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Abstract 
Background and aims  While nitrogen (N) derived 
from soil organic matter significantly sustains agri-
cultural plants, the complexities of organic N utiliza-
tion pathways remain poorly understood. Knowledge 
gaps persist regarding diverse organic N pools, the 
microbial processes in N mineralization, and how 
plants shape the N-mineralizing microbial commu-
nity through root exudation.
Results  To address these gaps, we propose an inte-
grated conceptual framework that explores the intri-
cate interplay of soil, plant, and microbiome dynam-
ics within the context of soil carbon (C) cycling. 
Emphasizing plant effects on gross depolymerization 
and deamination of organic N—a crucial yet often 
overlooked aspect—we aim to enhance our under-
standing of plant N utilization pathways. In this con-
text, we suggest considering the linkages between 
root and hyphal exudation, followed by rhizosphere 
priming effects which in turn control N mobilization. 

Based on the relation between exudation and N turno-
ver, we identify microbial necromass as a potentially 
important organic N source for plants. Furthermore, 
we propose applying root economic theory to gain 
insights into the diverse strategies employed by plants 
in accessing soil organic N. Stable isotope tracers 
and functional microbiome analytics provide tools 
to decipher the complex network of the pathways of 
organic N utilization.
Conclusions  The envisioned holistic framework 
for organic N utilization pathways, intricately con-
nects plants, soil, and microorganisms. This lays the 
groundwork for sustainable agricultural practices, 
potentially reducing N losses.

Keywords  Organic N · Necromass recycling · 
Rhizosphere priming · Root economic space · Root 
exudation

Introduction

In agricultural systems, only about 50% of the nitro-
gen (N) taken up by annual crops is current-year fer-
tilizer derived (Gardner and Drinkwater 2009; Yan 
et  al. 2020), indicating that plants are supplied with 
N derived from soil organic matter (SOM) to a large 
extent. Up to now, the contribution of different SOM 
pools to N nutrition and the processes by which these 
compounds are made available to the plant are not 
well understood (Leinweber et  al. 2013; Yan et  al. 
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2020), although a greater uptake of organic N sources 
might improve the efficient use of N resources 
(Drinkwater et  al. 2017) and mitigate the environ-
mental impacts of agriculture.

Our incomplete knowledge of organic N utiliza-
tion pathways, i.e. organic N conversion to plant-
available N, can be explained in part by the historical 
focus on the inorganic N pool (Daly et al. 2021) but 
is certainly also caused by the complexity of the soil 
N cycle. This complexity arises because of the strong 
functional link between microorganisms, plants and 
the soil matrix which shape the N cycle and N bio-
availability. Moreover, the conversion of N within 
the soil is closely linked to the quality of soil organic 
matter input. This is because the ratio of C to N in 
organic matter (C/N ratio) determines the balance 
between microbial net N mineralization and immobi-
lization (Manzoni et al. 2012).

We see a strong need to determine plant-microbe 
interactive effects on SOM cycling. Hence, we 
propose an integrated conceptual framework that 
addresses the interplay of soil, plant and microbiome 
functioning, all within the context of soil C cycling. 
Such a holistic framework has the potential to signifi-
cantly advance our understanding of the contribution 
of organic N utilization pathways to the N nutrition 

of plants. Specifically, we propose an increased focus 
on plant effects on depolymerization and deamination 
of organic N, a crucial yet often overlooked aspect in 
understanding plant N use efficiency. We will suggest 
potential organic N sources for plants and elucidate 
the processes through which plants can influence the 
availability of these organic N sources. Additionally, 
we advocate for the application of root economic 
theory to gain insights into the diverse strategies 
employed by plants in accessing and mobilizing soil 
organic N.

Soil N cycling and sources of organic N

More than 90% of N in soil is present in organic 
form (Amelung 2001). Organic N primarily origi-
nates from plant litter decomposition, fire or animal 
residues and enters the soil from the surface as par-
ticulate organic matter (POM) or dissolved organic 
N (DON) (Knicker 2011). However, organic N is 
also introduced belowground in significant amounts 
through root litter and rhizodeposits (McNeill et  al. 
1997; Wichern et al. 2008; Arcand et al. 2013). Plant 
derived organic N is mostly present as particulate 
organic matter (POM) (Fig. 1) (Baldock and Skjem-
stad, 2000; Lavallee et al. 2020) and, unless protected 

Fig. 1   Pools of nitrogen and pathways of N cycling between 
these pools. Considered as N pool are plant residues/POM, 
monomers as bioavailable N, mineral N as NH4

+ and NO3
- as 

well as microbial biomass N and microbial necromass N. Some 

of these pools are in exchange with MAOM via adsorption and 
desorption. DNRA = dissimilatory nitrate reduction to ammo-
nium. Figure adapted from Schimel and Bennett (2004) and 
Daly et al. (2021)
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within aggregates, susceptible to rapid decomposi-
tion by microbes (Cotrufo et  al. 2019; Mueller and 
Koegel-Knabner, 2009; von Lützow et al. 2007). The 
products of microbial decomposition can contribute 
significantly (15–80%) to SOM (Liang et  al. 2019; 
Angst et al. 2021; Camenzind et al. 2023). They have 
usually a lower C/N ratio than plant derived organic 
N (Khan et  al. 2016; Wang et  al. 2020b) and are to 
a large extent incorporated into mineral associ-
ated organic matter (MAOM) (Kopittke et  al. 2018, 
2020) which is more stable in soil compared to POM 
(Cotrufo et al. 2019).

About 30–60% of soil organic N consists of pro-
teinaceous materials (e.g. proteins, peptides, and 
amino acids; plant or microbial derived), while amino 
sugars (e.g. muramic acid, glucosamine; microbial 
derived) make up 5–8% and heterocyclic N com-
pounds (e.g. pyrroles, pyridines, pyrazoles; plant or 
microbial derived) account for 5–35%, although there 
are some uncertainties in quantification of heterocy-
clic N (Schulten and Schnitzer 1997; Nannipieri and 
Eldor 2009; Leinweber et al. 2013). Therefore, over-
all proteinaceous materials contribute significantly 
to soil organic N (Geisseler et al. 2010). Amino sug-
ars also play an important role as they are the build-
ing blocks of microbial cell walls and they are used 
as biomarkers for microbial residues (i.e. microbial 
necromass). A major component of fungal cell walls 
is chitin, an unbranched polymer of N-acetylglu-
cosamine (Rinaudo 2006). Bacterial cell walls are 
constructed of peptidoglycan consisting of glycan 
strands, repeating units of N-acetylglucosamine and 
N-acetylmuramic acid, crosslinked by short peptide 
stems (Steen et al. 2003; Vollmer et al. 2008).

To become plant available, complex organic N 
needs to be microbially depolymerized into its mon-
omers (e.g. amino acids, amino sugars) before it is 
subsequently transformed into mineral forms such 
as NH4

+ or NO3
− (Schimel and Bennett 2004; Daly 

et al. 2021) (Fig. 1). Extracellular depolymerases are 
involved in the first step of soil organic N decompo-
sition (Schimel and Bennett 2004). The most impor-
tant extracellular depolymerases vary depending 
on the chemical composition of soil organic N. Pro-
teases, chitinases, and peptidoglycan hydrolases are 
all prevalent among soil microorganisms, reflecting 
their widespread ability to degrade protein, chitin, 
and peptidoglycan (Geisseler et  al. 2010 and refer-
ences theirin). The small organic molecules released 

by extracellular depolymerases (e.g. free amino acids, 
free amino sugars) are available for microbial uptake, 
and their pool is therefore very small (less than 1% 
of the total pool) and highly dynamic (Wanek et  al. 
2010; Warren 2014; Hu et  al. 2017). While there is 
evidence that crops can also take up dissolved organic 
N molecules (such as small peptides or amino acids), 
the ecological significance of this N acquisition path-
way, particularly in agricultural systems remains con-
troversial (Näsholm et al. 2009; Moreau et al. 2019). 
Specifically its relevance under field conditions and 
at realistic concentrations of organic N molecules 
in solution remains questionable (Jones et  al. 2005). 
Therefore, NH4

+ or NO3
− can be considered the most 

important N forms for crop uptake (Schimel and Ben-
nett 2004; Britto and Kronzucker 2013). NH4

+ and 
NO3

− are provided by the mineralization of N-con-
taining monomers into its mineral forms (Fig.  1) 
and involves the deamination of amino acids and the 
hydrolysis of urea by ureases (Schimel and Bennett 
2004; Daly et  al. 2021). N mineralization is coun-
teracted by N immobilization. This includes biotic 
N immobilization, the transformation of inorganic N 
by microorganisms and plants into organic N (Hart 
et  al. 1994) and its subsequent incorporation into 
soil organic matter (Denk et  al. 2017; Zhang et  al. 
2018) as well as plant N uptake (Van Groenigen et al. 
2015). Additionally, N can be immobilized chemi-
cally by sorption to mineral surfaces (Bingham and 
Cotrufo 2016). This process is referred to as abiotic N 
immobilization.

In general, N turnover rates are controlled by tem-
perature, latitude, ecosystem type, soil clay content, 
soil microbial biomass, the soil C/N ratio and soil pH 
(Li et  al. 2020). In particular, the soil C/N ratio has 
long been recognized as an important control over 
decomposition processes as it governs the nutrient 
demand and the structure of soil microbial commu-
nities, thereby affecting the production of extracel-
lular enzymes and finally N turnover (Mooshammer 
et al. 2014). On the one hand, organic N compounds 
with relatively low C/N ratios are likely to be immo-
bilized by sorption on minerals and within the min-
eral associated organic matter (MAOM) (Kopittke 
et  al. 2018, 2020; Wang et  al. 2020a; Buckeridge 
et al. 2022). This preferential sorption of N rich com-
pounds can be explained by the onion layer model, 
according to which N-rich compounds sorb directly 
and more strongly on mineral surfaces compared to 



958	 Plant Soil (2025) 508:955–969

1 3
Vol:. (1234567890)

other organic matter compounds and form a stable 
organic layer (Kleber et al. 2007). On the other hand, 
compounds with low C/N ratios might be an attrac-
tive source of N for microbes. For example, narrow 
C/N legume residues were shown to be preferentially 
incorporated into microbial biomass and resulted in 
higher net N mineralization compared to wide C: N 
wheat residues (Luce et  al. 2016). Also, under low 
N availability, microbial necromass was shown to be 
preferentially decomposed and metabolized by micro-
organisms compared to other SOM fractions, leading 
to a rapid turnover of microbial residues (Zeglin and 
Myrold 2013). The direct quantification of micro-
bial necromass cycling rates in soil has just recently 
been established based on isotope pool dilution (Hu 
et  al. 2018). The authors found that microbial cell 
wall residues rapidly turn over in soil and that prod-
ucts of this microbial cell wall decomposition (e.g. 
free amino sugars, amino acids) add significantly to 
the bioavailable soil organic N pool, indicating that 
necromass-derived N could significantly contribute to 
plant nutrition (Hu et al. 2018). Although the cycling 
of necromass N and its contribution to plant N nutri-
tion has not been directly quantified in the presence of 
plants so far, two studies have attempted to indirectly 
assess its potential significance (Cui et  al. 2020; 
Pausch et al. 2024).

First, Cui et  al. (2020) conducted an incuba-
tion experiment with addition of high amounts of 
13C-labeled glucose in order to study priming, i.e. the 
short-term change in the turnover of SOM caused by 
addition of easily available C (Kuzyakov 2002). Par-
ticularly the addition of excessive amounts of glu-
cose resulted in distinctive peaks of glucose-derived 
CO2, deviating from the typical exponential decay 
pattern normally observed after glucose decomposi-
tion. These peaks were interpreted as indicative of the 
recycling and mineralization of 13C-enriched micro-
bial necromass stimulated by glucose addition. Build-
ing on this observation, the authors hypothesized that 
N recycling from microbial necromass after root exu-
dation could serve as a significant mechanism, miti-
gating microbial N deficiency and possibly enhanc-
ing plant N availability. Second, Pausch et al. (2024) 
observed an increase in 15N natural abundance in 
plants with increases in rhizosphere priming. Con-
sidering that microbial necromass is enriched in 15N 
compared to total soil N (Dijkstra et al. 2006; Craine 
et  al. 2015) the authors concluded that rhizosphere 

priming likely promotes the recycling of necromass-
N cycling and the acquisition of necromass-derived N 
by plants. Notably, as of our current knowledge, no 
other efforts have been made to quantify the impor-
tance of microbial necromass as an N source for 
plants, though, recent advancements in methodology 
offer promising tools to quantify turnover rates of 
microbial necromass (Hu et al. 2018; Warren 2021). 
Therefore, unraveling the significance of microbial 
necromass as a potential N source for plants is criti-
cal. We strongly advocate to explore its contribution 
to plant N nutrition in future studies.

Plant control on soil N cycling and mineralization

Although soil and rhizosphere microorganisms 
shape N cycling most strongly as they transfer N 
between different pools, plants also exert control 
over N mineralization and availability by the fol-
lowing processes: (1) Plants remove mineral N from 
the soil solution with their root N uptake and immo-
bilize this N in their biomass, whereby they com-
pete with microorganisms such as nitrifiers or deni-
trifies for N (Schimel and Bennett 2004; Kuzyakov 
and Xu 2013; Thion et al. 2016). (2) Part of the N 
that plants immobilize is returned as litter to the soil 
after plant death or organ senescence. The amount 
and quality of the plant litter has a distinct effect on 
its decomposition and mineralization by oligotrophs 
and copiotrophs in succession (Myrold and Bottom-
ley 2008; Geisseler et al. 2010; Pascault et al. 2013). 
(3) Moreover, some of the C that is assimilated by 
plants is allocated to roots, mycorrhizal hyphae and 
finally released into soil via root and hyphal exuda-
tion (Dilkes et  al. 2004; Jones et  al. 2004). Some 
of those compounds can directly affect N turnover, 
such as biological nitrification inhibitors that reduce 
the microbial process of nitrification (Coskun et al. 
2017; Nardi et  al. 2020; Sun et  al. 2016). Moreo-
ver, plants may release proteases from their roots 
into the soil, potentially elevating the concentration 
of free amino acids in the soil solution as a source 
of N (Godlewski and Adamczyk 2007; Adamczyk 
2021). However, research aimed at comprehending 
the impact of plant-released proteases on increased 
proteolysis has yielded conflicting results and inter-
pretations (Greenfield et al. 2020; Adamczyk 2021). 
The vast majority of C released by plants into soil is 
likely to affect N turnover rather indirectly, through 
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elevation of microbial activity and turnover. 
Although it is not yet clear, to which extent plants 
can control the exudation of C into soil (Jones et al. 
2009; Carvalhais et  al. 2011) it is clear that this 
exudation, enhances microbial activity and shapes 
the rhizosphere microbial community (Huang et al. 
2014; Zhalnina et  al. 2018; Iannucci et  al. 2021; 
Lewin et al. 2024). Soil microorganisms are largely 
C limited and easily available plant derived C (e.g. 
simple sugars such as glucose) shapes a rhizosphere 
microbial community, predominated by r strategists 
capable of resource competitive traits such as anti-
biotic production and biofilm formation. Competi-
tive microbial communities profit from elevated C 
availability due to their high yield energy metabo-
lism (i.e. ATP gain per substrate used) (Wood et al. 
2023) accelerating N assimilation and possibly sub-
sequent microbial N mineralization. However, the 
disparate range in metabolism of soil microbes hin-
ders efficient classification into resource use strat-
egies (Wood et  al. 2023). Thus, up to now only a 
fragmented understanding of the effect of root and 
hyphal exudation on microbial N depolymerization 
of complex organic N and deamination of organic 
N monomers such as amino acids along the root 
soil continuum exists. A multitude of functional 
genetic traits of microbes needs to be assessed to 
better understand how changes in belowground 
plant activity shape microbial community assembly 
and affects microbial community members capa-
ble to perform N mineralization or denitrification 
(Legay et al. 2020). To better understand the overall 
process of gross N mineralization (GNM) and the 
involved functional microbial groups, we propose 
using ‘omic’ approaches, such as metagenomics 
and -transciptomics, to decipher active microbial 
N processes in the root-associated microbial com-
munity. This would follow the recently suggested 
approach of holo-omics (Xu et  al. 2021; Rai et  al. 
2022) which is considered as a simultaneous assess-
ment of the plant metabolism including root exudate 
synthesis and metabolic activity based on specific 
metabolic pathways of plant-root associated micro-
bial communities. If such approaches are also com-
bined with compound occurrence by metabolomics, 
this would allow for mapping the connections 
between root exudates and the microbial communi-
ties responsible for key steps like dissimilation of 

inorganic N, depolymerization of complex organic 
N, and deamination of monomers such as amino 
acids.

Plant strategies to access organic N

Plant species differentially influence the N cycle 
(Wang et  al. 2020c), primarily through variations 
in their rates of C exudation and N uptake (Moreau 
et al. 2015). These variations reflect phylogenetically 
conserved plant resource utilization strategies. Plant 
ecologists have described these strategies to explain 
plant trait diversity from a resource acquisition point 
of view (root economic theory) (Wright et  al. 2004; 
Freschet et  al. 2010; Reich 2014; Díaz et  al. 2016). 
Different strategies thereby evolved to serve the same 
function in different ways while resulting in a con-
tinuous functional trade-off between the opposing 
strategies with consequences for plant fitness under 
specific conditions (Laughlin et  al. 2021). Resource 
acquisitive plant species are characterized by a fast 
strategy with short root longevity, low root tissue den-
sity (RTD) and narrow C/N ratios while resource con-
servative plants exhibit opposite root traits (Eissenstat 
1992; Ostonen et al. 2007; Freschet et al. 2010; Luke 
McCormack et  al. 2012; Reich 2014). These traits 
distribute along the fast-slow resource conservation 
gradient. Recently, this framework of resource acqui-
sition was expanded for the collaboration gradient to 
include the symbiosis with mycorrhiza (Bergmann 
et al. 2020) and later on for root exudation (Wen et al. 
2021). The “outsourcing” strategy within the collabo-
ration gradient is characterized by high root diameter 
(D), low specific root length (SRL) and strong myc-
orrhizal symbiosis. In contrast, plants following the 
“do it yourself” strategy exhibit a fine-root system 
with high SRL and have lower mycorrhizal coloni-
zation rates (Bergmann et al. 2020). Root exudation, 
particularly concerning root exudates associated with 
the mobilization of soil N is typically linked with the 
fast side of the resource conservation gradient (Wen 
et  al. 2021). As such, it is expected to be independ-
ent of the collaboration gradient (Wen et  al. 2021) 
(Fig.  2). As both, root exudation and mycorrhizal 
collaboration, require C investment for the plant, a 
tradeoff between root exudation and investment into 
mycorrhizal symbiosis can be expected (Jones et  al. 
2004; Kaiser et al. 2015). The diverse root economic 
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strategies illustrated in Fig. 2 embody the aforemen-
tioned processes, through which plants regulate soil 
N cycling and N availability. This regulation involves: 
(a) the uptake of N and its uptake rates, (b) the qual-
ity (chemical composition, structure, C/N ratio) and 
quantity of litter input, (c) the C input to the soil via 
roots and hyphae. Consequently, we propose that a 
thorough examination of these diverse root economic 
strategies will substantially enhance our comprehen-
sion of the organic N utilization pathways employed 
by annual crop plants. As the majority of annual 
crops, such as cereals, mostly align with the fast side 
of the resource conservation gradient (Roumet et  al. 
2006; Cornwell and Cornelissen 2013; García-Pala-
cios et  al. 2013) our focus in this context predomi-
nantly centers on the fast side of the resource conser-
vation gradient.

Strategies related to root exudation

Based on the root economic strategies summarized 
in Fig.  2, fast type plants that focus on root exuda-
tion are expected to grow a fine-root system with a 
narrow C/N ratio and a high exudation rate. Their 

high-quality litter (i.e. narrow C/N ratio) together 
with high exudation rates and fast fine-root turno-
ver probably favors a high activity and abundance of 
microorganisms and fast N turnover in the soil.

High root exudation rates of ‘fast’ type plants can 
induce rhizosphere priming, i.e. a short term increase 
in soil organic matter (SOM) decomposition caused 
by addition of easily available C from the root to 
the soil (Kuzyakov 2002). Rhizosphere priming is 
positively related to gross N mineralization (Holz 
et al. 2023; Fig. 3) and is therefore likely an impor-
tant mechanism for plant N nutrition (Henneron 
et al. 2020). However, the quantification of priming-
derived N to plant N as well as the underlying mecha-
nisms remain largely unknown and warrant further 
investigation. We suggest that root exudation initi-
ates a cascade of processes along the developing root 
that finally results in increased plant access to SOM 
derived N (Fig.  4 left). In principle these processes 
will also occur in ‘slow’ type plants that invest in root 
exudates, but to a less intense degree.

High exudation from the root tip and root hair 
zone (Dennis et  al. 2010; Holz et  al. 2017) will 
result in short lived regions of high C availability. In 
this area a high abundance and activity of bacterial 

Fig. 2   Root economic strategies that are expected for plants 
based on the work of Bergmann et  al. (2020) and Wen et  al. 
(2021). While the “Conservation gradient”, refers to nutrient 
acquisition, the “Collaboration gradient” refers to collaboration 
with mycorrhizae. Root exudation, particularly concerning root 
exudates associated with the mobilization of soil N is typically 

linked with the fast side of the resource conservation gradient. 
As such, it is expected to be independent of the collaboration 
gradient (Wen et al. 2021). Root hair length is suggested to be 
negatively associated to mycorrhization as proposed in Kothari 
et al. (1990)
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dominated copiotrophs characterized by high N 
uptake is expected (Folman et  al. 2001; Kuzyakov 
and Xu 2013; de Vries and Bardgett 2016). The 

high C input through root exudates will likely cause 
microbial N limitation and result in organic N min-
ing through exo-enzymes (Dijkstra et  al. 2013). 

Fig. 3   Summarized litera-
ture data for the relationship 
between soil priming (a 
short term increase in SOM 
decomposition caused by 
addition of easily available 
C to the soil) and gross N 
mineralization in excess of 
the control treatment. The 
correlation was significant 
at R²=0.21 (Holz et al. 
2023)
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Fig. 4   Hypothesized organic N utilization pathways for strat-
egies focusing on root exudates (left) and those in combina-
tion with mycorrhiza (right). Both scenarios are not exclusive 
and that a specific plant likely relies on both mechanisms but 
to different degrees. Though both strategies described rely on 
exudation, we suggest that they may exhibit certain differences 
as outlined in the section “Differences in root exudate and 

AM fungi induced N cycling”. Although, plants might take up 
N in the form of either NH4

+ or, if nitrified, as NO3
- but for 

simplicity, only NH4
+, as the direct product of N mineraliza-

tion is indicated here. Note that apart from the processes out-
lined here, plants also take up N directly from the soil solution. 
CUE: carbon use efficiency



962	 Plant Soil (2025) 508:955–969

1 3
Vol:. (1234567890)

These two factors, N limitation and enzyme activ-
ity can then cause increased rhizosphere priming, 
gross N mineralization and immobilization into the 
microbial biomass (Geisseler et  al. 2010; Farrell 
et al. 2014).

In the region behind the root tip root exudation 
decreases and easily available C becomes exhausted. 
This depletion may lead to a shift in microbial com-
munities towards low C use efficiency (oligotrophic/
stress tolerant microorganisms) (Bernard et  al. 
2022). This resource constrained microbial commu-
nity may recycle nutrients from “old” communities, 
i.e. from microbial necromass (Kaiser et  al. 2014; 
Cui et al. 2020; Pausch et al. 2024). Due to the nar-
row C/N ratio of the necromass, net N mineralization 
will occur, enhancing plant N availability (Eshel and 
Beeckman 2013). Additionally, microbial grazers 
(nematodes, protists, phages) will be attracted by the 
high microbial abundance. If microbial grazers con-
sume microorganisms, mineral N is released into the 
soil caused by small differences in C/N ratios between 
predators and prey and a low assimilation efficiency 
of predators (microbial loop) (Bonkowski 2004; 
Kuzyakov and Mason-Jones 2018). The mineral N 
released via the microbial loop is then potentially 
available to the plant (Fig. 4). Based on the sequence 
of processes described, we expect a tight link between 
exudation, fast microbial build up, priming and sub-
sequent N mineralization from the microbial necro-
mass. These processes are likely triggered by rapid 
changes in root exudation and microbial activity and 
composition along the root.

In comparison to ‘fast’ economic crops, ‘slow’ 
type plants that invest in root exudates produce long 
living dense fine roots. These roots have a wider C/N 
ratios and higher chemical recalcitrance which means 
that they exhibit an elemental composition, presence 
of functional groups, and molecular conformation that 
restrict their microbial decomposition (Freschet et al. 
2010; Reich 2014) resulting in a low microbial activ-
ity and abundance and slower N cycling compared to 
‘fast” type plants (Chapman et  al. 2006; Henneron 
et al. 2020). Due to the wide litter C/N ratio and the 
slower N cycling, a larger share of organic N is likely 
to be present as POM compared to MAOM (Averill 
and Waring 2018). In these plant-soil systems, slow 
root turnover, together with lower exudation (Fig. 2) 
will likely result in low priming effects. In light of the 
higher occurrence of POM-N in comparison to ‘fast’ 

type plants, we propose that POM-N serves as a sig-
nificant N source for these plants, leading to a reduc-
tion in microbial necromass recycling compared to 
the scenario with ‘fast’ type plants.

Strategies in combination with arbuscular 
mycorrhizal (AM) fungal colonization

We propose that fast plants that invest in collabora-
tion with mycorrhiza grow a fine-root system with 
each root having a comparably short life span, a nar-
row C/N ratio and a high C investment in AM fungi, 
the mycorrhizal form most relevant for annual agri-
cultural crops.

AM fungi possess a very weak exo-enzymatic 
repertoire (Tisserant et  al. 2013) and it is there-
fore unlikely that they directly acquire mineral N 
from organic matter (Hodge and Storer 2014; Jansa 
et  al. 2019). Therefore AM fungi must rely on min-
eralization by either saprotrophic or hypersymbi-
otic microbes, i.e. microbes that rely on mycorrhiza 
derived C as an energy source (Quilliam et al. 2010; 
Jansa et  al. 2013). We propose that the symbiotic 
relationship with mycorrhizal fungi and the exudation 
of readily available C through their hyphae initiate a 
series of processes, ultimately leading to enhanced 
availability of N derived from organic matter for 
the plant. These processes are summarized in Fig. 4 
(right) and described below. In principle these pro-
cesses are also expected for slow mycorrhizal plants, 
but to a less intense degree.

The AM fungi hyphal exudation of labile C is 
likely to stimulate the activity and abundance of sap-
rotrophic or hypersymbiotic microbes (Toljander 
et al. 2007; Herman et al. 2012) and induce priming 
of SOM (Talbot et  al. 2008; Paterson et  al. 2016). 
Moreover, the mycorrhizal fungi’s effective assimi-
lation of NH4

+ from the soil solution significantly 
diminishes soil NH4

+ concentrations. This intensi-
fies microbial N limitation, extracellular enzyme pro-
duction by saprotrophic or hypersymbiotic microbes 
and rhizosphere priming (Hodge et  al. 2001; Atul-
Nayyar et al. 2009). As described above, the high C 
availability likely results in microbial N immobi-
lization (Geisseler et  al. 2010; Farrell et  al. 2014). 
At the same time, the high microbial abundance is 
expected to attract microbial grazers, such as nema-
todes or protists and phages resulting in the ‘micro-
bial loop’ with a net release of mineral N into soil 
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(Bonkowski 2004; Kuzyakov and Mason-Jones 2018) 
and finally an increased N availability for the plant. 
It has been shown that in the presence of AM fungi 
a large fraction organic N supplied as chitin is rela-
tively fast transferred plants (Bukovská et  al. 2018; 
Jansa et al. 2019). This transfer is probably governed 
by prokaryotes and fungi specialized on chitin min-
eralization, while the N will likely be made avail-
able to plant uptake via the soil microbial loop (Jansa 
et  al. 2019). There is good evidence that AM fungi 
hyphal development is positively correlated to soil 
protist abundance (Amora-Lazcano et al. 1998; Buko-
vská et al. 2016). Hence, we suggest that the ‘micro-
bial loop’ plays an important role in AMF-induced 
N cycling. Additionally, the very efficient uptake of 
NH4

+ by AM fungi (Herdler et al. 2008; Koller et al. 
2013) reduces plant-denitrifier competition while 
it increases competition with nitrifiers (Legay et  al. 
2020) and results in a high immobilization rate of 
NH4

+ into AM fungi biomass.
However, as of now, there is no established direct 

correlation between AM fungi induced priming, 
which triggers NH4

+ release via the ‘microbial loop,’ 
and the subsequent NH4

+ uptake by AM fungi. Addi-
tionally, it remains unclear, whether a portion of this 
N taken up by hyphae is allocated to the plant. Hence, 
we recommend that future research endeavors focus 
on elucidating the relationship between AM fungi-
induced priming and the uptake of priming-derived N.

‘Slow’ type plants that invest in collaboration with 
mycorrhiza produce denser plant tissue with wide 
C/N ratios and thus reduced decomposability to soil 
microorganisms as compared to plants following fast 
strategies. The low-quality litter (i.e. wider C/N ratio) 
input together with the slow root growth results in 
slow N cycling in the surrounding soil as compared 
to plants following fast strategies. Additionally, the 
transfer of N derived from SOM from the fungus to 
the plant, as well as the mutualistic benefits of the 
mycorrhizal symbiosis, will be reduced compared to 
fast-type plants (Ingraffia et al. 2020).

Differences in root exudate and AM fungi induced N 
cycling

Although both strategies described rely on exuda-
tion, we suggest that they may exhibit certain differ-
ences. While root exudation is strongest at the root 
tip and root elongation zone (Dennis et  al. 2010; 

Holz et  al. 2017) the symbiosis with AM fungi is 
present along the whole root axis (Guo et  al. 2008; 
Long et al. 2013) and consequently, hyphal exudation 
might therefore differ in its spatial distrbution from 
root exudation. Therefore, priming induced N cycling 
is expected in different soil locations for plants with 
contrasting belowground strategies. Additionally, the 
very efficient uptake of NH4

+ by AM fungi (Herdler 
et al. 2008; Koller et al. 2013) and the fact that their 
small diameter hyphae can reach soil pores that plants 
cannot reach, likely leads to a very efficient N uptake 
by mycorrhiza. This could lead to a high immobili-
zation rate of NH4

+ into AM fungi which has also 
been shown to reduce N losses from soil (Asghari and 
Cavagnaro 2012; Storer et al. 2018; Veresoglou et al. 
2019). Finally there are some indications that AM 
fungi might react more plasticly to reduced soil N 
availability compared to root exudation. Low N avail-
ability increased AM fungal abundance (Treseder 
2004; van Diepen et  al. 2010; Zhang et  al. 2020) 
and the percentage of plant derived N from fertiliz-
ers (Azcón et al. 2008). Therefore, plants focusing on 
AM fungi might be particularly successful in low N 
conditions.

Conclusions and a perspective for future research

In order to gain conclusive insights into the influ-
ence of plants with diverse root economic strategies 
on their organic N utilization, we advocate for a com-
prehensive research approach that integrates various 
scientific disciplines.

Screening for root strategies  Major information can 
be gained by investigation of plant root and rhizosphere 
traits. Conducting comparative screenings of root traits 
and root exudation pattern of plant species spanning a 
spectrum of resource acquisition strategies will serve 
as a critical foundation for subsequent studies. In the 
context of root exudation, sampling technique and the 
chosen analysis of root exudates is relevant. In terms 
of sampling technique soil-based sampling approaches 
should be chosen for example by the hydroponic-
hybrid approach (Oburger and Jones 2018; Santangeli 
et al. 2024) in order to account for the effect that soil 
conditions have on exudate composition and quan-
tity (Oburger and Schmidt 2015). With regard to the 
analysis, it is important to quantify the total C released 
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by plant roots and to combine this for example with 
non-targeted metabolomic fingerprinting of exudates 
(Fuhrer and Zamboni 2015; Oburger and Jones 2018); 
which provides information on the exudate compound 
composition in its entire complexity that controls 
microbial community composition and activity (van 
Dam and Bouwmeester 2016).

Linking root strategy to C exudation and N turno-
ver  Understanding how plant species with different 
root economic strategies modulate their organic N uti-
lization pathways requires linking rhizosphere prim-
ing with gross N transformation rates, for instance, 
through15N tracing (Rütting et  al. 2011; Holz et  al. 
2016). Innovative methods now enable quantification 
of turnover rates of microbial necromass (Hu et  al. 
2018; Warren 2021) which could potentially be cou-
pled with measurement of rhizosphere priming. Addi-
tionally, analyzing total N and 15N isotopes (natural 
abundance) of different N pools, particularly mineral 
N and microbial biomass, along with amino sugars 
as indicators of microbial necromass can link rhizo-
sphere priming to the turnover of specifc organic N 
pools (Pausch et al. 2024).

Quantification of accessible organic N  While link-
ing rhizosphere priming to N turnover rates aids in 
understanding the extent to which root strategies influ-
ence N cycling and availability, it is crucial to quan-
tify the amount of organic N accessible to plants. This 
involves understanding which organic N pools contrib-
ute to plant nutrition, including fresh root and shoot lit-
ter, microbial necromass or MAOM and POM. Incorpo-
rating 15N-labelled organic N pools, such as necromass 
(Schmitt et al. 2022), and quantifying their turover and 
plant uptake presents an opportunity to assess the con-
tribution of organic N pools to plant nutrition.

Resolve microbial functionality in rhizosphere 
N cycling  Unraveling the dynamics of microbial-
mediated organic N depolymerization and microbial 
assimilation of N is crucial for understanding plant-
microbiota interactions and synergism for N nutri-
tion (Sieradzki et  al. 2023a, b). The use of stable 
isotope probing, in combination with metagenomic 
and metatranscriptomic approaches, allows for link-
ing the quantification of N transformations to micro-
bial community structure and changes in microbial 
gene expression. By combining the analysis of plant 

metabolism including root exudate synthesis and 
metabolic activity with stable isotope probing, in 
combination with metagenomic and metatranscrip-
tomic approaches (holo-omics; Rai et  al. 2022; Xu 
et al. 2021) would allow for mapping the connections 
between root exudates and the microbial communities 
responsible for key steps in organic N mobilization 
while also quantifying organic N mobilization. How-
ever, further bioinformatic developments are needed 
to assess gene expression related to the degradation of 
macromolecular N (Sieradzki et al. 2023a). Addition-
ally, a future challenge lies in predicting extracellular 
protease activities based on gene expression.

In summary, an interdisciplinary approach, com-
bining methods and concepts from plant functional 
ecology, metagenomics in combination with isotope 
approaches holds significant potential to unravel the 
complex interactions between plants with varying 
root strategies and soil microbiota in regard to organic 
N utilization pathways.
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