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Abstract: Reliable crop type maps from satellite data are an essential prerequisite for quantifying
crop growth, health, and yields. However, such maps do not exist for most parts of Africa, where
smallholder farming is the dominant system. Prevalent cloud cover, small farm sizes, and mixed
cropping systems pose substantial challenges when creating crop type maps for sub-Saharan Africa.
In this study, we provide a mapping scheme based on freely available Sentinel-2A/B (S2) time series
and very high-resolution SkySat data to map the main crops—maize and potato—and intercropping
systems including these two crops on the Jos Plateau, Nigeria. We analyzed the spectral-temporal
behavior of mixed crop classes to improve our understanding of inter-class spectral mixing. Building
on the Framework for Operational Radiometric Correction for Environmental monitoring (FORCE),
we preprocessed S2 time series and derived spectral-temporal metrics from S2 spectral bands for
the main temporal cropping windows. These STMs were used as input features in a hierarchical
random forest classification. Our results provide the first wall-to-wall crop type map for this key
agricultural region of Nigeria. Our cropland identification had an overall accuracy of 84%, while
the crop type map achieved an average accuracy of 72% for the five relevant crop classes. Our
crop type map shows distinctive regional variations in the distribution of crop types. Maize is the
dominant crop, followed by mixed cropping systems, including maize–cereals and potato–maize
cropping; potato was found to be the least prevalent class. Plot analyses based on a sample of
1166 fields revealed largely homogeneous mapping patterns, demonstrating the effectiveness of
our classification system also for intercropped classes, which are temporally and spatially highly
heterogeneous. Moreover, we found that small field sizes were dominant in all crop types, regardless
of whether or not intercropping was used. Maize–legume and maize exhibited the largest plots, with
an area of up to 3 ha and slightly more than 10 ha, respectively; potato was mainly cultivated on
fields smaller than 0.5 ha and only a few plots were larger than 1 ha. Besides providing the first
spatially explicit map of cropping practices in the core production area of the Jos Plateau, Nigeria,
the study also offers guidance for the creation of crop type maps for smallholder-dominated systems
with intercropping. Critical temporal windows for crop type differentiation will enable the creation
of mapping approaches in support of future smart agricultural practices for aspects such as food
security, early warning systems, policies, and extension services.

Keywords: spectral-temporal metrics; time series; smallholder agriculture; intercropping; SkySat;
classification; random forest; maize; potato; sub-Saharan Africa
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1. Introduction

Smallholder agriculture is largely located in low to middle-income countries in Africa,
Asia, and Latin America [1,2]. About 60% of farmers in these regions are poor, with
families traditionally growing multiple crops on a single field due to the scarcity of fertile
land per family, as well as the need to manage the land as effectively as possible and to
optimize labor [3]. Nonetheless, intercropping offers a wide range of agronomic benefits,
such as the diversification of nutrition options, the efficient use of nitrogen, and physical
barriers for pests and diseases [3–5]. Consequently, agricultural production in smallholder
regions is highly diverse, making it challenging to map. There is, however, a political and
administrative demand for accurate estimates of agricultural production that go beyond
the quality and frequency of traditional survey methods, improving the representation
of smallholder agriculture in national to global food production [6]. There is a need for
robust methodologies that provide accurate, reproducible, and cost-efficient estimates of
agricultural production in these regions [7]. Enhanced knowledge of the contribution made
to food production by smallholders will add to our understanding of smallholder farming
systems and improve the role played by global food programs in attaining the Sustainable
Development Goals (SDGs) [8,9]. In this context, it is crucial to know which crops are
grown and where.

Agricultural plots in farming systems of sub-Saharan Africa (SSA) are smaller and fol-
low less regular patterns than their counterparts in more intensively managed systems [10].
Smallholdings typically contain between 0.1 ha and 2 ha of agricultural land [1]. We know
from household surveys in a number of African countries that around 50% and 25% of
fields are smaller than 0.4 ha and 0.2 ha in size, respectively [11]. As a result, plot size may
be a good proxy for characterizing smallholder systems or even land-use intensity in the
absence of geodata on land ownership [2,12,13]. In addition, trees are often scattered across
agricultural land [12], creating additional challenges when defining cropland masks or per-
forming crop type mapping [14–16]. Consequently, it is challenging to create high-quality
training and validation datasets [7], and field data collection in smallholder regions is both
tedious and expensive [17,18]. Moreover, several crops are often grown simultaneously on
one plot [1,17]. Such intercropping in smallholder systems creates spectral mixing due to
the spatial and temporal similarity of crop type classes [18,19].

Remote sensing is a robust and cost-effective method for generating up-to-date crop
type maps for large areas at various scales [20,21]. The advent of Sentinel-2A and Sentinel-
2B (S2) imagery has significantly improved mapping of complex smallholder cropping
systems in SSA, given the spatial resolution of 10 m (in the VIS/NIR domain), a temporal
revisit window of approximately 5 days, an improved spectral resolution, and the inclusion
of three vegetative red-edge bands [7]. Advances are further stimulated by the free data
policies of the United States Geological Survey (USGS) Landsat program and the European
Copernicus program, providing well-calibrated datasets for building time-series informa-
tion. These developments and current computational capabilities offer opportunities for
crop type mapping in complex smallholder systems over large areas.

Recently, remotely sensed time-series have been successfully employed for mapping
crop types across different world regions [22], in Germany [23,24], in Ukraine, Mali, South
Africa [25], in China [26], in India [27], and the United States of America [28], among others.
Despite these great advancements regarding crop type mapping in general, studies focusing
on crop type. Most previous studies on crop type mapping in smallholder systems of SSA
have focused on the integration of multiple remote sensing datasets [29–33]. The authors
of [30], for example, tested several combinations of Landsat-8 and S2 bands for mapping
land cover, cereals, and legumes in Burkina Faso. They reported that a combination of
Landsat and S2 red-edge bands produces the best output, particularly for separating
legumes and cereals from other land cover types. Delrue et al. [34] tested the capability
of Landsat and KOMPSAT-2 high-resolution data for crop type mapping in Ethiopia, and
found that 4 m KOMPSAT-2 data were more appropriate than Landsat data for mapping
smallholder fields. Prins and van Niekerk [35] explored the integration of LiDAR, S2,



Remote Sens. 2021, 13, 3523 3 of 24

and aerial imagery using machine learning (ML) classifiers to map crop types in South
Africa. They reported that LiDAR is robust for isolating crop types once crop heights
reach a certain minimum threshold. Rustowiczet al. [31] mapped multiple crop types for
Ghana and Sudan using semantic segmentation, integrating Sentinel-1 (S1), S2, and Planet
data. Kpienbaareh et al. [33] integrated the same datasets to produce crop types in Malawi.
These two latter studies reported that higher temporal and spatial resolutions, achieved by
integrating data from three platforms, improved mapping accuracy. Mazarire et al. [36]
tested crop type predictions in heterogeneous smallholder settings in SSA using only S2
to map a variety of crops. They reported an overall good accuracy based on a methods
comparison, while encouraging the practice of mapping mixed classes with S2 data in the
future.

Crop type mapping procedures in smallholder-dominated regions must be capable
of handling temporally, spatially, and spectrally complex data, since heterogeneous small-
holder cropping systems are highly diverse [14,37]. For this reason, commercial very
high-resolution (VHR) satellite data are often used in studies that focus on smallholder
systems. However, studies usually cover only small areas of interest (due to the high
cost of commercial VHR data or the particular methods focus), neglecting intercropped
classes [29–33]. Thus, there is a need to develop methods that are capable of mapping
mixed classes, since mixed cropping is the most common form of farming in smallholder-
dominated regions, impeding the production of useful annual crop type maps on the
African continent. A review study on smallholder cropping regions by Chivasa et al. [37]
identified major research gaps in the differentiation of crop varieties within a field, and
highlighted the potential opportunities offered by sensors such as S1, S2, Landsat, and
commercial high-resolution sensors for crop type mapping. Most importantly, the use of
S2 data, offering advantages on account of the unique combination of spectral and spatial
resolution with a dense revisiting schedule, opens up new opportunities for data-scarce
regions characterized largely by smallholder agriculture. Open data policies and processing
capabilities now make it possible to produce crop type maps for heterogeneous agricultural
landscapes. However, challenges for creating analysis workflows adapted to seasonal
data scarcity remain [31,37]. This problem is aggravated by heavy cloudiness during the
main cropping season [38] and a lack of sufficient reference data [19]. Therefore, we focus
explicitly on crop type mapping, including both sole cropping and mixed cropping systems
in smallholder agriculture in SSA, using open source S2 data.

Few studies have been carried out to explore crop type mapping in Nigeria. To the
best of our knowledge, previous studies focused largely on comparing different sensor con-
stellations and classification setups [29,32], without specifically relating such strategies to
the complexities of smallholder farming systems in Nigeria. Crop type maps are crucial for
mitigating and adapting to future impacts of climate change and of increasing threats from
pests and crop diseases in Nigeria; they are also crucial in supporting recent sustainability
policies to transform the country’s agricultural sector [39]. Novel approaches are therefore
needed to better map such spatially and temporally heterogeneous systems, specifically
reflecting the complexity of smallholder cropping systems. In this study, we focus on the
cropland of Nigeria, the main producer of grain in SSA [40]. We focus in particular on one
of Nigeria’s core production region, the Jos Plateau [41]. Our overarching aim is to create
a workflow for isolating phenological features and for mapping the key crops—maize
and potato—in the complex environmental and agricultural setting of the Jos Plateau,
Nigeria. We use spectral-temporal features from S2 spectral bands to tackle the challenges
related to intercropping systems and fine-scale field structures relevant to smallholder
agriculture. We further elaborate on the challenges and opportunities offered by the S2
sensor constellation in such data-scarce regions. We support our mapping approach with
multi-temporal SkySat data for validation purposes. More specifically, we address the
following questions:

1. How accurately can we map maize, potato, and mixed cropping systems using all
available S2 data in Nigeria?
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2. How are crop types distributed within the study region and across field size gradients?

2. Materials and Methods
2.1. Study Area

Nigeria’s Plateau State occupies an area of 30,913 km2, spanning from 7◦24′ N to
10◦25′ N and 8◦45′ E to 10◦38′ E. An elevational gradient divides Plateau State into two
major distinctive ecological units (Figure 1). The upper plateau (Jos Plateau) and the lower
plateau differ in terms of climatic conditions, soil types, and prevalent vegetation and
morphology, due largely to differences in topography and geology (Figure 1). The Jos
Plateau features a temperate climate compared to the other parts of Plateau State/Nigeria,
with average monthly temperatures between 21 ◦C and 25 ◦C (https://de.climate-data.org
accessed on 6 September 2020). Although the lower Plateau contains a larger area of
agricultural land, the Jos Plateau is essential for food production in Nigeria, given its lower
temperatures, increased precipitation, and favorable soil conditions. These conditions
enable farmers to grow a wide variety of both tropical and temperate fruit, vegetables, and
crops. Potato and other temperate foods are grown exclusively on the Jos Plateau. Nigeria
is the fourth-largest producer of potatoes in SSA, with an estimated production of up to
843,000 tons per year, 82% of which is produced on the Jos Plateau [41,42].

Nigeria produces around 8 million tons of maize per year [40]. Plateau State is
the fourth-largest producer of this important staple crop, which is grown in all states of
Nigeria [43]. Maize is also predominantly grown on the Jos Plateau, intermixed mainly
with potato, cowpea, or soybean. Staple crops such as cocoa, yam, cassava, beans, rice,
fonio, and millet are produced on the Jos Plateau alongside the dominant crops, maize and
potato [44].

The natural heterogeneity of savanna landscapes, where much of this cropland is
situated, and the geological formations that occur in between them affect vegetation types
and farming practices. Man-made patterns emerge due to intensive irrigation farming,
which is prominent in close proximity to rivers, streams, and mine ponds; in addition,
identifiable clusters are introduced due to other typical management practices that are
inherent in the cultural origin of different tribes (special crop mixtures, terracing, etc.).
These factors make the land cover and farming systems on the Jos Plateau unique, and by
far one of the most difficult terrains to map in Nigeria from a remote sensing perspective.

https://de.climate-data.org
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Figure 1. Overview map of Nigeria and a close-up of the Jos Plateau study area. The close-up
includes the S2 tiling system as used in this study and SkySat areas of interest (AOIs). See Section 2.2
for details on the satellite data.

2.2. Data
2.2.1. Image Data and Preprocessing

In this study, we integrated S2 (A and B) images with VHR SkySat imagery, the latter
specifically for validation. To this end, we downloaded all available S2 Level 1C data for
2019 with a cloud cover of less than 70%, resulting in a total of 604 scenes across four
footprints. We tasked SkySat acquisitions for four 25 km2 areas of interest and in five
critical time periods of the 2020 cropping season (Figure 1). In addition, we obtained all
available Landsat Collection 1 Level 1 observations for the period 2015 through 2020 for the
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purpose of improving the multi-temporal co-registration of the S2 time series [45]. Image
downloads, preprocessing, and classification were carried out in the open source Frame-
work for Operational Radiometric Correction for Environmental monitoring (FORCE) [46].
This preprocessing includes atmospheric correction [47], cloud masking [48], topographic
correction, tiling, as well as image co-registration based on Landsat imagery. Here, we
used the LSReg 2.0 algorithm [45], which is also fully integrated in the FORCE processing
toolbox. In principle, the Landsat NIR band is used as a base layer over a 5-year period
of acquisitions (in our case, 2015–2020) and co-registered via a hierarchical pyramid layer
approach.

The result was a bottom-of-atmosphere reflectance for nine spectral bands in the
visible through shortwave infrared wavelengths natively provided at 10 m and 20 m spatial
resolution. FORCE enables the spatial resolution to be homogenized and improved spatial
resolution by downscaling 20 m bands to 10 m pixel resolution [47]. This downscaling
makes it easier to detect the variability of land cover or landscape features [49] and small
fields, which are dominant in the smallholder setting [7,18]. Bands one, nine, and ten are
for the purpose of atmospheric correction and cloud screening at 60 m spatial resolution;
thus, they are not useful for our land cover or crop type mapping [50], and were removed
from our main analysis.

2.2.2. Reference Data

Field data were collected during the 2019 and 2020 cropping seasons, along with 119
semi-structured interviews that focused on the farmers’ cropping practices. We collected
530 samples of potato and maize fields in 2019, covering ecological gradients and different
management practices. A stratified random sampling across the study area was used and
guided by the accessibility of farm settlements. Of this total, 180 of the samples covered
potato fields, mostly intercropped with maize, and 352 samples corresponded to maize
fields, which were intercropped in part with legumes (soybean, groundnuts, or cowpea).
The 2020 field campaign added another 690 samples, 181 of which were from potato farms,
mainly mixed with maize, and 509 from maize fields, most of which were also mixed with
legumes (Figure 2 and Table 1).
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Figure 2. Crop type classes: (A) maize; (B) potato; (C) potato–maize; (D) maize–legumes (in this case,
soybean).
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Table 1. Reference crop type samples.

Crop Type Field Data 2019 Field Data 2020 Digitized (SkySat) Total

Maize 213 400 - 613
Potato 33 24 281 338

Potato–maize 115 152 406 673
Maize–legumes 115 114 407 636

Others - - 517 519

Total 447 690 1685 2779

Our initial classification models based solely on the 2019 field data suggested that the
models suffered from a variance problem, where a decrease in prediction error may be
caused by adding more training data. Furthermore, a variety of ML algorithms, including
random forests (RF), are sensitive to class imbalance. We produced multiple crop types
by testing the influence of training data and outlier effects; with higher training data, map
accuracy increased from 50% to 72% in our final crop type map. We amended our training
database accordingly by digitizing additional points in fields that had been visited, using
in-season SkySat data to consider the exact and up-to-date parcel boundaries, following
the approach by [7]. We increased the overall sample size to 2260, ignoring the maize
class, which was well covered by samples from field campaigns. This procedure created a
balanced distribution of training data in a bid to reduce errors related to infrequent classes
in the sampling scheme [51]. The next step involved generating training samples of non-
maize and non-potato fields based on VHR in-season SkySat imagery. Five other crops are
produced in substantial quantities in the study area: yam, rice, grass, fonio, and vegetables.
These crops were well identified from high-resolution satellite data due to ridging and
plowing patterns, field textures, and field sizes. A total of 519 points were collected for the
other crop types. Overall, we created a reference point database of 2779 samples for the
crop type mapping (Table 1). We disregarded crops such as cassava and cocoyam because
their cropping calendars do not overlap with our dominant crop types and therefore our
temporal mapping window.

2.3. Phenology and Spectral-Temporal Metrics

Robust information on crop phenology is required to be able to map smallholder
cropping systems. After generating a crop calendar from field observations and multi-
temporal satellite data (SkySat, Google Earth, and S2), we estimated the biomass peaking
months of maize and potato from the 2019 field data and leaf area index based on harvested
leaf measurements. This information was used as guidance for designing the cropping
calendar, which includes typical dates of crop phenology and management (Figure 3). The
chart indicates the average occurrence and development stages of significant crop types,
and compares them with their appearance on remote sensing images [51].

We conceptualized four critical windows (CW-1 to CW-4) for mapping crop types in
the mixed smallholder farming systems of the Jos Plateau region (Figure 3). CW-1 is the
dominant window for the sowing and emergence of potatoes, which is usually between
the last week of March and early May. Planting dates depend on the local temperature,
rainfall, soil type, and management practices. CW-2 is the dominant window when maize
is sown and emerges. Maize is usually introduced 3 to 5 weeks after the emergence of
potatoes in mixed fields. This window also corresponds to the period when potatoes
mature; it is usually a very narrow window due to the influx of potato diseases (mainly
potato blight and bacterial wilt). CW-3, the window in which potatoes are harvested, is
largely dependent on the time when the potatoes were laid, the rate of disease infection,
and the local climate. CW-3 is also the most critical window for mapping potato and
potato–maize classes. CW-4, the window for maize anthesis and maturity, occurs before
maize senescence. CW-4 also corresponds with the presence of maize–legumes, and is
the period when potatoes are completely harvested from mixed fields. Essentially, the
windows can be described as follows: (i) CW-1 is when potatoes are cultivated; (ii) CW-2
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and CW-3 are when maize is sown and the potato canopy has reached full cover; and (iii)
CW-4 is when potatoes are harvested, maize is at maximum biomass, and legumes are
introduced.
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(precipitation data accessed from http://www.worldweatheronline.com/ (accessed on 10 November 2020)).

The cropping calendar served as a proxy for generating spectral-temporal metrics
(STMs) used to map land cover and crop types on the Jos Plateau. STMs are frequently
used in remote sensing for large area mapping and have proven useful in the context of
agricultural analyses, given that they facilitate the statistical description of key phenological
stages in time series data [51–53]. The creation of STMs is an aggregation of all available
observations from a predefined temporal window into descriptive statistics—in our case,
critical windows. STMs maintain extensive information on the temporal variability of land
surface reflectance and serve as powerful predictors for ML classifiers [52].

We calculated a total of 11 pixel-based statistics: Minimum (Min), 25% Quantile (Q25),
50% Quantile (Q50), 75% Quantile (Q75), Maximum (Max), Average (AVG), Standard
Deviation (STD), Range (RNG), Inter-Quartile Range (IQR), Skewness (SQW), and Kurtosis
(KRT). STMs were produced for each of the nine S2 spectral bands as well as the following
indices: (i) Normalized Difference Vegetation Index (NDVI); (ii) Enhanced Vegetation Index
(EVI); (iii) Normalized Difference Water Index (NDWI) and the Tasseled Cap transforma-
tions; (iv) Wetness (TCW); (v) Greenness (TCG); and (vi) Brightness (TCB). Furthermore,
we created separate STMs for five temporal windows based on: (i) the entire calendar year
(Day-of-Year (DOY) 001–365); (ii) the entire cropping period (DOY 091–304); (iii) the start
of season (DOY 121–181); (iv) the peak of season (DOY 213–273); and (v) the off-season
(DOY 304–090). We produced 770 image features in total. Due to the high prevalence of
clouds during the growing season and our aggressive cloud masking, a total of 20.7% (with
134 image observations across four tiles) and 7.5% (with 81 image observations across four
tiles) of the study area had no single clear-sky observation in the DOY 121–181 and the
DOY 213–273 temporal windows, respectively. In contrast, the DOY 094–304 temporal
window had no data gaps. Data gaps particularly occurred in the south-west of the study
region.

The 770-dimensional feature space is large, consisting of redundant and correlated
features, which do not add important information to the RF classifier but increase computa-
tional complexity, storage space, and classification run time [54–56]. Therefore, we applied
recursive feature elimination within a cross-validated setup using the scikit-learn RFECV-
class in Python. The procedure is a user-defined parametrization to select features of
importance and reduce redundancy among features, ultimately improving computational
performance [57,58].

Accordingly, we reduced the input feature space to 155 dimensions for the land cover
modeling, and 208 features for the crop type mapping. We used the entire set of spectral
bands, Tasseled Cap Brightness, Greenness and Wetness, as well as indices across the
different temporal windows for the land cover mapping, resulting in 155 features. For the
crop type mapping, we reduced metrics to the major six (Min, Max, Avg, Q25, Q50, Q75)

http://www.worldweatheronline.com/
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for the nine spectral bands and only for three critical cropping windows (start-of-season,
mid-season, and entire cropping season), totaling 208 features including elevation from
SRTM. Since our main objective was prediction accuracy and RFs can handle collinearity
among features and a high-dimensional feature space, we did not further decrease the
input dimensions.

A few of the STMs generated were also selected for the phenological analysis to reduce
potential outlier effects [59]. Only the following STMs were used to assess the spectral-
temporal variability and phenology of maize and potato: Q25, Q50, Q75, and STD for
the entire cropping calendar (DOY 091–304). The phenological profiles were individually
generated for all nine S2 spectral bands and also NDVI. The profiles showed that the
differences in potato and maize fields were largely captured spectrally between May and
July (CW-2 and CW-3) for all bands, while the near infrared red (NIR), short wave infrared
red 2 (SWIR2), and the three red-edge bands showed a slight distinction between crop
types in the other critical windows as well. The Q25 and STD metrics showed a better
separability in maize and pure potato fields, especially in the last quarter of May, while
Q75 and Q50 exhibited greater distinction in the first quarter of June.

Even though the peak levels for mixed and sole-cropped fields are comparable (es-
pecially the three classes with maize), the peaks appear at different temporal windows
(Figure 4). This is in relation to the presence and absence of companion crops and when
they appear on or disappear from the fields as indicated in the crop calendar. In gen-
eral, our four classes of interest show a very similar NDVI profile, but peaks and shapes
vary (Figure 4). However, we note that the NDVI peaks in the potato–maize system are
lower than in the sole maize and maize–legume fields, which can be attributed to planting
densities.
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The patterns of the sole maize spectral bands and NDVI profiles appear to be more
stable; they also reveal flexibility within the season window, and diverse field-level and
regional management. The varying standard deviations across the different temporal
windows underlines this. The phenological profiles show no clear cuts in harvest; fields
are just left fallow and it is difficult to define when crops are still on the field and when
they have been harvested. In general, maize profiles exhibit a smoother curve with stable
standard deviations, except for the start of season. In contrast, potato profiles are quite
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erratic, as captured in the standard deviations, especially during June and July, when all
profiles show a temporary decline. Largely, the phenological profiles compare with the
growing patterns shown in our crop calendar, representing quite well the true nature of crop
production cycles in Plateau State (onset of rainfall, emergence, harvesting regimes, etc.).

2.4. Crop Type Mapping and Field Sizes

We used an RF classifier because RFs are widely used in the classification of crop types,
parametrization is straightforward and well understood, and performance is generally
good [60]. We first produced a land cover map with the goal of eliminating other land
cover types and creating a cropland mask for our crop type mapping. Model building and
prediction were carried out in FORCE using the 2779 training points as input for training an
RF model, using a selected set of 155 features obtained from recursive feature elimination
(from the 770 STMs) and 500 trees in the RF. We first generated five land cover classes (bare
ground, cropland, water, vegetation, and built-up), then collided all five land cover classes
into binary classes of cropland and non-cropland. We estimated the accuracy of the land
cover map by area-adjusted accuracy assessment [61].

For the crop type mapping, we restricted the input features to spectral bands only, in
order to test the capability of S2 bands in predicting crop types in the heterogeneous and
smallholder-dominated region. Guided by the crop calendar and phenological analysis,
the following temporal windows were identified as being specifically useful for separating
maize, potato, and mixed fields on the Jos Plateau: (i) DOY 091–304, (ii) DOY 121–181, and
(iii) DOY 213–273. For the DOY 091–304 window, we used all 11 generated STMs. For
the narrower windows, we restricted the STMs to six metrics (MIN, MAX, Q25, Q50, Q75,
AVG) in order to increase feature quality and reduce the impact of image artifacts (e.g.,
caused by cloud remnants).

A total of 207 S2 band STMs and surface elevation data (SRTM), together with the
2779 training samples, served as input to an RF classifier to predict the crop types inside
the masked cropland area. The SRTM-based digital elevation model (DEM) was integrated
into the crop type classification [62] due to the importance of elevation in the distribu-
tion of crop types, especially potato. The crop type map was outed with an auxiliary
marginal probability map. Normally, a probability map is produced as a supplemen-
tary product when producing an RF classification in FORCE. The marginal probability
map is outputted only when multiple models are assigned for each model set and the
margin is produced based on the mean class probability (see FORCE documentation:
https://force-eo.readthedocs.io/en/latest/, accessed on 1 May 2021). We estimated accu-
racies using 20-fold cross-validation on the training data, because even SkySat imagery did
not allow us to create a validation sample for the complex target classes that would have fa-
cilitated an area-adjusted accuracy assessment. Finally, we applied a spatial filter to reduce
isolated misclassified pixels in the crop type classification. This step is specifically very
useful for improving crop type classifications in heterogeneous smallholder settings [14].
All maps were produced at the 10 m resolution provided by the input data.

We then assessed crop types in relation to field sizes in Nigeria’s Jos Plateau. To
this end, we interactively delineated plot boundaries in the SkySat imagery in systematic,
purposive selected clusters from the four tasked SkySat acquisitions (see AOIs in Figure 1).
The AOIs were selected based on field knowledge with the goal to represent crop diversity
and management types. Six clusters were selected for each of the four AOIs (24 clusters in
total); cluster selection was guided by the availability of field information (131 farms) to
further validate crop type mapping at plot level. In spite of having selected similar sized
clusters, the number of fields within a cluster varied across the four AOIs. We digitized a
total of 1066 fields; field data and crop type information were known for 131 of the extracted
fields. We then calculated field sizes in hectares to shed light on the size of fields in the Jos
Plateau smallholder region. In the next step, we masked crop type at the respective fields
to capture field-level crop type prediction accuracy. This was achieved using rule sets,
which involved assigning the majority vote of the pixel counts in each field and estimating

https://force-eo.readthedocs.io/en/latest/
https://force-eo.readthedocs.io/en/latest/
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misclassified pixels in fields where multiple classes occurred to calculate accuracies. The
entire approach and data used for the crop type mapping are illustrated in the flowchart
below (Figure 5).
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3. Results
3.1. Mapping Complex Cropping Systems with S2 Time Series

The Jos Plateau covers about 10,086 km2 of the landmass in Plateau State, Nigeria. Our
land cover map shows that cultivated fields are the most dominant land cover type on the
Jos Plateau, accounting for 4149.8 km2, or 41%, of the total land area in 2019; non-cropland
classes make up the remaining area. The cropland/non-cropland classification achieved an
overall accuracy of 84.2%, with a producer’s accuracy and a user’s accuracy of 74.7% and
86.6%, respectively, for the cropland class. Non-cropland achieved a producer’s/user’s
accuracy of 91.2% and 72.5%, respectively.

The cross-validation of our crop type predictions shows an overall mean accuracy
of 72%. Class-wise accuracies show that “potato–maize” has the highest producer’s ac-
curacy (83%), while “potato” achieved the highest user’s accuracy of 99% and the lowest
producer’s accuracy of 65% (Figure 6). Surprisingly, the accuracies of our mixed classes
are comparably high (especially potato–maize). The variances of user’s and producer’s
accuracies are comparable in all classes, except for potato, which shows a higher variance
in producer’s accuracy.
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The results of the RF variable importance analysis revealed that elevation (DEM)
was more important than any single spectral metric derived from S2 in the crop type
predictions. Generally, significance values show little variation across the 207 spectral input
features, with 0.00576 for the SRTM and all spectral input features ranging from 0.00511 to
0.00474. In terms of temporal windows, the DOY 091–304 window is the most important
one, followed closely by the end-of-season narrow window (DOY 213–273), which appears
to be very important in spite of the limited data frequency within this window.

The maximum RF marginal probability was comparable across all classes, except for
potato (Figure 7). The potato class has a very high probability density between 0.2 and 0.4,
corresponding to the lowest overall and maximum probabilities. This is likely related to it
being the smallest class with the fewest training samples. Class probabilities are generally
relatively low. This is not surprising, given the spectral similarities of the mapped classes
as shown in the phenological profiles (Figure 4).
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3.2. Assessing the Spatial Patterns of Crop Types and Field Sizes

Obvious regional patterns emerge from the crop type map, with farmers in different
sub regions focusing on growing different crop types, and mixtures thereof (Figure 8).
Overall, the crop type map indicates that sole maize is the dominant class, covering
1624 km2 or 39% of the cropland on the Jos Plateau. The second-largest crop class is the
mixed class of “Other” crops, i.e., all crop types not including maize or potatoes, occupying
1045 km2 (25.1%). Next is maize–legumes with 971 km2 (22.6%), followed by potato–maize
accounting for an area of about 545 km2 (13.1%). Potato–maize is primarily produced in
clusters, especially in the western, central, and southern parts of the area. Potato is the
smallest class, with only 35 km2, i.e., covering less than 1% of the cropland on the Jos
Plateau. The sole potato class is more dominant in the Jos-Maingo and Heigpang areas
(Figure 8), while only a few scattered fields were mapped in other regions.

Our results revealed that the majority of plots were well captured, showing largely
homogeneous patterns within each plot. Mixing mainly occurred along field boundaries
within a cluster (Figure 9). The plot boundaries are usually left fallow for demarcation,
resulting in transitional pixels being hard to assign to one class or another, even at 10 m
spatial resolution. Inhomogeneity within single plots is often associated with erratic growth
patterns, which are also visible in the SkySat images (Figure 9). There are distinctive clusters
of similar crops on the crop type map and crop type mixtures (e.g., Cluster 1), while other
clusters are quite diverse, exhibiting various mixtures in different fields within the cluster
(e.g., Cluster 4). Applying spatial filters, the map reduced isolated misclassified pixels,
because most clusters on the Jos Plateau are homogeneous and present minor snags on
very small neighboring pixels. Most of the smallest fields were clustered in Bokkos (0.4
to 0.8 ha), while the majority of the large fields (between 3 ha and 5 ha) were located in
Jengre/Bassa and Pankshin (Figure 9).
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Field sizes varied from 0.02 ha to 5.7 ha in our sample of 1166 fields, with a mean of
0.3 ha to 0.5 ha. Around 75% of the fields were smaller than 1 ha, and 99% were less than
2 ha in size (Figures 10 and 11). In general, similar field size distributions occurred across
all the mapped crop types (Figure 10). Potato fields differed slightly from other crop types,
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yielding the smallest average size and a size distribution towards the lower end of field
sizes on the Jos Plateau. The majority of potato fields were smaller than 0.5 ha; a very small
number of fields had an area of up to 1.2 ha. On average, the largest fields occurred in the
maize–legume class, where the majority of fields were larger than 0.5 ha, and even up to
3 ha in a few instances. A small number of maize fields had an area of a few hectares; the
maximum size was just over 10 ha.
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The mean field-level homogeneity is approximately 79% for all 1166 fields, with most
homogeneities ranging from 90% to 100% (Figure 11B). The distribution of class-wise field-
level homogeneities was as follows: 67% of maize–legumes fields were above 80%, similar
to the results of 63% and 59% in the case of maize and potato–maize fields, respectively.
The potato class exhibited the lowest field-level homogeneity, with only 54% of the fields
being at least 80% homogeneous. The field-level homogeneity is in line with the overall
class-wise accuracies, except for the potato class. Likewise, crop predictions of large fields
and small fields are comparable (Figure 9).
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4. Discussion

Previous studies have highlighted the significance of S2 for mapping crop types in
the heterogeneous smallholder farming systems of SSA [14,31,32,35,36]. However, studies
often focus on yield estimates based on indices and regression models [7,18], mainly
for sole crops [7,32,36], mostly using a combination of several satellite datasets [33–35],
tested for very small districts only [14,34,36]. For this reason, we expanded the mapping
methodology with a specific focus on crop type mapping, integrating sole and intercropped
fields using only S2 spectral bands only in a key agricultural region of Nigeria.

4.1. Accuracy of Cropping System Identification

Maize and potato (inter)cropping systems were mapped with an overall accuracy
of 72%. The resulting map showed distinctive variations in regional crop types, clearly
demarcating the diverse sub regions with different cropping systems and corresponding
well with regional farming practices (Figure 8). The maize class surprisingly achieved the
lowest user’s accuracy (65%), yielding also low probabilities in maximum and density
thresholds. Even though maize phenological profiles are more consistent (Figure 4), the
range of field-level practices diverges substantially in the region (as shown by the standard
deviations). Field observations and individual phenological profiles exhibit different
growth, biomass, and plant vigor across and within sole-cropped maize fields, representing
site-specific expressions of weather, soil, pests, diseases, and management practices. Within-
field intra-class variability is mainly associated with nutrient deficiencies and damage by
pests and diseases. Our results showed a wide NDVI peak value range for maize (0.5 to
0.79), which is in line with findings by Wang et al. [63]. Consequently, we drew training
samples across all management segments (healthy, malnourished, and underdeveloped
fields). This may have further reduced mapping accuracies of the maize class by inter-class
spectral mixing, thereby explaining the wide range of phenological profiles and related
standard deviations. However, the wide range of intra-class spectral values improved the
identification of intra-class spectral variability as exemplified in Huong et al. [64]. Moreover,
maize is the class with the largest planting variation, responding to a regional climatic
gradient. Plants grow faster on the eastern and southern Jos Plateau—irrespective of when
they are planted—due to more favorable rainfall and temperature conditions. Foerster
et al. [65] reported significant improvements in crop type classification when weather data
are integrated. However, we also related lower mapping accuracies in the maize class
to limited satellite data frequency within the critical maize peaking window. Within the
August–September (DOY 213–273) window, only 81 S2 images across four footprints were
available, with 7.5% of the cropland pixels not being observed at all. The isochronism of
critical windows and cloud cover peaks has also been addressed by other studies [14,18,30],
since the availability of cloud-free optical observations is important in differentiating crop
phenology and ultimately crop types [46]. Moreover, the overlapping phenological stages
of crops and specifically mixed-cropping systems adds to the challenges (see Figure 3).
Lastly, we relate the low accuracy in the maize class to the presence of maize in all mapped
cropping systems, except for sole potato. This may be difficult for the classifier to separate,
especially in the latter part of the cropping calendar when the dominant reflectance is from
maize, overshadowing all under sown crops (Figure 4).

There is a wide gap between producer’s and user’s accuracies of the potato class;
we have a few commission errors and large omission errors as a result of the insufficient
number and spatial distribution of reference data in that class [51]. We increased the
reference data in this class from 57 to 338 points, making it the class with the largest
reference data addition (Table 1). However, these points are clustered around the few
original points because sole potato fields are rare in that area. As a result, the component
of spatial distribution is lacking in both training and validation. This is reflected in the
probability statistics, where a strong probability density as a result of the increased clustered
training points comes with a low maximum probability. The phenological profile of potato
surprisingly reveals high values at the end of the season, when potatoes are supposed to
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be harvested. However, this likely results from natural regrowth of weeds on fallow fields,
or from other crops being planted immediately after the potato harvest. Given that potato
is harvested in the early quarter of the cropping calendar and is a fast-producing crop,
field conditions from July–September are suitable for vegetation regrowth or for producing
legumes (cowpea, soybean, etc.), cassava, vegetables, cocoyam, and so on. This range
of options for farmers also explains the large standard deviation found for this temporal
window (Figure 4).

The maize–potato class achieved a mean producer’s accuracy of about 84%, and a
mean user’s accuracy of around 77% (Figure 6). Despite the similarity in the class profiles,
we observed slight alterations in the potato–maize profile, especially in the window when
potatoes are harvested, which is mainly characterized by a reduction in biomass on the
field (Figure 4). There is a wide standard deviation within this temporal window in this
class because its signature is largely dependent on the growth stage of maize. If potatoes
are harvested in June–July, the reduction in biomass is captured. However, if potatoes are
harvested when maize is at a developed stage, no obvious changes will be reflected in the
spectral-temporal profile, which is typically the case in August (compare Figure 3). Potato
is traditionally the prime crop in this case, and maize is planted later in the season to take
advantage of or to support nutrient carry-over effects. Potato tubers are usually completely
evacuated from the fields, with all leaves being removed during harvest. Potato harvest
commences as soon as plants have reached maturity (July–August), but often earlier in
Plateau State if infected by diseases such as blight or bacterial wilt (end of June–July).

The maize–legumes class is the only class where user’s and producer’s accuracies are
comparable. The maize–legume class is a combination of maize with soybean, cowpea, or
groundnuts. Its phenological profile is comparable to the pure maize class, mainly because
weeds on maize fields exhibit similar characteristics as legumes [14,18]. In the intercropping
systems of Nigeria, legumes are often introduced later on the field, at sparse intervals; in
such instances, maize is the principal crop, dominating the temporal profile. Surprisingly,
the user’s and producer’s accuracies of mixed classes are high and more stable, yielding
between 70% and 99% (Figure 6). The S2 spectral bands under the systematic temporal
critical windows performed well in predicting mixed classes, especially potato–maize.

Summarizing, we observed several factors that affect the accuracy of our crop type
map, including the quantity and spatial distribution of training samples [39,51], the fre-
quency and quality of available satellite data [46], spectral-temporal variation in classes
due to nutrient deficiencies and poor management practices, which are common in the
African smallholder system [17], and the spectral similarity of the mapped classes (Figure 4,
see also [18]). We already highlighted satellite data availability as one of the key factors
affecting crop type mapping, especially limited S2 data within the critical narrow temporal
windows of DOY 121–181 and DOY 213–273. Such region-inherent data scarcity can only be
overcome by developing integrated approaches using both optical and synthetic aperture
radar data, such as S1 data to compliment S2, as shown by [7,26,33,65]; such studies are
reported to have higher accuracies [66]. Multi-sensor compositing, integrating Landsat
observations, has also been used to improve data availability [30,67,68]. However, Forkuor
et al. [30] reported a contrary finding for SSA, and Griffiths et al. [23] pointed out that
the 30 m resolution compositing Landsat and S2A/B for smallholder farming systems of
developing countries is inadequate, where a 30 m pixel may cover multiple fields. Studies
have also recommended using VHR data to improve crop type predictions in smallholder
regions of SSA [22,31,33,34], or LiDAR data [35]. However, our approach performed well
compared to studies where multiple sensors are integrated, as also reported by [36]. Com-
bining reference data from field visits with additional information from multi-temporal
SkySat acquisitions was useful for increasing inter-class separability—a strategy that may
well be adaptable in many contexts of SSA, where fieldwork is limited.

The phenological analysis revealed that the most important S2 features for separating
crop types on the Jos Plateau were STMs based on red-edge bands, the NIR, and SWIR
bands. The importance of S2 red-edge bands was consistent with previous studies, which
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reported the significance of S2 red-edge and SWIR bands for estimating crop yields in
complex smallholder regions of Africa [7,14,18,69]. Red-edge 3 (Band 6), in particular,
has been shown to be essential to investigate photosynthesis, and canopy measurement
of chlorophyll and nitrogen [18,49,69,70]. Specifically, Griffiths et al. [23] highlighted the
importance of S2 red-edge bands in discriminating potato from other crop types; in addition,
mapping accuracies of maize increased when red-edge bands were integrated. Forkuor
et al. [30] found that they helped to separate cereals and legumes from other vegetation
types in West Africa. Our RF variable of importance negates this finding. Although the
red-edge 3 band appeared in the 20 most important features, the STRM is ranked the most
important feature, followed by red and then seven SWIR feature metrics within different
temporal windows (see also [36,49,70,71]). We found that no single feature is dominant in
complex phenological settings, data-scarce regions, and smallholder-dominated agriculture.
This is likely due to the multicollinearity in this high-dimensional feature space. It also
highlights the importance of providing the machine learner with as much input information
as possible when crop type variability and in-field crop type mixtures are high, and average
field size small, as in the case of the Jos Plateau.

4.2. Spatial Patterns and Field Sizes in Jos Plateau Cropping Systems

Our map shows distinct variations in regional cropping systems, clearly demarcating
the different sub regions with diverse crop types and mixtures. The mapped patterns
correspond well with the regional cropping practices, as known from field experience
and the interviews conducted (Figures 8 and 9). Potato–maize is dominantly produced in
clusters (see also [30]), grown in valleys to take advantage of the early rains, especially in
the western, central, and southern parts of our area-of-interest, where climate and soils
are suitable for this cropping regime. These locations are well delineated in the crop
type map. Likewise, the regions where maize is mixed with legumes are well predicted,
especially in the western, central, and southern parts of the Jos Plateau. Correspondingly,
potato and potato–maize classes are not mapped in northern and eastern regions, where
higher temperatures and unsuitable soil types are not conducive for potato cropping
(Figures 8 and 9).

Despite having successfully digitized field boundaries using SkySat imagery, we
were unable validate the accuracies of the delineated field boundaries using cadaster
information, which is lacking for the region. Our field-level results show that the Jos
Plateau is dominated by extremely fine-structured smallholder agriculture [1]. Mean field
sizes range predominantly from 0.3 ha to 0.5 ha, and more than 80% of the plots are smaller
than 0.8 ha (Figure 11; see also [10]). Other studies also found that field sizes in such settings
are typically extremely small and often irregularly shaped [17] rendering the extraction
of cultivated land a complex task (see also [1,11]). Fields on the Jos Plateau are further
characterized by fragmentation, mainly induced by rock formations and degraded land
(mine dumps, ponds, and wasteland), especially in the western and southern parts of the
region (Figures 8 and 9). Our results revealed that fields where maize is grown are larger in
size (on average 0.4–8 ha), while potato fields are smaller (on average 0.2–0.5 ha; Figure 10).
This difference is related to the economic aspect of growing potatoes, and especially the
cost of seed potatoes [72].

The field-level accuracies revealed that the majority (approx. 70%) of the extracted
fields achieved homogeneity levels between 80% and 100% (Figure 11). Errors were due
to mixed pixels, plant diseases that introduced spectral heterogeneity, or the cultivation
of multiple crops in a single field. Field-level misclassifications also stemmed from the
similarity of the majority of mapped classes or related to crop mixtures (Figure 9). However,
the potato class exhibited lower homogeneities, in contrast to the overall accuracies of that
class. Mixed pixels mainly occurred along field boundaries (fallow demarcations), where
smaller fields had a stronger relative influence on field homogeneity or heterogeneity. Field
demarcation originating from small ridges, usually at a sub-pixel level, were difficult to
extract, especially if similar crops were growing on adjacent fields.
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5. Conclusions

Crop type mapping in smallholder settings in SSA is complex, given the irregular
field patterns and small field sizes, diverse management practices, highly heterogeneous
growing environments, and other mapping difficulties associated especially with small-
holder farming systems. Adding to that, frequent cloud cover during the growing season
renders crop type mapping, including intercropping, a challenging exercise. Therefore,
freely available satellite data of the European Copernicus Program, specifically S2A/B,
allow for major advances in mapping and monitoring crop types in smallholder farming
systems of SSA.

In this study, we expanded existing crop type mapping methodologies to map maize
and potato, as well as intercropping mixtures with both crops, using S2 data only. To our
knowledge, this is missing for crop type mapping in the smallholder region of SSA. For
the complex smallholder cropping systems of the Jos Plateau, Nigeria, our crop mapping
approach achieved 72% mean accuracy using S2A/B STMs of spectral bands across critical
growth periods and SRTM-sourced elevation data. Achievable accuracy was comparable
with studies that had a narrower focus (single crops, multiple sole-crop classes, VHR
data, and small sites at district or village level) or where multiple remote sensing data
were integrated, highlighting the importance of S2A/B for complex smallholder regions.
We are convinced that this as a crucial first step to better comprehend the opportunities
and limitations regarding the use of Sentinel-2 data for monitoring smallholder cropping
systems. Our study helps in understanding the most pressing issues that need to be
solved, if operational agricultural monitoring in regions of SSA, such as the Jos Plateau
in central Nigeria, is the goal. Our crop maps have achieved a level of quality, though,
that enables them to be used for guiding informed policies, broad-scale early warning
systems (regarding nutrient deficiencies, pests, and diseases), the regional monitoring of
crop production leading to comprehensive crop archives, and relatively accurate yield
estimations for food planning, bio-waste, and bioenergy potentials, at a regional level.

Our study highlights the possibility of mapping sole and mixed crop types with
S2A/B, even though spectral profiles of mixed classes can be quite similar to sole-cropped
fields. As such, there is a need to further expand methods so that they are able to map
intercropped classes especially to improve field-level accuracies. After all, such classes
represent the dominant management practices in smallholder regions, and remain one
of the most challenging factors that impede the production of annual crop type maps
across the African continent. Since the climatic conditions, satellite data frequencies, cloud
cover, and management and farming practices compare to those in many other African
tropical highlands, it would be possible to use similar methods in areas with high levels of
intercropping in smallholder systems, e.g., Ethiopia, Kenya, Uganda, Rwanda, and Angola.
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