et al., 2019). Therefore it is difficult, if not
impossible, to find locations where truly natural soils can be
observed and compared to agricultural soils in similar set-
tings. Model simulations enable this comparison, as we show
in this study. Unfortunately, there are limited field data to cal-
ibrate and validate the model. To our knowledge, the dataset
from Vanwalleghem et al. (2010) is the only dataset that en-
ables quantification of the spatial distribution of natural soils
and links it to terrain properties at a local to regional scale,
similar to the setting we simulated. In this section, we rely
mainly on this dataset to discuss and evaluate the patterns
of natural soils we simulated with our model. For the agri-

cultural soil patterns, we use an extensive dataset from an in-
tensively managed agricultural field in northeastern Germany
(CarboZALF-D, Van der Meij et al., 2017). In our model sim-
ulations, we simplified the agricultural conversion by assum-
ing a single vegetation type in the entire catchment and direct
intensive management with tillage. This enabled us to isolate
the role of tillage erosion in the development of agricultural
soil and landscape patterns. We did not consider a slow his-
torical development of the agricultural system with increas-
ing management intensity and upscaling of agricultural field
sizes. The results of our simulations should be considered
to be within-field variation in soil and landscape properties.
In smaller-scale farming, the within-field soil–landscape re-
lations will also be present, but they are probably secondary
to variation between fields caused by different management
(history), vegetation type or anthropogenic structures such as
hedges, banks and roads (e.g., Follain et al., 2006; Peukert et
al., 2016; Yemefack et al., 2005).

We used semivariograms to illustrate the spatial autocor-
relation of soil and landscape properties (Fig. 6). Semivari-
ograms are very case-study-specific, because the range, sill
and nugget are affected by the scale of topographic and
lithogenic variation, different rates of pedogenic and geomor-
phic processes and different types of human disturbances in
the landscape. Therefore, we only compare the trends in the
semivariograms from model and field results to evaluate the
type of spatial autocorrelation of soil properties in such set-
tings.

Figure 6b and c show experimental semivariograms of
depths to Bt horizons in model and field data. In both pan-
els, the agricultural settings show higher spatial autocorrela-
tion compared to the natural settings, expressed by the higher
sill and range. This indicates that in agricultural fields the
depths to Bt horizons are more spatially organized (higher
large-scale variability), with larger differences between dif-
ferent landscape positions. In natural areas, the spatial differ-
ences in depth to Bt horizon are lower and there is less spatial
organization of the depth distributions. The model and field
results show different magnitudes in nugget, range and sill.
This can be explained by (1) the high density of data points
in the model results which enabled us to calculate the semi-
variance over very short distances, reducing the nugget, and
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(2) the fact that we used a very condensed DEM with high lo-
cal variation in topographic properties as input for the model
results, which led to high local variation in soil properties
too. Nonetheless, the similar trends in the field and model
semivariograms indicate that the general soil patterns from
model and field results agree. Also, the correlations between
soil and landscape properties are similar for field and model
results. Vanwalleghem et al. (2010) found correlations be-
tween different horizon depths and topographic properties
with R2s ranging between 0.02 and 0.1, which are the same
order as most correlations we calculated in Fig. 7. These sim-
ilarities indicate that our model HydroLorica simulated the
essential processes that form these natural soil patterns.

Our simulations show a large diversity of natural soil pat-
terns, influenced by the amount of rainfall and associated
vegetation type. The available water leads to a regionally
higher rate of soil development, for example in the form of
deeper clay eluviation (Fig. 3), and also to a greater lateral re-
distribution of soil material by water erosion and tree throw
(Fig. 5) and spatially varying infiltration rates. With more
rainfall, the higher rates and interactions between these pro-
cesses lead to a spatially more heterogeneous soil pattern, as
expressed in higher ranges and sills in the semivariograms
(Fig. 6). This local variation in pedogenesis due to differ-
ent water input has been recognized and partly accounted
for in other modeling studies (Finke et al., 2013; Saco et
al., 2006; Shepard et al., 2017), but had not emerged from
soil–landscape evolution studies. Also, the terrain, summa-
rized by slope, TPI and TWI, becomes more heterogeneous
with higher rainfall. Water flow thus affects soil and terrain
patterns in a similar way.

Intensively managed agricultural soils display entirely dif-
ferent patterns compared to natural soils. There is lower
small-scale variability due to the absence of tree throw and
local homogenization by tillage, while the semivariograms
of soil properties suggest higher sills, i.e., higher large-scale
variability and spatial autocorrelation of soil properties com-
pared to natural soil properties. This is due to the slope-
dependent intensity of tillage erosion (Phillips et al., 1999).
This erosion leads to truncation of soils at convex positions,
while concave positions have a net accumulation of material
(De Alba et al., 2004). This truncation is visible in many agri-
cultural landscapes, because subsurface horizons with differ-
ent colors get exposed at the surface in heavily eroded lo-
cations (e.g., Smetanová, 2009; Van der Meij et al., 2017).
In contrast, terrain properties seem to display lower spatial
variation in agricultural landscapes. The smoothing effect of
tillage on the terrain removed local pits and rills created in
the natural phase. We hypothesized earlier that a smoother
terrain would have higher hillslope connectivity, leading to
increased water erosion (Van der Meij et al., 2017). How-
ever, we observed the contrary in our model results (Fig. 5).
The export of sediments from the catchment might be higher,
but the uptake and local redistribution of sediments on the
hillslope is lower, because local steep gradients are removed.

Tillage is thus the dominant process forming agricultural soil
patterns. The effect of anthropogenic soil erosion on soil het-
erogeneity far exceeds effects of changes in for example rain-
fall, which shows the huge impact we have as humans on
soil–landscape development.

4.1.2 Process calibration and verification

The rates of the simulated processes were difficult to cali-
brate and validate. This is mainly due to a lack of field data
that cover a range of climatic, topographic, chronologic and
geographic settings (Van der Meij et al., 2018). Such data
are essential for formulating pedogenic functions that are ap-
plicable in a wide range of settings instead of only in case
studies, or for verifying model results. The chronosequence
collection of Shepard et al. (2017) is a global dataset of soils
in various settings covering different time steps. This dataset
could be a good starting point for developing such func-
tions owing to its large coverage. But as chronosequences
are generally situated in relatively flat, stable landscapes,
they often do not contain information about variations of soil
properties at small distances, as a function of local terrain
(Harden, 1988; Sauer, 2015) – with the exception of some
pro-glacial soil chronosequences whose use is limited be-
cause of their extreme climate and parent material (Egli et
al., 2006; Temme and Lange, 2014). Such more complete in-
formation is essential for understanding the formation of soil
patterns, as illustrated in the previous section. Therefore, we
suggest including topographic variation in future chronose-
quence studies (Temme, 2019). A dataset covering different
geographies could also raise the comparison of model and
field results beyond the case-study level.

In this study, we worked with an artificial landscape to
avoid effects of uncertainties and local variations in initial
and boundary conditions that are often present in data from
field settings (e.g., Van der Meij et al., 2017). This allowed
us to investigate the universal effects of changes in rainfall
and land use on the model results, as a function of terrain
morphology. Although uncertainties in boundary conditions
appear to have a limited effect on the outcomes of soil evo-
lution models, uncertainties in initial conditions can strongly
influence the results (Keyvanshokouhi et al., 2016).

One soil property for which there are plenty of data on the
spatiotemporal variation is soil organic matter or carbon, due
to the current interest in its potential to store atmospheric
carbon (Minasny et al., 2017). We used a regional dataset
from the loess plateau to calibrate our SOM cycle in agri-
cultural landscapes, and we used carbon sequestration rates
for adjusting the SOM balances for forest and grassland ar-
eas. The modeled SOM stocks for agricultural sites match
the field data fairly well (Table 2), but stocks for natural ar-
eas are estimated higher than often observed. For example, in
Bavaria, Germany, carbon stocks in the first meter, including
the optional litter layer, are 9.8–11.8 kg m−2 (Wiesmeier et
al., 2012), where we simulated 15.7–17.1 kg m−2 in our nat-
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ural settings without consideration of a litter layer. Also, the
depth distributions are different. De Vos et al. (2015) found
that 50 % of the carbon stock occurs in the top 20 cm in Eu-
ropean forests on various parent materials. In our results this
is around 20 %. This implies that agriculturally derived SOM
depth functions are not suitable for calibrating natural SOM
depth functions, probably because input, vertical redistribu-
tion, litter quality and decay of SOM behave differently in
natural and agricultural sites. To calibrate these parameters,
data from agricultural and natural sites in close vicinity are
needed to avoid effects of geographic and climatic differ-
ences. We are currently not able to simulate and calibrate
these processes properly.

4.2 Drivers of soil formation

4.2.1 Soil-forming factors

Different soil-forming factors dominate the variance in soil
properties in natural and agricultural systems (Table 3). In
natural systems, rainfall is the dominant factor explaining
the variance. In scenarios with greater rainfall, rates of soil
and landscape change are larger, leading to more complex
patterns. Although we did not simulate a changing climate,
the results suggest that we can expect more stable conditions
with similar pedogenesis rates throughout the landscape in
periods with lower rainfall, while periods with greater rain-
fall may induce landscape change and spatially varying rates
of pedogenesis. The major driver of this increased landscape
change is the higher occurrence of tree throw. The higher
water availability increases forest cover, leading to more tree
throws (see the animations in Supplements 2 and 3).

Although our vegetation module is very simple, it was able
to simulate the climatic and topographic control on vegeta-
tion patterns which affect geomorphic and pedogenic pro-
cesses. We would expect similar results to be obtained if a
more complex vegetation module that does justice to ecolog-
ical complexity (i.e., resilience, succession) would be incor-
porated.

In intensive agricultural systems with large fields, land-
form is the dominant factor explaining the variance (Ta-
ble 3). This shift from external factors in natural systems
to internal factors in agricultural systems marks the impor-
tance of geomophic processes in agricultural soil patterns.
Although relief controls rates and directions of geomorphic
processes, the type of process is human-controlled. Humans
have a massive impact on soil development (Amundson and
Jenny, 1991; Dudal, 2005). Direct effects include agricul-
tural use, excavations, introduction of organisms and cre-
ation of new parent materials (Richter et al., 2015), while
indirectly anthropogenic changes in climate can have severe
effects on soil properties (Nearing et al., 2004; Schuur et al.,
2015). We have focussed on the main of these anthropogenic
changes in loess landscapes: removal of forest and com-
plete introduction of tillage, even though intermediate forms

with incomplete clearing, smaller fields and forested borders
may have historically existed. Humans as soil-forming fac-
tors form new catenae (anthroposequences) and soil patterns,
where the ultimate pattern only depends little on the initial
variation (Fig. 6). In our model results, we observe four of
the six anthropogenic changes to soils, as described by Du-
dal (2005): human-made soil horizons, deep soil disturbance,
topsoil changes and changes in landforms. These changes
substantially affect soil functions, such as biodiversity and
food security. Our simulations thus support the view that hu-
mans are the dominant factor in forming soils in agricultural
landscapes.

4.2.2 Soil–landscape (co-)evolution

The development of soils and landscapes is not merely a
collection of individual processes, but also of interactions
between different processes. When processes interact, and
when changes to soils and landscapes are on the same order
of magnitude, soil–landscape co-evolution can occur. This
co-evolution can amplify or diminish certain processes or can
completely change the direction of soil and landscape evolu-
tion (Van der Meij et al., 2018). Often, co-evolution is used
to describe soil and landscape processes with similar rates
but that do not necessarily interact (e.g., Willgoose, 2018).
This would imply that these processes would co-occur rather
than co-evolve. In this section we evaluate some co-occurring
processes in HydroLorica to see whether co-evolution oc-
curred. There are different co-occurring processes in the nat-
ural phase of slow landscape change compared to the agri-
cultural phase of intense landscape change.

Lateral and vertical transport

We will first consider vertical and lateral soil transport pro-
cesses. Soils and hillslopes can be considered a series of
transport ways or conveyor belts (Román-Sánchez et al.,
2019). Vertical transport or mixing occurs by bioturbation
including tree throw and clay translocation, whereas lat-
eral transport occurs by creep, tree throw, water erosion
and tillage erosion. Interactions between processes can occur
where transport ways affect the same material. Two exam-
ples we will discuss here are the vertical and lateral transport
of clay and the interaction between creep and water erosion
in the valley bottom.

The vertical translocation of clay is simulated in our model
by an advection–diffusion equation, where the advective part
is the downward transport by water flow and the diffu-
sive part a homogenization by bioturbation (Jagercikova et
al., 2017). When the rates of advection and diffusion are
equal, the upward transport of clay by bioturbation equals the
amount of downward translocation by water; the clay-depth
profile of the soil occurs in steady state and will not change
substantially. Steady-state circumstances are however rare in
natural soil systems (Phillips, 2010). Our simulations do not
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show steady-state circumstances, because in our simulations
there is always lateral transport of soil material that contin-
uously changes slope and terrain properties and affects the
soil’s clay balance, complicating the achievement of a steady
state. Periodic water erosion can remove substantial amounts
of clay that have been transported to the surface by biotur-
bation. This is clearly visible in the results of the wet sce-
nario (P = 900 mm), where only 62 % of the soils developed
a Bt horizon. The other 38 % had insufficient clay left to be
classified as Bt according to our criteria. These results are
quite extreme for such a small catchment as ours, probably
due to too high simulated rates of water erosion, but they do
show how pedogenic and geomorphic processes can inter-
act in sloping terrain. In the natural phase the rates of clay
translocation are similar to those of geomorphic processes.
The recovery of the clay-depth profiles after disturbance of,
e.g., tree throw takes similar times (∼ 1000s of years) to the
re-occurrence of a sequential tree throw event in the vicinity
(Fig. 3). Tree throw also temporarily changes rates of clay
translocation by concentrating infiltration in the created pits.
In the agricultural phase the rates of geomorphic processes
far exceed the rates of clay translocation. This causes trunca-
tion of the soils, exposing the Bt horizons at the surface and
burying these horizons elsewhere in the landscape. The clay
profiles at eroded sites do not have time to react to the geo-
morphic disturbances. However, clay illuviation can start as
a new pedogenic process in older depositional areas (Supple-
ment of Leopold and Völkel, 2007; Van der Meij et al., 2019;
Zádorová and Pení žek, 2018).

Another interaction that emerged from the simulations
occurred at the valley bottom. Soil creep transported hill-
slope material downslope, whence the concentrated water
flow in the valley removed it from the catchment, creating
a v-shaped valley bottom (Fig. 2). This constant removal
of material maintained the gradients that were used by soil
creep to deliver new material. This interaction can be ob-
served in various small hillslope catchments, which display
typical v-shaped gulleys in the valley bottoms (e.g., Swanson
and Swanston, 1977; West et al., 2013). Although this is not
an interaction between pedogenic and geomorphic processes,
it determines to a large extent how soil material gets redis-
tributed along a hillslope and eventually gets exported from
the catchment. In the agricultural phase, diffusive transport
in the form of tillage erosion dominates over advective trans-
port by water. As a consequence, the typical v shapes fill up
and are replaced by u-shaped valleys. These valley fillings
consist of coarse material from which most clay was eroded
(Fig. 2). In agricultural areas, such infillings can temporar-
ily remove erosion gulleys, but due to local water availabil-
ity, they remain weak spots for future water erosion (Poesen,
2011).

Soil organic matter dynamics

Rates of SOM accumulation and decomposition far exceed
rates of clay translocation. SOM stocks recover quickly af-
ter a disturbance by tree throw and can keep up with intense
landscape change by tillage (Fig. 3). Freshly exposed, reac-
tive soil material at eroding sites quickly accumulates new
SOM, whereas SOM gets buried at depositional positions.
Meanwhile, SOM decomposition increases during transport
(Doetterl et al., 2012). In our simulations, the SOM stocks
decrease substantially in the agricultural phase, mainly due to
lower SOM input (Fig. 3). Carbon stocks show relatively ho-
mogeneous distributions throughout the catchment (Fig. 4),
despite large spatial differences in erosion and deposition.
This indicates that landscape change in both natural and agri-
cultural systems did not induce substantial heterogeneity in
SOM stocks. The small differences in SOM stocks in agri-
cultural settings depend on landform (Table 3). These dif-
ferences mainly emerge from differences in soil thickness
at erosion and deposition positions. Deposition positions
show a slight increase in SOM stocks after cultivation, while
erosion positions show continually decreasing SOM stocks
(Fig. 3). The differences in SOM stocks in the model results
are thus related to burial of colluvium in the valley bottom.
SOM cycling is heavily influenced by erosion processes, but
erosion rates do not depend on the SOM cycling. In tillage-
dominated systems, erosion rates do not depend on SOM
content or SOM dynamics in the soil. The co-occurrence of
SOM cycling and tillage erosion in agricultural settings thus
does not lead to co-evolution.

The interactions between erosion and the SOM cycle are
currently under debate, especially whether agricultural re-
distribution provides a carbon source or sink by affecting
biogeochemical cycles and exporting carbon from fields and
catchments (Berhe et al., 2018; Chappell et al., 2015; Doet-
terl et al., 2016; Harden et al., 1999; Lal, 2019; Lugato et
al., 2018; Van Oost et al., 2007; Wang et al., 2017), which
shows the importance of considering landscape processes in
pedogenic studies and vice versa. Moreover, intensive agri-
culture has been practiced for over 1000s of years in parts
of the world (Stephens et al., 2019), emphasizing the need to
consider centennial to millennial time periods in studies on
anthropogenic forcing on soil systems.

Did co-evolution occur?

The co-occurrence of processes does not necessarily im-
ply co-evolution. The analysis in this section showed that
soil and landscape processes co-occurred in both natural and
agricultural settings, but that interactions between processes
only occurred in natural settings. Rates of soil and landscape
change are controlled by drivers such as water availability
and vegetation type, and these drivers are influenced by soil,
landscape and climate properties. Changes in one domain
in the landscape have effects on the formation of all other
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domains. These interactions, or co-evolution, occur on both
short and long timescales in the natural system. There are
already considerable differences between the soil patterns
from each scenario after 500 years of natural soil formation,
due to the role of water and vegetation in soil–landscape co-
evolution. These differences become more pronounced over
time, due to progressive soil and landscape formation (Sup-
plement 2).

In comparison, the differences between the patterns of
each scenario after 500 years of agricultural land use are
much smaller (Supplement 2). This is because anthropogenic
processes such as tillage erosion occur at such high rates that
most natural processes cannot keep up and lead to more sim-
ilar soil landscapes. In settings with uniform parent mate-
rial such as we simulated, anthropogenic processes do not
show co-evolution, because the rates of for example tillage
erosion far exceed any rates of natural soil and landscape
change (Fig. 5), and the rates of the anthropogenic processes
are not influenced by soil properties. Tillage can introduce
new processes or accelerate other processes, e.g., by break-
ing up aggregates. However, these processes do not affect
the rate at which a plough transports sediments through a
landscape. If interactions between processes do not occur
on shorter timescales, they will also not emerge over longer
timescales, as is the case with natural processes as described
before. The occurrence of possible co-evolution of soils and
landscapes thus depends on the type of processes that affect
the system, not on the duration over which these processes
change soils and landscapes. In other words, co-evolution is
not time-dependent, but process-dependent.

Co-evolution of soils and landscapes can also occur via in-
trinsic thresholds which do not depend on changes in exter-
nal drivers such as rainfall and land use. An example is the
development of stagnating layers in the soil, which change
the subsurface partitioning of water and can introduce re-
ducing conditions. But, as we explain in Van der Meij et
al. (2018), such intrinsic thresholds can currently not be mod-
eled, because we lack the methods for estimating accurate
soil hydraulic properties which drive this threshold behavior.
Ideally, a model shows such threshold behavior without ex-
plicitly incorporating these thresholds into the model code
as such imposed hard thresholds can cause problems when
calibrating the model by creating sharp discontinuities in the
model results as a response to slight variations in parameters
(Barnhart et al., 2019). For these reasons we focused on het-
erogeneity and (co-)evolution related to external drivers in
this research.

The soil and landscape interactions in natural settings em-
phasize the need to study natural soil formation in a land-
scape context rather than a pedon context. Only when land-
scapes are stable, flat and free of trees are changes in soil
properties not influenced by changes in terrain. In such set-
tings, a 1D soil profile evolution model would suffice to
simulate soil development in different landscape positions
(Finke, 2012; Minasny et al., 2015). When rates of geomor-

phic processes far exceed those of pedogenic processes, for
example in tillage-dominated systems, a landscape evolution
model would suffice (e.g., Temme et al., 2017). In undulat-
ing landscapes where various hillslope processes occur, soils
should be considered 3D bodies, and soil–landscape evolu-
tion models are essential to simulate spatial drivers of soil
and landscape evolution (Willgoose, 2018).

4.3 Predictability of soil patterns

In digital soil mapping, empirical relations between soil
properties and their environment are used to predict soil
properties through space (McBratney et al., 2003). In order
to predict soil properties with environmental variables, the
environmental variables should show variation over the same
spatial scale as the variable to be predicted. On a hillslope
scale, this variation often occurs in terrain properties (Gessler
et al., 2000), while external factors such as climate often do
not vary spatially at these scales. The shift from dominant ex-
ternal to dominant internal soil-forming factors in explaining
variance in observed soil properties (Table 3) thus has large
implications for our ability to predict and map soil patterns.
Human activity has created soil landscapes that are well-
suited for digital soil mapping. The correlations between
simulated soil and several terrain properties all give the same
signal (Fig. 7): the correlations in the natural phase are lim-
ited, but increase rapidly in the agricultural phase. The switch
from a natural to agricultural phase thus increases soil het-
erogeneity, but also soil predictability, which can be used to
predict the soil properties in large-field settings. One should
be careful extrapolating soil-terrain relationships from agri-
cultural areas to natural areas, as these correlations depend
on land management and can give wrong results under dif-
ferent land cover.

Digital soil mapping (DSM) performs well when predict-
ing the spatial distribution of agricultural soils, but its appli-
cability in time is limited because of limited temporal data
(Gasch et al., 2015; Grunwald, 2009). The limited obser-
vations in space and time can be supplemented or extrapo-
lated by incorporating biogeochemical process descriptions
to improve DSM (Angelini et al., 2016; Christakos, 2000, 22
pp.; Heuvelink and Webster, 2001). However, the response
of soils and terrains to changes in soil-forming factors takes
longer (decades to millennia) than the time span over which
we have observations (days to decades). Process-based mod-
els thus become increasingly essential for understanding how
soils might change under projected scenarios of land use and
climate change (Keyvanshokouhi et al., 2016; Opolot et al.,
2015), and HydroLorica shows a promising first example of
such a model on a landscape scale that responds to changes
in all five soil-forming factors and by extension the human
control on these factors.
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5 Conclusions

Soils undergo substantial changes in the transition from a
natural land cover to agricultural land use. Although these
changes can be described conceptually, quantitative data to
describe the changes in soil pattern are scarce. We devel-
oped a soil–landscape evolution model, named HydroLor-
ica, which is able to simulate the evolution of soils and land-
scapes in both natural and agricultural settings, by simulating
spatially varying infiltration as a driver of soil formation and
by inclusion of essential natural and agricultural processes
such as soil creep, tree throw and tillage. We used this model
to simulate soil and landscape development in varying cli-
matic settings, under changing land use, to quantify changes
in variation and predictability of soil patterns. We reached
the following conclusions.

– Natural and agricultural landscapes display different
soil patterns. Natural soil patterns are more chaotic and
random with higher precipitation. Their formation is
dominated by local processes such as tree throw and
spatially varying infiltration. Soil patterns in intensively
managed fields are dominantly formed by tillage ero-
sion processes. Also, agricultural soil properties show
larger correlations with terrain properties.

– In natural systems, rainfall is the main factor influenc-
ing soil variation. In agricultural systems, landform ex-
plains the largest part of variation. The most important
factor affecting total soil variation is the human fac-
tor. Agricultural land use increases erosion rates, which
changes soil patterns and creates and amplifies the to-
pographic dependence of soil properties.

– In natural and agricultural settings there are different
sets of processes that change soils and landscape with
similar rates. In natural systems, these processes of-
ten interact and amplify or diminish each other, leading
to soil–landscape co-evolution. In agricultural systems,
these interactions are often missing, and processes co-
occur rather than co-evolve.

– Agricultural soil patterns in a large-field setting are eas-
ier to predict than natural soil patterns, due to the shift
from dominant external to internal factors that explain
soil variation, which manifests itself in larger correla-
tions between soil and terrain properties.

Soil–landscape evolution models are increasingly
equipped to simulate soil–landscape development in a
variety of settings. Our contribution shows the added value
of using water availability as a spatially varying driver of
pedogenesis to simulate soil and landscape development in
natural settings. These developments are essential to study
the vulnerability and resilience of soil systems under the
increasing pressure from land-use intensification and the
changing climate, but can also assist in understanding the

long-term effects of management strategies such as reduced
tillage or no-till on soil properties such as carbon stocks.
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