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Abstract: Numerous reports confirm the positive effect of biochar application on soil properties
and plant development. However, the interaction between root-associated beneficial microbes and
different types of biochar is not well understood. The objective of this study was to evaluate the plant
growth of lettuce after the application of three types of biochar in loamy, sandy soil individually and
in combination with plant-beneficial microbes. Furthermore, total microbial activity in rhizosphere
soil of lettuce was measured by means of fluorescein diacetate (FDA) hydrolase and enzyme activities
linked to carbon, nitrogen, and phosphorus cycling. We used three types of biochar: (i) pyrolysis
char from cherry wood (CWBC), (ii) pyrolysis char from wood (WBC), and (iii) pyrolysis char from
maize (MBC) at 2% concentration. Our results showed that pyrolysis biochars positively affected
plant interaction with microbial inoculants. Plant dry biomass grown on soil amended with MBC
in combination with Klebsiella sp. BS13 and Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP
inoculants was significantly increased by 5.8% and 18%, respectively, compared to the control plants.
Comprehensively, interaction analysis showed that the biochar effect on soil enzyme activities
involved in N and P cycling depends on the type of microbial inoculant. Microbial strains exhibited
plant growth-promoting traits, including the production of indole 3-acetic-acid and hydrogen cyanide
and phosphate-solubilizing ability. The effect of microbial inoculant also depends on the biochar type.
In summary, these findings provide new insights into the understanding of the interactions between
biochar and microbial inoculants, which may affect lettuce growth and development.

Keywords: pyrolysis biochar; plant biomass; nutrient uptake; soil enzyme activities; nitrogen;
phosphorus

1. Introduction

Biochar is produced from agricultural residues or other bio-waste, e.g., wood chips
or sewage sludge, by pyrolysis under low or in the absence of oxygen [1], and is consid-
ered to improve soil health and crop productivity and discussed as a strategy for carbon
sequestration [2,3]. Several reports are available on the positive effect of biochar applica-
tion, produced from different feedstock on soil cation exchange capacity [4], soil enzyme
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activity [5,6], soil water holding capacity [7], and soil organic matter contents [8]. Moreover,
biochar application enhanced plant growth of various crops such as pepper and tomato [9],
soybean and chickpea [10,11], maize [12], and wheat [13]. Such positive effects by biochar
application were often explained by enhanced diversity of soil microbial communities,
which exhibits plant-beneficial traits and their improved activities involved in nutrient
cycling [9,14–17]. In addition, soil microbes directly promote plant health, nutrient uptake,
and plant tolerance to biotic and abiotic stresses through the synthesis of various enzymes,
phytohormones, and other metabolites [10,15]. Due to carbon and nutrient concentrations
in biochar types, soil microbial activity may vary in response to biochar addition [18].
Thus, the investigation of the impact of soil amendments with biochar on soil microbial
community and their interactions with biochar types is of great importance. Soil enzymes
secreted and synthesized by microbes play an essential role in the mineralization of soil
organic matter, and they are sensitive to abiotic and biotic factors. In some reports, biochar
improved soil enzyme activities involved in C and N cycles and overall microbial activ-
ity [19], while other studies observed an inhibition of soil fluorescein diacetate hydrolase,
protease, and glycosidase activities [20].

Plant growth and nutrition have been reported to be improved by the combination
of biochar and beneficial microbes. For example, the plant beneficial bacteria Bacillus
amyloliquefaciens combined with biochar application produced from compost showed a
positive effect on spinach [21]. Corresponding findings are available for Paenibacillus
polymyxa, combined with wood biochar on switchgrass [22], and for Pseudomonas fluorescens
and pinewood biochar on cucumber [23]. The plant-beneficial microbes Talaromyces and
Klebsiella strains used in this study were isolated from the rhizosphere soil of lettuce. They
showed several plant growth-promoting traits, including phosphate solubilization activity,
and antagonized the plant pathogen Fusarium oxysporum, the causative agent of Fusarium
wilt [24].

Lettuce (Lactuca sativa L.) of the Asteraceae family is native to the eastern Mediter-
ranean region and western Asia, as well as South Europe. Lettuce provides a good source of
minerals and biologically active compounds [25,26] and is cultivated worldwide. However,
studies about the impacts of microbial inoculants combined with biochar amendments for
improving the growth of lettuce are rare or missing.

There is evidence that plant growth, nutrient acquisition, soil biochemical processes,
and microbial communities respond differently to biochar amendments depending on the
feedstock used and the production technology [27]. It is evidence that soil microbial activity
plays an important role in the mineralization of nutrients in the soil through extracellular
enzymes [28].

However, the interaction between root-associated beneficial microbes and amend-
ments with different biochar types is not well understood. Our study hypothesized that
different types of biochar affect soil–plant–microbe interactions by improving soil biological
properties in the plant root system. Here we investigated the effect of three different biochar
types produced from maize, black cherry, or wood on the growth of lettuce in combination
with an inoculation of plant growth-promoting bacteria and fungi. The objectives of this
study were: (1) to evaluate the response of growth of lettuce to the application of three
types of biochar applied in loamy, sandy soil individually and in combination with plant-
beneficial microbes; (2) to determine the total microbial activity as measured by fluorescein
diacetate (FDA) hydrolase in the rhizosphere soil of lettuce; and (3) to analyze rhizosphere
enzyme activities linked to carbon, nitrogen, and phosphorus cycling.

2. Results
2.1. Plant Dry Biomass

The plant biomass of lettuce responded differently to the applied biochar type (CWBC,
black cherry wood biochar; MBC, pyrolysis biochar from maize; WBC, pyrolysis biochar
from wood). There was a slight increase in plant biomass grown in soil amended with MBC,
but no effect was observed in soil with CWBC or WBC addition. The effect of microbial inoc-
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ulants on the plant dry weight of lettuce showed that TB (inoculated with Klebsiella sp. BS13)
and TBF1 (inoculated with Klebsiella sp. BS13 + Talaromyces calidicanius RS10bPP) slightly
increased dry biomass compared to un-inoculated plants. The other treatments TF1 (inocu-
lated with Talaromyces purpureogenus BS16aPP), TF2 (inoculated with Talaromyces calidicanius
RS10bPP), and TBF2 (inoculated with Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP),
did not show any stimulation of plant growth (Figure 1A).
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Figure 1. Effect of microbial inoculants on plant dry weight after biochar application. Un-inoculated
control (T0, (A)), inoculated with Klebsiella sp. BS13 (TB, (B)), inoculated with Talaromyces purpure-
ogenus BS16aPP (TF1, (C)), inoculated with Talaromyces calidicanius RS10bPP (TF2, (D)), inoculated
with Klebsiella sp. BS13 + Talaromyces calidicanius RS10bPP (TBF1, (E)), and inoculated with Klebsiella
sp. BS13 + Talaromyces purpureogenus BS16aPP (TBF2, (F)). Quantiles are shown at the top and bottom
of the box. Max and min values are indicated by the bars. The lines within the box indicate the
median values. The transparent dot indicates the observation value. Letters above the bars indicate
the significance level at p < 0.05 by LSD. CWBC—black cherry wood biochar, MBC—pyrolysis biochar
from maize, No BC—without biochar, WBC—pyrolysis biochar from wood.

The effects of biochar types (CWBC, WBC, and MBC) combined with microbial inocu-
lants on the dry weight of lettuce was investigated. No differences of dry plant biomass
between plants inoculated with microbes (TB, TF1, TF2, TBF1, and TBF2) grown in soil
amended with CWBC were observed (Figure 1B). In soil amended with WBC, plants inocu-
lated with TBF1 showed a significant (p < 0.05) increase (18%) in plant biomass compared
to un-inoculated plants. In contrast, TF1 and TF2 decreased plant growth under WBC
compared to un-inoculated plants.

Compared to other biochar applications in soil, WBC had a beneficial effect on plant
interactions with microbial inoculants. In soil amended with MBC, the dry plant biomass
of lettuce inoculated with TB and TBF1 were significantly (p < 0.05) increased by 11 and
20% compared to un-inoculated plants (Figure 1C). There were no effects of TF1 and TF2,
except TBF1 increased plant growth slightly.

In general, our results indicate that MBC positively affects plant interaction with
microbial inoculants. Moreover, dry plant biomass grown in soil amended with MBC
combined with TB and TBF1 was increased compared to the control plants and CWBC
and WBC.

The interactions of biochar × microbes on the plant dry weight were significant
(p < 0.01, Table 1). The plant dry weight in the MBC treatment was higher for each
microbial treatment. The plant dry weight of WBC treatment was lower in T0, TF1, and
TF2 treatments, but higher in TBF1 treatment. In addition, all biochar treatments showed a
higher plant dry weight in TBF1 treatment.
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Table 1. Interaction effects of biochar and microbial inoculants on the plant dry weight and the
activities of soil fluorescein diacetate (FDA) hydrolase, protease, alkaline phosphomonoesterase
(AKP), and acidic phosphomonoesterase (ACP).

Interaction Effects Plant Dry
Weight Soil FDA Soil Protease Soil AKP Soil

ACP

Biochar *** *** *** ns ***
Microbes *** *** *** *** ***

Biochar × Microbes ** *** *** *** ***
Interaction effects of biochar and microbes on plant dry weight and soil enzymes. Significance denoted by
** p < 0.01, *** p < 0.001, ns: no significance.

2.2. Plant Beneficial Traits of Microbial Inoculants

All three microbial inoculants were tested for their ability to produce HCN (hydrogen
cyanide), IAA (3-Indoleacetic acid), and solubilize inorganic phosphorus. Klebsiella sp. BS13
and Talaromyces purpureogenus BS16aPP produced 3.4 and 2.6 µg/mL IAA, respectively,
and showed phosphate solubilization activity. HCN production was observed only in
Klebsiella sp. BS13. Talaromyces calidicanius RS10bPP showed low IAA production activity
(1.9 µg/mL IAA) and was negative for phosphate solubilization and HCN activities. Based
on the above data, it was found that the bacterial strain BS13 had the best growth-promoting
traits.

2.3. Soil Enzymes

Generally, biochar (CWBC, WBC, and MBC) enhanced the soil FDA hydrolytic activity
significantly without any microbe inoculation (Figure 2). While TB, TF1, TBF1, and TBF2
were inoculated, the soil FDA hydrolytic activity was improved under three types of
biochar application, except WBC treatment with TBF2 inoculation. The interactions of
biochar × microbes on the activities of soil FDA hydrolase protease, AKP, and ACP were
significant (p < 0.001, Table 1). The effect of WBC treatment on the FDA hydrolytic activity
was the highest in the TB treatment but the lowest in the TF2 treatment. The biochar effect
on the FDA hydrolytic activity tended to be lower in TF2 treatment.
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Figure 2. Effect of microbial inoculants on soil FDA hydrolytic activity after biochar application.
Treatment abbreviations—see Figure 1. Quantiles are shown at the top and bottom of the box. Max
and min values are indicated by the bars. The lines within the box indicate the median values. The
transparent dot indicates the observation value. Letters above the bars indicate the significance level
at p < 0.05 by LSD.

The biochar (CWBC, WBC, and MBC) effect on the soil protease activity was signifi-
cantly higher than the control without microbe inoculation (Figure 3). Interestingly, this
positive effect was eliminated complately while various microbes were inoculated. For
instance, CWBC and MBC showed no effect on the soil protease activity except WBC under
TB inoculation. On the other hand, WBC showed no effect but CWBC and MBC showed a
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negative and positive effect, respectively on the soil protease activity under TF1 inoculation.
The soil protease activity of three biochar applied treatments was obviously decreased
under TBF2 inoculation in comparison to T0. In addition, the effect of CWBC treatment on
the protease activity was the highest in T0, TF2, and TBF1 treatment but the lowest in TF1
treatment. Biochar effect on the protease activity was higher in T0 and TF1 treatment, but
lower in TBF2 treatment.
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Figure 3. Effect of microbial inoculants on soil protease activity after biochar application. Treatment
abbreviations—see Figure 1. Quantiles are shown at the top and bottom of the box. Max and min
values are indicated by the bars. The lines within the box indicate the median values. The transparent
dot indicates the observation value. Letters above the bars indicate the significance level at p < 0.05
by LSD.

CWBC and MBC enhanced, but WBC decreased, the soil AKP activity without inocu-
lation (Figure 4). MBC and WBC showed significantly lower AKP activity than the control
under TB inoculation. The biochar treatments and control showed a similar tendency of
the soil AKP activity in TF1 and TBF1, TF2, and TBF2. WBC indicated higher AKP activity
than CWBC, MBC, and control under TF1 and TBF1 inoculation. There was no significant
difference between biochar treatments and control under TF2 and TBF2 inoculation. The
interaction of biochar × microbes on the AKP activity was complicated. Each biochar effect
on the AKP activity showed an increase or decrease in microbe treatments.
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Figure 4. Effect of microbial inoculants on soil alkaline phosphomonoesterase activity after biochar
application. Treatment abbreviations—see Figure 1. Quantiles are shown at the top and bottom of the
box. Max and min values are indicated by the bars. The lines within the box indicate the median
values. The transparent dot indicates the observation value. Letters above the bars indicate the
significance level at p < 0.05 by LSD.

CWBC and MBC showed a significantly positive effect on the soil ACP activity without
inoculation (Figure 5). MBC enhanced, but WBC decreased, the ACP activity under TB
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inoculation. CWBC and WBC indicated the highest ACP activity under TF1 and TF2
inoculation, respectively. No significant effect of the other two biochar treatments was
observed on the ACP activity under TF1 and TF2 inoculation, in comparison to the control.
Conversely, the control showed the highest ACP activity under TBF1 inoculation. CWBC
and MBC indicated significantly higher ACP activity than WBC and the control under TBF2
inoculation. The interaction of biochar × microbes on the ACP activity was lower since
the biochar effect on the ACP activity showed a similar tendency in microbe treatments.
Comprehensively, interaction analysis showed the biochar effect on soil enzyme activities
depends on the microbe type, and the microbe effect also depends on the biochar type.
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3. Discussion

The present study demonstrated positive interactions of biochar amendments with
microbial inoculants, associated with beneficial effects on lettuce growth and soil biological
activity in the rhizosphere. The biomass of lettuce, both un-inoculated and inoculated with
microbes, were higher for soil amended with MBC as compared to plants grown in soil
without biochar or amended with CWBC and WBC. Organic carbon and minerals in biochar
provide additional nutrients to the soil that are readily available to plants, thus improving
their nutritional status and development [29,30]. Several studies reported induced changes
in nutrient availability after biochar application, providing additional sources of N, P,
and carbon sources for microbes associated with plant roots [31]. The improvement of
plant-associated microbial activity in soil amended with biochar was reported in several
studies for various crops [32–34]. It is well documented that biochar carbon-rich material
provides favorable conditions for the proliferation of root-associated microbes involved
in carbon, nitrogen, and phosphorus cycles in soil and thus increase nutrient availability
for plants [10]. Furthermore, biochar enhanced the diversity of beneficial microbes which
produce various metabolites, such as phytohormones, hydrolytic enzymes, antifungal
compounds, and siderophores, which promote plant growth and stress tolerance [35].
Biochar produced from cornhusk showed significant effects on bacterial diversity, whereas
dominant genus Bacillus, plant-beneficial bacteria, were abundant [36]. In another study,
soil amended with straw biochar increased the abundance of the phosphate-solubilizing
bacterial community and their survival [37]. Hale et al. [38] observed a high survival rate of
plant-beneficial bacteria that produced the phytohormone auxin after biochar application.

Based on our results, we found that Klebsiella sp. BS13 and T. purpureogenus BS16aPP
had the ability to produce IAA and solubilize phosphate. An early study also showed
other beneficial properties, which included the ability to solubilize phosphate as indicated
by their phosphate solubilization (PS) index [BS13, PSI = 2.43; BS16aPP, PSI = 2.66] and
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their ability to antagonize the plant pathogen Fusarium oxysporum, the agent that causes
Fusarium wilt, an impairing disease in economic crops [24].

This fits the general view that beneficial root-associated bacteria stimulate plant
growth through several traits, such as the production of phytohormones, siderophores, or
phosphate [39,40]. Here, however, it is added that the combination of biochar with plant
growth-promoting microbes specifically improve the growth and development of lettuce,
and the biochar effect on the plant dry weight depends on microbe type.

We have also observed changes in soil enzyme activities by biochar application and
treatment with bacterial inoculants. Soil FDA hydrolytic activity indicates overall soil
microbial activity. The highest soil microbial activity, as observed by FDA hydrolytic
activity, was observed in soil amended with WBC and combined with Klebsiella sp. BS13
(TB), as compared to the other treatments and control soil without biochar application. An
increased FDA activity was recorded in soil amended with biochar under soybean [41] and
okra [42], which was explained as an enhanced organic matter in the soil for metabolic
activity of microbes. Biochar enriched with nutrients provides benefits, supports microbial
proliferation in the root system, and protects from various abiotic stresses [43,44]. Moreover,
the biochar pores colonized by introduced microbial inoculants are protected from various
abiotic factors [45]. Our results agree with previous findings by Ma et al. [4], who reported
an increased FDA hydrolase activity in soil under soybean amended with biochar produced
from black cherry wood. In another study [46], a higher soil FDA hydrolytic activity by
microbial inoculation, compared to un-inoculated plants, was also reported. It is stated that
soil organic matter input by biochar application is responsible for prospering soil biological
activities, especially in the soil–plant system [47,48]. Other studies reported contrasting
results, where soil FDA activity under carrot was inhibited by softwood biochar applica-
tion [49]. Li et al. [50] also observed a decreased microbial biomass in soil amended with a
higher dose of bamboo biochar (40 t/ha). It was explained by a reduced mineralization
rate of soil organic carbon after the addition of a high amount of wood biochar [51]. These
findings suggest that the response of soil microbial activity to biochar addition depends on
environmental factors, biochar type, and rate of application.

Phosphatases play a vital role in P cycles. Alkaline phosphomonoesterase activity was
promoted in biochar treated soil, and its activity was increased by microbial inoculants TF1
and TBF1 combined with CWBC. However, no changes were found in the other treatments.
There were also changes in soil acidic phosphomonoesterase activity, as it was increased
by all types of biochar, combined with microbial inoculants TB and TBF1. It is known that
plant-associated microbes are involved in P mineralization, increasing the availability of
P for plant uptake [52,53]. Moreover, Klebsiella sp. BS13 (TB) produced HCN, which is
involved in the indirect increase of phosphate availability [54]. Furthermore, soil protease
activity increased after the application of all types of biochar, CWBC, MBC, and WBC,
indicating an improved physiological status of the microbial communities related to C, N,
and P cycling activities [27,55]. Accordingly, Wang et al. [56] observed increased enzyme
activities involved in C and N cycles in soil amended with maize biochar.

4. Materials and Methods
4.1. Plant, Soil and Biochars

Soil samples were taken at the field station of the Leibniz Centre for Agricultural
Landscape Research, Müncheberg, Germany, in 2019. The soil is a loamy sand (Lu-
visol) with 7% clay, 19% silt, and 74% sand, C org—0.6%, total N—0.07%, P—0.03%,
K—1.25%, and Mg—0.18%, the pH was 6.2 [11]. Three biochar types were used in this study:
(i) black cherry wood biochar (CWBC), (450 ◦C for 30 min); (ii) pyrolysis biochar from
maize (MBC), (600 ◦C for 30 min); (iii) pyrolysis biochar from wood (WBC), (850 ◦C for
30 min), (Table 2, [4,57]. These three biochars were chosen due to their potential applica-
tions in the field or greenhouse for crop production. Cherry wood biochar is a biochar
product obtainable in Germany. Maize cob is a very common material for farmers to obtain.
Wood biochar is derived from mixed woodnot separated by type when producing biochar.
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The different types of biochar were acquired from the Leibniz-Institute for Agrartechnik
Potsdam-Bornim e.V. (ATB), Germany.

Table 2. Characterization of chars.

Material C % N % P (g/kg) K (g/kg) pH

CWBC-char 41.5 0.37 3.26 11,5 8.41
MBC-char 75.16 1.65 5.26 31.12 9.89
WBC-char 77.62 0.72 1.24 7.8 9.35

CWBC—black cherry wood biochar; MBC—maize biochar; WBC—wood biochar [4,57].

4.2. Microorganisms

The plant growth-stimulating bacteria and fungi were previously isolated from soil
collected at a lettuce farm (16.4580◦ N, 120.5878◦ E) in La Trinidad, Benguet Province,
Northern Philippines. These were identified as Klebsiella sp. (BS13), Talaromyces calidicanius
(RS10bPP), and Talaromyces purpureogenus (BS16aPP) and showed the ability to solubilize
phosphate and to antagonize the pathogenic fungus Fusarium oxysporum [24].

4.3. Plant Growth Experiment

The biochar was used at 2% concentration as a soil amendment. Pots (d = 0.16 m,
v = 2016 cm3) were filled with 1 kg of soil and mixed with crushed chars. Sterilized lettuce
seeds (10% v/v NaOCl and 70% ethanol) were germinated in a dark room at 25 ◦C for
three days. The strain Klebsiella sp. BS13 was grown in Tryptic Soy Broth (TSB) (Difco
Laboratories, Detroit, MI, USA) for 48 h at 28 ◦C. To approach a final density of bacteria
at 108 CFU mL−1, the culture suspension was re-suspended in PBS. The fungal isolates
Talaromyces calidicanius RS10bPP and Talaromyces purpureogenus BS16aPP were grown in
PDA agar plates (Difco Laboratories, Detroit, MI, USA) at 28 ◦C for five days. The spores of
the fungal isolates were washed on a PDA plate with sterile water containing two drops of
Tween 80. The spores were counted with a hemocytometer, and the suspension was diluted
to a concentration of 107 spores mL−1. Germinated seeds were immersed into bacterial
and/or fungal suspensions and transferred to pots.

The following treatments were set up:

1. T0: un-inoculated control plants grown in soil; (a) without biochar, (b) with CWBC,
(c) with WBC, (d) with MBC;

2. TB: inoculated plants with Klebsiella sp. BS13 and grown in soil; (a) without biochar,
(b) with CWBC, (c) with WBC, (d) with MBC;

3. TF1: inoculated plants with Talaromyces purpureogenus BS16aPP and grown in soil;
(a) without biochar, (b) with CWBC, (c) with WBC, (d) with MBC;

4. TF2: inoculated plants with Talaromyces calidicanius RS10bPP and grown in soil;
(a) without biochar, (b) with CWBC, (c) with WBC, (d) with MBC;

5. TBF1: inoculated plants with Klebsiella sp. BS13 + Talaromyces calidicanius RS10bPP
and grown in soil; (a) without biochar, (b) with CWBC, (c) with WBC, (d) with MBC;

6. TBF2: inoculated plants with Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP
and grown in soil; (a) without biochar, (b) with CWBC, (c) with WBC, (d) with MBC.

This study used a randomized complete block design, comprising four replications in
four blocks, each including all six treatments. The treatments were distributed randomly in
each block.

Each pot was sown with three seeds; one-week seedlings were thinned to one plant
per pot. Plants were grown for 30 days under greenhouse conditions at a temperature of
24 ◦C/16 ◦C (day/night) and a humidity of 50–60%. At harvest, the roots and shoots were
separated, washed, and oven-dried at 70 ◦C for 48 h, and dry weight was determined.

4.4. The Plant Beneficial Traits and Colonization Ability of Microbial Inoculants

The HCN produced by bacterial isolates was tested on a Tryptic Soy Agar (TSA)
medium for bacteria and a Potato Dextrose Agar (PDA) medium for fungi. The color
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change of filter paper saturated with 1% picric acid and 2% sodium carbonate solutions was
measured [58]. The IAA produced (indole 3-acetic acid) by microbial strains was studied
using the method of Bano and Musarrat [59], evaluating IAA production by detecting pink
color after 30 min. The qualitative analysis of the phosphate solubilization potential of
microbial inoculants was measured in vitro by determining available soluble phosphate
in Pikovskaya’s medium [60], supplemented with tri-calcium phosphate. The colonies of
tested bacteria and fungi were inoculated at the center of the agar plate and incubated at
28 ◦C. After four days, the diameters of the appearing ring by dissolved phosphate around
the colonies were measured. Other beneficial properties of the microbial inoculants were
reported earlier [24].

4.5. Soil Enzyme Activities

The FDA hydrolytic activity was determined by the method of Green et al. [61]. In total,
0, 0.001, 0.005, 0.05, and 0.15 mg of fluorescein was used for standard curve preparation.
The method of Tabatabai and Bremner [62] was used to determine acid (ACP) and alkaline
phosphomonoesterase (AKP) activities in soil. The produced p-nitrophenol (p-NP) in the
assays was computed by a p-NP calibration curve (400 nm wavelength) using a Lambda
2 UV-VIS spectrophotometer (Perkin Elmer) [63]. Protease activity was measured by the
method of Ladd and Butler [64].

The soil around the roots was collected; the particle size of the soil was confirmed to
be less than 2 mm. Then, the soil was air-dried for further nutrient analysis. The dry com-
bustion method and an elemental determinator (TruSpec CNS) (Nelson and Sommers 1982)
were used to determine soil carbon (Ct) and nitrogen (Nt) contents. Soil P and K contents
were analyzed with an ICP-OES (iCAP 6300 Duo) via the Mehlich-3 extraction method.

4.6. Statistical Analysis

The data were processed using the package “dplyr” of the open-source statistical
language R v1.4.1717 (R Studio, Boston, MA, USA). The one-way analysis of variance
(ANOVA) and the multiple comparisons of the means were performed by the package
“agricolae” for a least significant difference (LSD, p = 0.05) test. The figures were plotted
using the package “ggplot2”, and the plot panels were aligned using the package “ggpubr”.
The package “HH” was used for analyzing the interactions between biochar and microbes.

5. Conclusions

Our findings demonstrate the positive synergistic effects of biochar amendments and
the inoculation of plant-beneficial microbes on plant growth of lettuce and on soil enzyme
activities in the rhizosphere. In general, biochar addition in soil combined with bacterial and
fungal inoculants promoted the highest lettuce biomass. Indications were thus provided
that the biochar effect on plant dry weight depends on the type of microbial inoculant.
Microbial strains showed plant growth-improving traits, including the production of
phytohormone IAA and hydrogen cyanide, and they also showed phosphate-solubilizing
ability. Comprehensively, an interaction analysis showed that the biochar effect on soil
enzyme activities involved in N and P cycling depends on the type of microbial inoculants.
Furthermore, the microbe effect also depends on the type of biochar amendment. Taken
together, these findings provide new insights into understanding the interactions between
biochar and microbial inoculant, which may affect lettuce growth and development.
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