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A B S T R A C T

It has become common to compare crop model results in multi-model simulation experiments. In general, one 
observes a large variability in such studies, which reduces the confidence one can have in such models. It is 
important to understand the causes of this variability as a first step toward reducing it. For a given data set, the 
variability in a multi-model study can arise from uncertainty in model structure or in parameter values for a 
given structure. Previous studies have made assumptions about the origin of parameter uncertainty, and then 
quantified its contribution, generally finding that parameter uncertainty is less important than structure 
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uncertainty. However, those studies do not take account of the full parameter variability in multi-model studies. 
Here we propose estimating parameter uncertainty based on open-call multi-model ensembles where the same 
structure is used by more than one modeling group. The variability in such a case is due to the full variability of 
parameters among modeling groups. Then structure and parameter contributions can be estimated using random 
effects analysis of variance. Based on three multi-model studies for simulating wheat phenology, it is found that 
the contribution of parameter uncertainty to total uncertainty is, on average, more than twice as large as the 
uncertainty from structure. A second estimate, based on a comparison of two different calibration approaches for 
multiple models leads to a very similar result. We conclude that improvement of crop models requires as much 
attention to parameters as to model structure.

1. Introduction

Process-based crop models are widely used tools in agronomy, to 
help analyze past results and to explore scenarios related to alternative 
management options, effect of climate change, impact of new varieties 
etc. (Boote et al., 2010). Since the inception of the Agricultural Modeling 
Inter-comparison and Improvement Project (AgMIP, Rosenzweig et al., 
2013), it has become common to organize multi-model simulation 
studies, where multiple modeling groups are provided with the same 
input data (i.e. weather, crop management, soil characteristics and 
initial conditions) and the same observational data for model calibra-
tion, and simulate the same response variables. Such studies have shown 
that the variability in simulated values is very substantial (Asseng et al., 
2013; Durand et al., 2018; Salo et al., 2016; Sándor et al., 2020; Wallach 
et al., 2021a, 2021b). In several studies where multiple crop models 
were combined with multiple global circulation models (GCMs), it was 
found that the uncertainty contribution from crop models is as large or 
larger than that from the GCMs (Asseng et al., 2013; Müller et al., 2021; 
Wang et al., 2024, 2020). The variability in multi-model studies is 
probably the most pertinent measure of overall crop model uncertainty, 
since it reflects the current variability in simulated results among 
modeling groups. The large uncertainty clearly limits the confidence 
that one can have in the results of crop models, since it implies that 
results can vary widely depending on the specific model and modeling 
group providing the results. A reduction in uncertainty from crop 
models is necessary in order to increase confidence in the results of these 
models (Maiorano et al., 2017; Rötter et al., 2011).

In multi-model studies, all modeling groups are given the same input 
and observation data. Thus the variability between groups has two 
possible origins, model structure and model parameters. Crop model 
structure encompasses both the processes taken into account in the 
models and the specific forms of the equations used to model those 
processes. The second source of variability is uncertainty in the 
parameter values. Different groups using the same model structure can 
have different values for the parameters (Albanito et al., 2022; Con-
falonieri et al., 2016), again leading to differences in simulated values. It 
is important to quantify the contributions of structure and parameter 
uncertainty to overall uncertainty, as a first step in reducing the overall 
uncertainty. In general, uncertainty is summarized as a variance value, 
so the question is the relative contributions of structure and parameter 
variance to the overall variance of simulated values in multi-model 
studies.

To proceed, it is helpful to have a clear definition of the parameter 
and structure uncertainties of interest. We propose that an appropriate 
definition of model structure uncertainty is the range of plausible crop 
model structures, where by “plausible” we mean a structure that would 
be deemed acceptable by researchers knowledgeable in the field of crop 
modeling. The structures represented in open-call multi-model studies 
can be considered a random sample of plausible structures; random 
because all modeling groups were invited to participate, plausible 
because the structures are used by researchers in the field.

Our definition of parameter uncertainty for a given model structure 
and data set is the range of plausible parameter vectors for that structure 
and data. Here “plausible” means that research groups working with 

that structure would consider those parameters, or the way in which the 
parameters are obtained, reasonable. Note that parameter uncertainty is 
nested within structure uncertainty. That is, the uncertainty in question 
is different for each model structure, since each structure has its own 
parameterization. Overall parameter uncertainty is an average over the 
uncertainties for different structures. Parameter uncertainty covers both 
the plausible range of parameter default values and the plausible range 
of calibration procedures, including the choice of which parameters to 
fit to the data and the procedures of doing the fitting. Each parameter 
vector represented in open-call multi-model studies is plausible, since it 
is derived by a practicing research group. For a given model structure, 
each parameter vector can be considered a random draw from among 
plausible vectors for that structure, that is, all plausible parameter 
vectors have an equal chance of being represented in the multi-model 
study.

A major source of parameter uncertainty is variability in calibration 
approach. Calibration of crop models and more generally process based 
models in other fields is difficult because of the large number of pa-
rameters and the multiple types of observed variables. As a result, there 
is no general consensus on the best calibration approach for crop modes 
(Ahuja and Ma, 2011). One question is how to choose which parameters 
to estimate and which to treat as fixed. Various studies have proposed 
sensitivity analysis approaches for choosing the parameters to estimate 
(e.g. Zadeh et al., 2022 for water quality modeling; Zhang et al., 2014 for 
rice phenology). Other studies have compared different algorithms for 
searching for the best parameter values (e.g. Gao et al., 2020; Harrison 
et al., 2019). The choice of objective function is also variable, and 
several choices are possible (e.g. Houska et al., 2015 for ecological 
models). Wallach et al. (2021c) specifically studied the range of cali-
bration approaches used by different modeling groups in three 
multi-model studies. They found that some groups used a frequentist 
approach, with various objective functions, and others a Bayesian 
approach, with various assumptions about the likelihood function. 
There were also differences in the way to choose the parameters to es-
timate, with some groups basing the choice on sensitivity analysis, 
others on expert knowledge about the most important model parame-
ters, sometimes combined with trial and error to choose the parameter 
set that gives the best fit to the data. Even for modeling groups using the 
same model structure, there were multiple differences in calibration 
approach, including different choices of which parameters to fit to the 
data. Albanito et al. (2022) also emphasized that different modeling 
groups make different decisions about calibration practices. In order to 
quantify the variability in plausible parameter values, we need to take 
into account all these differences in calibration approach.

Several previous studies have specifically quantified the contribu-
tions of structure and parameter uncertainty to total uncertainty for crop 
models or other process-based models. In these studies, a single 
modeling group generates multiple parameter vectors for each of several 
models. Zhang et al. (2017) considered five different models used to 
predict rice phenology. For each model, 50 parameter sets were gener-
ated, based on an assumed uncertainty range for each parameter. 
Analysis of variance was used to estimate the separate contributions of 
structure and parameter uncertainty. Tao et al. (2018) used a similar 
approach for an ensemble of seven models for simulating barley growth 
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and yield. Parameter ranges were based on expert opinion. Both studies 
identify a fixed subset of parameters that are considered uncertain. 
These approaches are appropriate for estimating a priori uncertainty in a 
fixed subset of parameter, when no data is available for calibration. 
However, in multi-model studies, and in our definition of plausible 
parameter values, models are calibrated using provided data. Calibra-
tion modifies the uncertainty in parameter values compared to their a 
priori range. Furthermore, these studies ignore uncertainty in the choice 
of parameters to estimate. In practice, different modeling groups using 
the same model structure choose to estimate different parameters, but 
this variability is not taken into account in these studies. Thus, this 
approach does not provide a sample of plausible parameter values ac-
cording to our definition, and is therefore not appropriate for estimating 
the contribution of parameter uncertainty to total uncertainty in 
multi-model studies.

A different approach assumes that parameter uncertainty derives 
from error in observations. The variance of observation error is esti-
mated and then used to estimate the distribution of the parameter es-
timators. Thus, Wallach et al. (2017) estimated parameters of two 
models using the standard regression technique of generalized least 
squares, which also provides estimates of the variance-covariance ma-
trix of the parameter estimators (Seber and Wild, 1989). Then samples of 
parameter vectors were generated for each model, and analysis of 
variance was used to estimate structure and parameter variance. 
Another approach explores the parameter space around the optimal 
parameter values, and accepts parameter values that satisfy a goodness 
of fit test, which is a way of relating parameter uncertainty to obser-
vation uncertainty. Migliavacca et al. (2012), looking at 12 budburst 
models, used this approach to generate 1000 parameter vectors that give 
fits to the data that are statistically equivalent to the fit using the best 
parameter values for each model. However, while the effect of obser-
vation error on parameter uncertainty is important, it is not relevant to 
uncertainty in multi-model studies, which use a fixed data set. The 
variability in parameter values between different modeling groups in 
multi-model studies is not due to observation error, since all groups use 
exactly the same data. The variability between groups using the same 
model structure is due to differences in the choice of default parameter 
values and in calibration approach, which is not captured in these 
studies.

In a somewhat different context, Smallman et al. (2021) studied 
structure and parameter uncertainty for five terrestrial ecosystem 
models. Bayesian calibration was used to determine parameter distri-
butions for each model. This approach evaluates parameter uncertainty 
as the result of a priori uncertainty and observation error. Since as noted 
above observation error is not considered in open-call multi-model en-
sembles, this approach again does not recreate the variability of plau-
sible parameter values, according to our definition.

Xiong et al. (2020) considered structure and parameter contributions 
to uncertainty in wheat model simulations applied to two Chinese re-
gions. Three models were considered. Parameter variability was due to 
different levels of spatial detail (same parameters at all locations, 
different parameters for each major agro-ecological zone, parameters fit 
to phenology data or parameters fit to both phenology and yield data). In 
this case, parameter uncertainty measures the variability between 
different specific choices of the way to determine the parameter values. 
The approach is not aimed at reproducing the variability in multi-model 
studies.

These previous approaches have sampled from specific types of 
parameter uncertainty, namely a priori uncertainty, uncertainty due to 
uncertainty in the data, or uncertainty related to different choices of the 
way to treat spatial data. None of these approaches is designed to 
recreate the parameter variability between different groups using the 
same structure in multi-model studies. That variability results from 
differences in default parameter values and from multiple differences in 
calibration approach. To date, there do not seem to have been any 
studies which realistically take into account the full uncertainty in 

plausible parameter values.
The purpose of this study is to propose, for the first time, estimates of 

structure and parameter uncertainty in multi-model studies that fully 
account for parameter uncertainty. Our case study concerns prediction 
of wheat phenology. Crop phenology is important since it has a major 
effect on crop yield and is a major aspect of crop response to global 
warming (Ahmad et al., 2019; Fatima et al., 2020; Liu et al., 2022). 
Process-based models of phenology, usually embedded in crop or 
agroecosystem models, are often used to predict the effect of weather on 
phenology (Bindi et al., 2015; Muleke et al., 2022). Multi-model studies 
specifically of crop phenology have shown wide variability in simulated 
results (Wallach et al., 2021a, 2021b). Thus, the uncertainty in predic-
tion of crop phenology is of interest in its own right, as well as serving as 
an example for crop models more generally.

We estimate parameter uncertainty based on the differences between 
different modeling groups using the same model structure, in multi- 
model studies. This automatically takes into account all the differ-
ences in choice of default parameters and in calibration approach be-
tween different groups. Specifically, we revisit three published open-call 
multi-model studies on predicting wheat phenology (Wallach et al., 
2021a, 2021b), where some model structures were used by more than 
one modeling group. Given the results from multiple different model 
structures, and from multiple groups using the same structure, we esti-
mate structure and parameter variances using random effects analysis of 
variance. Our approach, therefore, provides more realistic estimates for 
the relative contributions of structure and parameter uncertainty than 
have previously been available. The methodology employed here, 
namely using random effects analysis of variance on data from 
multi-model studies, is applicable in general to process-based models.

In the particular cases treated here, we can obtain a second estimate 
of the variance in simulated values due to parameter uncertainty. In the 
multi-model studies revisited here, each participating group used their 
“usual” calibration approach. Subsequently an original calibration pro-
tocol was developed, and most of the groups redid the calibration using 
the new protocol. Thus for multiple groups, we have results for two 
different calibration procedures, “usual” and “protocol”, both of which 
may be considered plausible. The comparison between them can be used 
to estimate potential variability in parameters due to calibration 
approach. These results can be compared with the results based on the 
original multi-model studies.

2. Materials and Methods

2.1. Observational data

The multi-model studies use three different data sets (Table 1). Two 
of the data sets are from winter wheat variety trials in France. These two 
data sets have identical structures (same sites and sowing dates) but 
concern two different wheat varieties, “Apache” and “Bermude”. Both 
varieties are of intermediate precocity, but Bermude has a longer cycle. 
The observed data from each environment consist of dates of stem 
elongation (BBCH30 on the BBCH scale, Meier, 1997) and of the middle 
of heading (BBCH55). The third data set is from a multi-site sowing date 
experiment on spring wheat variety Janz in Australia. The original data 
were observations of growth stage at weekly intervals. The data pro-
vided to modeling groups were the dates of each BBCH stage, from the 
first to the last observed stage, derived from interpolation of the original 
data. All data sets were split into two subsets, one for calibration and the 
other for evaluation. The calibration and evaluation data sets had 
neither site nor year in common. Thus evaluation was a true test of how 
well models could predict out-of-sample conditions.

The three data sets used in the multi-model ensemble studies 
analyzed here. The French data sets are described in (Wallach et al., 
2021a). The Australian data set is described in (Wallach et al., 2021b).

D. Wallach et al.                                                                                                                                                                                                                                Agricultural and Forest Meteorology 372 (2025) 110697 

3 



2.2. Participating modeling groups and model structures

The call for participants in these studies was published using the 
mailing lists of AgMIP and of several crop models. All modeling groups 
that volunteered (a modeling group is one or more individuals who work 
together to run a model) were accepted. No specific attempt was made to 
encourage or discourage participation by different groups that used the 
same structure. In the event, there were two or three (depending on the 
simulation study) model structures used by more than one group 
(Table 2). These are thus what we have termed “open-call” multi-model 
studies.

A total of 30 modeling groups using 23 different structures partici-
pated in one or more of the simulation experiments. For the purposes of 
this study, each model with a unique name was considered as a different 
model structure. A list of structures represented here, together with 
references that describe the model equations, is given in Supplementary 
Table 1. In all cases, the phenology models were embedded in general 
crop models, so the model structure here refers to the overall crop 
model. Most but not all of the groups participated in all the studies.

In the original reports of these studies, the different modeling groups 
were identified by a code (M1, M2 etc.) without identifying the group or 
the model structure used (Wallach et al., 2021a, 2021b). The same codes 
are used here. In addition, we assign here codes to the different model 
structures (S1, S2, etc.). The same model structure can be associated 
with more than one modeling group.

2.3. Simulation studies

The multi-model simulation studies, based on the three data sets, are 
summarized in Table 2. In the first two studies, based on the two French 
data sets, each participating modeling group implemented their usual 
calibration method to calibrate their model using the calibration data 
subsets and then simulated days from sowing to development stages 
BBCH10, BBCH30, and BBCH55 for both the calibration and evaluation 
environments (Wallach et al., 2021a) (Table 2). In the study based on 
the Australian data set (Wallach et al., 2021b), each participating 
modeling group again used their usual calibration method and then 

simulated days from sowing to development stages BBCH10, BBCH30, 
BBCH65, and BBCH90 for the Australian environments. Neither the 
French nor the Australian data sets had observations of BBCH10 
(emergence), which was included in the variables to simulate in order to 
have an example of a simulated stage without calibration data. Detailed 
information about the variability in calibration procedures among the 
different modeling groups is presented in Wallach et al. (2021c).

Following the three multi-model studies, a standardized calibration 
procedure (hereafter the calibration “protocol”) was proposed (Wallach 
et al., 2023). In a fourth simulation experiment, each of 19 participating 
groups used the protocol calibration to simulate for the same three data 
sets used in the first studies. Any group that participated in the fourth 
study but that had not participated in the first three studies first did the 
calibration using their usual method, before applying the protocol. Thus 
for each data set and each participant, there were two parameter vec-
tors, based on usual or protocol calibration.

2.4. Estimation of structure and parameter variance

2.4.1. Variance components approach
We assume that for each of the open-call simulation experiments, the 

model structures are a random sample from plausible structures. We 
further assume that each parameter vector is a random draw from 
plausible parameter vectors for the corresponding model structure. The 
statistical model for a simulated value is 

ysp = μ + αs + βsp (1) 

where ysp is the simulation result for the output y (for example days to 
BBCH30 in a particular environment) obtained using the sth draw of 
model structure s and the pth draw of parameter vector for that model 
structure. µ is the overall mean of the simulation results, αs is the effect of 
model structure and βsp is the effect of parameter vector nested within 
the model structure. The parameter effect is nested within structure, 
because different structures have different parameterizations. There is 
no residual term because these are simulated values with no measure-
ment error.

In a fixed effects analysis of variance, we are mainly interested in the 
effects α and β of the specific structures and parameters of the sample. 
Here, on the other hand, we are mainly interested in the variability 
between model structures and between parameter vectors for each given 
structure. The appropriate analysis tool is a random effects analysis of 
variance.

In random effects analysis of variance, αs and βsp are treated as 
random effects. αs is random because the structure chosen at the sth draw 
could be any plausible structure. All the αs have the same distribution, 
because every draw is from the same population of model structures. We 
are interested in the variance of the αs, noted var(αs) = σ2

structure for all s. 
Similarly, each βsp has the same distribution. We note var

(
βsp

)
=

σ2
parameters for all sp. The random terms are assumed independent so that 

the total variance for one environment and one simulated variable is the 
sum of model structure variance and parameter variance (Scheffé, 
1959): 

Table 1 
Data sets.

Data set Number of calibration 
environments

Number of evaluation 
environments

Observed development 
stages*

Simulated development stages used for 
analysis*

France Variety Apache 14 8 BBCH30, BBCH55 BBCH10, BBCH30, BBCH55
France Variety 

Bermude
14 8 BBCH30, BBCH55 BBCH10, BBCH30, BBCH55

Australia Variety Janz 24 18 BBCH stage at weekly 
intervals

BBCH10, BBCH30, BBCH65, BBCH90

*The development stages, using the BBCH scale (Meier, 1997) are emergence (BBCH10), start of stem elongation (BBCH30), middle of heading (BBCH55), full 
flowering (BBCH65), and maturity (BBCH90).

Table 2 
The three open-call multi-model simulation studies (Wallach et al., 2021a, 
2021b).

Simulation 
study

Data set 
(country, 
cultivar)

Calibration 
procedure

Number of 
modeling 
groups

Repeated 
structures*

multi-model 
study 1

France, 
Apache

Usual 27 S2 (4), S4 
(3), S18 (2)

multi-model 
study 2

France, 
Bermude

Usual 27 S2 (4), S4 
(3), S18 (2)

multi-model 
study 3

Australia, 
Janz

Usual 28 S2 (3), S4 
(3), S18 (2)

multi-model 
study 4

All 3 data sets Protocol 19 not relevant

*The model structures used by more than one modeling group, and in paren-
theses, the number of groups that used that structure.
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σ2
total = σ2

structure + σ2
parameters (1a) 

The fraction of total variance due to parameter variance is then 

σ2
parameters/σ2

total = σ2
parameters/

(
σ2

structure + σ2
parameters

)
.

The variances σ2
structure and σ2

parameters can be estimated using random 
effects analysis of variance. In the case of a balanced sample (same 
number of parameter vectors for each model structure), there are 
analytical expressions for the maximum likelihood (ML) estimators of 
the variances. In the general, unbalanced case, the estimators are 
calculated iteratively. We use the lmer function of the lme4 package 
(Bates et al., 2015) in R (R Core Team, 2017), which is designed to 
analyze linear mixed effect models. We use the REML option, which 
corrects for the fact that the ML estimators are biased. Commented R 
script for calling the lmer function and for extracting the variances of 
interest are shown in Supplementary.

An illustration of the data used in this approach is given in Fig. 1. As 
that figure shows, three of the model structures (S2, S4, and S18) were 
used by more than one modeling group. It is the variability between the 
different groups using the same model structure that allows us to esti-
mate parameter variance. The results for all groups contribute to the 
estimation of structure variance. Note that the simplified approach to 
estimating parameter uncertainty using these same data in Wallach et al. 
(2021a, 2021b) underestimates the contribution of parameter 
uncertainty.

2.4.2. Comparison of usual and protocol calibration
A second estimation of parameter uncertainty is based on comparing 

the results between usual and protocol calibration, for each group 
(Fig. 2). The major difference between the calibration approaches was in 
the choice of which parameters to estimate from the data. For “usual” 
calibration, there was a wide diversity of methods of choosing param-
eters to estimate (Wallach et al., 2021c). None of the calibration 
methods was explicitly designed to avoid over-fitting. The new protocol 

based the choice of parameters to estimate on standard statistical model 
selection methods. For each development stage in the calibration data, 
one parameter that had a similar effect in all environments was auto-
matically chosen to be calibrated. This was usually the number of degree 
days to the stage. Then additional “candidate” parameters were identi-
fied. These were tested in a procedure like forward regression. A 
candidate was chosen to be estimated if it led to a reduction in the 
corrected Akaike Information Criterion (AICc). This criterion has the 
form of a penalized likelihood; it has a term which decreases if the error 
in fitting the data decreases, and a term which increases as the number 
of estimated parameters increases. It is designed to avoid-over-fitting.

For each environment, we calculate the variance of the difference 
between the two calibration approaches (usual and protocol), noted vari 
for modeling group i (Eq. 1), and then average over modeling groups to 
obtain an estimated parameter variance for that environment (Eq. 2). 

vari =
(
yusual − y

)2
+
(
yprotocol − y

)2 (2) 

σ̂2
parameters = 1

/

R
∑R

i=1
vari (3) 

where y =
(
yusual +yprotocol)/2 and R is the number of modeling groups.

We do not have a rigorous method of estimating structure variance 
from these data. The difficulty is that the assumptions underlying the 
random effects model described above are not satisfied; the parameter 
vectors obtained by protocol calibration are not independent between 
modeling groups, since all use the same protocol. Therefore, for each 
environment, we use the estimate of structure variance from the vari-
ance components approach above.

3. Results

Initially, all calculations were done for the calibration and evaluation 
data subsets separately. However, there were no systematic differences 
between the two (Fig. S1 and Fig. S2). Since both calibration and eval-
uation data are sampled from the same target population, this is perhaps 

Fig. 1. Example of data used for estimating parameter and structure uncer-
tainty in the “variance components” approach (location Foreste, sown 10/11/ 
2011). Each circle or star is a simulated value of days from sowing to mid- 
heading (stage BBCH55) for variety Apache in one environment from simula-
tion study 1. All modeling groups used the same inputs. The x-axis shows the 
model structure. In most cases, each structure was used by a single modeling 
group (open circles), but structures S2, S4, and S18 were used respectively by 4, 
3, and 2 groups (data shown as stars). It is the variability between simulations 
from different groups using those model structures that is the basis for esti-
mating parameter uncertainty. The horizontal line is the average of all simu-
lated values.

Fig. 2. Example of simulated values where each group used two calibration 
approaches. Simulations are of days from sowing to stem elongation (stage 
BBCH30) for variety Bermude, location Boigneville, sown 21/10.2013. Each 
code (M1, etc.) refers to a specific modeling group (x-axis). For each modeling 
group, there are two simulated values, one using parameters based on usual 
calibration and the other using parameters based on protocol calibration. The 
differences between the two values are used to estimate parameter variance. 
The horizontal line shows the mean of simulations using usual calibration.
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not surprising. All results here are therefore based on the combined 
calibration and evaluation data. Table 3 and Table 4 show parameter 
variance, and parameter variance as a fraction of total variance, aver-
aged over all environments for the French and Australian data sets, 
respectively. Note that the estimated contribution of parameter variance 
to total variance is always much less for BBCH10, for which there were 
no observed values, than for the other simulated development stages.

Table 5 shows results averaged over all environments of both the 
French and Australian data sets, for both the variance-components 
approach and the approach based on comparing usual and protocol 
calibration. Separate values are given for BBCH10 and for all other 
stages. For development stages other than BBCH10, the estimated 
contribution of parameter uncertainty is large. It ranges from 24 to 93 %, 
and is larger than 50 % for 11 out of the 14 combinations of data set, 
development stage and approach for estimating the contribution of 
parameter variance.

4. Discussion

The variability in parameters between different groups using the 
same model structure results from differences in fixed parameter values 
and in calibration approach. None of the data sets here included time to 
emergence (BBCH10), so variability in simulating time to emergence 
likely depends only on variability in default values. On the other hand, 
there are data for subsequent development stages, so simulation of those 
stages will depend on the values of calibrated parameters. The param-
eter uncertainty contribution to variability in days to emergence is al-
ways smaller (41 % on average) than the contribution to variability in 
days to other stages (69 % on average). This shows that the importance 
of parameter uncertainty depends on both the specific variable simu-
lated and on the data available for calibration. It seems that variability in 
simulated variables affected by calibration is larger than variability in 
simulated variables which depend just on default parameter values.

When averaging over data sets and simulated variables, for variables 
other than time to emergence, the resuts show that parameter uncer-
tainty represents 69 % of total uncertainty. The same value is obtained 
using variance components or the comparison of usual and protocol 
calibration. Structure uncertainty contributes 31 %, so the contribution 
of parameter uncertainty is more than twice as large as the contribution 
of structure uncertainty. Previous studies that have estimated structure 
and parameter uncertainty contributions to overall uncertainty of plant 
or ecosystem models have generally found that structure uncertainty is 
larger than parameter uncertainty (Tao et al., 2018; Xiong et al., 2020), 
including studies that have specifically considered simulation of 
phenology (Migliavacca et al., 2012; Wallach et al., 2017; Zhang et al., 
2017). This is in fact not too surprising. Previous studies have quantified 
the effect of some specific source of parameter uncertainty, such as 
observation error, or a priori uncertainty, or choice of data to use. The 
study here on the other hand takes into account the full variability in 
default values and calibration approach between different modeling 
groups who could participate in open-call multi-model studies.

Several studies have emphasized the uncertainty in parameter values 
and the necessity of better evaluating parameter uncertainty and 

improving calibration practices (Iizumi et al., 2009; Ramirez-Villegas 
et al., 2017; Seidel et al., 2018; Yang et al., 2024). The conclusion from 
this study, which remains to be confirmed more generally, is that 
parameter uncertainty, in particular due to uncertainty in calibration 
approach, is as or more important than structure uncertainty as a cause 
of variability in multi-model studies. This implies that improving cali-
bration approach, and sharing improved practices widely, should be a 
major priority of the crop modeling community.

In multi-model study number 4 (Wallach et al., 2023), it was found 
that total variability between simulated values was reduced by 22 % 
when all groups used the new protocol, compared to the case where each 
group used its usual calibration approach. Furthermore, prediction error 
was reduced by 11 % by use of the new protocol. This is a clear indi-
cation that improved, shared calibration approaches can substantially 
reduce variability in multi-model studies and thereby enhance confi-
dence in crop model simulations. Recently, building on the calibration 
protocol for phenology data, a crop model calibration approach has been 
proposed that is generic (i.e. can be applied to essentially all crop models 
and data sets). It is directly based on statistical principles, which in-
creases confidence that the approach uses calibration data effectively 
(Wallach et al., 2025, 2024). This calibration protocol is being tested in 
several studies, and would be a candidate for a standard calibration 
approach for crop models.

The present study has several limitations, which must be taken into 
account before generalizing the results. First, this is a case study, so the 
specific results refer to the specific cases studied here. Also, there are 

Table 3 
Parameter and structure variance for French data sets estimated using the variance components calculation. The variance components estimate is based on ensemble 
studies where some model structures were used by multiple modeling groups. Results are averages over environments. The ratio of parameter variance to total (last 
row) is an average over the ratios for each environment.

Apache Bermude

Development stage BBCH10 BBCH30 BBCH55 BBCH10 BBCH30 BBCH55

Average number of modeling groups 23 25 27 23 25 27
Number of model structures 17 19 21 17 19 21
Parameter variance (days²) 11.74 52.94 26.77 12.05 71.25 36.41
Structure variance (days²) 5.05 4.29 9.65 4.99 10.86 12.73
Parameter variance/total 0.55 0.93 0.81 0.56 0.92 0.8

Table 4 
Parameter and structure variance for the Australian data set estimated using the 
variance components calculation. The variance components estimate is based on 
ensemble studies where some model structures were used by multiple modeling 
groups. Results are averages over environments. The ratio of parameter variance 
to total (last row) is an average over the ratios for each environment.

Development stage BBCH10 BBCH30 BBCH65 BBCH90

Average number of modeling 
groups

23 24 28 26

Average number of model 
structures

17.95 19.93 22.64 21.05

Parameter variance (days²) 40.69 102.88 47.1 30.3
Structure variance (days²) 276.33 45.74 48.4 90.71
Parameter variance / total 0.12 0.66 0.49 0.24

Table 5 
Fraction of total variance due to parameter variance based on two estimation 
procedures: variance components and comparison of usual and protocol cali-
bration. Averages are over all environments of both the French and Australian 
data sets, either for the development stage BBCH10 or for all other development 
stages.

Method Fraction of total variance due to 
parameter variance

 BBCH10 All other stages
Variance components 0.41 0.69
Usual compared to protocol calibration 0.23 0.69
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quite large differences for different environments and development 
stages (Supplementary Figs. S1, S2). However, the studies use three 
different data sets, with 22 or 42 different environments each. The 
French and Australian data sets not only have quite different environ-
mental conditions and plant material (winter wheat in France and spring 
wheat in Australia), but also quite different measured variables (two 
development stages for the French data set, weekly development stage 
for the Australian data set). There were also substantial differences 
within the French and Australian data sets. For variety Apache, 
considering just the calibration data, time from sowing to stages 
BBCH30 and BBCH55 ranged from 126 to 192 days and from 177 to 234 
days respectively. For the Australian data, time from sowing to stages 
BBCH30, BBCH65 and BBCH90 ranged from 49 to 114 days, from 90 to 
177 days and from 130 to 205 days respectively. There is substantial 
variability in results for different environments and different simulated 
variables, but the range of situations analyzed gives some confidence in 
the overall conclusion, that parameter uncertainty is a major contribu-
tion to overall model uncertainty when simulating phenology. A second 
limitation is that the study concerns only simulation of phenology. It 
remains to be seen whether parameter uncertainty is also dominant 
when simulating crop growth and yield. Calibration in that case is more 
complex, which may lead to larger calibration uncertainties, but also the 
simulations involve more equations, which may lead to more structure 
uncertainty. Thus it is not clear if the same conclusions as here, that 
parameter uncertainty contributes more to overall uncertainty than 
structure uncertainty, also applies in general to crop models. In any case, 
however, it seems probable that taking into account the full variability 
in plausible parameters will lead to a larger contribution of parameter 
uncertainty to total uncertainty than previously thought, for all types of 
process-based models. A third limitation is that the results rely on the 
variability between different groups that use the same model structure, 
but only three model structures were used by more than one group, and 
at most four groups used the same model structure. The results here thus 
represent only the parameter variability between a small number of 
groups, using only three models. This is somewhat mitigated by the fact 
that that we have averaged over a fairly large number of environments, 
in three different data sets. Most importantly, we also have a second 
estimate of the contribution of parameter uncertainty, based on the 
comparison of usual and protocol calibration. This second estimate is 
based on a sample of two different calibration approaches for all models. 
The average contribution of parameter to total uncertainty using this 
second approach, again ignoring simulations of time to emergence, was 
69 %, essentially the same as the value obtained using the variance 
components analysis. This increases confidence in the variance 
component results.

It should also be recognized that the assumption of a random sample 
of structures and parameters underlying the random effects analysis of 
variance is probably not exactly satisfied. The modeling groups in this 
study were not proactively chosen to represent a random sample, but 
rather were simply the modeling groups that volunteered to participate. 
Such ensembles have been called “ensembles of opportunity” (Tebaldi 
and Knutti, 2007). This could for example lead to underestimation of 
structure uncertainty, if the full range of plausible structures was not 
sampled. It is not clear how to quantify or correct this. Perhaps the best 
one can do is to ensure that the invitation to participate is widely 
disseminated.

The question of the relative importance of different sources of un-
certainty in process-based models, and in particular of structure and 
parameter uncertainty, arises in many fields, such as hydrology (Butts 
et al., 2004) or earth system models (Ricciuto et al., 2021). Many of 
these fields also employ multi-model studies (Thébault et al., 2024). The 
analysis of variance done here can be easily applied to these other fields, 
in order to estimate the contributions of structure and parameter un-
certainty to the overall variability. The requirement is to have the results 
of an open-call multi-model study where some model structures are used 
by more than a single modeling group. The analysis proposed here does 

not require any additional simulations, and the calculations can be 
easily done using existing software, for example the R software package 
used here.

5. Conclusions

The large variability in crop multi-model simulations reduces the 
confidence one can have in such simulations, so it is important to un-
derstand the causes of this variability. A realistic estimate of parameter 
uncertainty must take into account the actual variability in parameters 
between different modeling groups. We illustrate a simple method of 
doing so, based on results of multi-model studies associated with 
random effects analysis of variance. This methodology is easily appli-
cable to any case where the necessary multi-model results exist.

The parameter uncertainty taken into account here is different than 
in previous studies, where specific sources of parameter uncertainty 
were examined. Unlike those previous studies, we find in the case study 
here that parameter uncertainty makes the largest contribution to 
overall uncertainty, substantially larger than structure uncertainty. The 
larger parameter uncertainty found in the present study is unsurprising, 
since multiple sources of parameter uncertainty are included here, 
which suggests that it may be generally true that parameter uncertainty 
makes a larger contribution to total uncertainty than previously 
thought.

The importance of parameter uncertainty emphasizes the need for 
giving more attention to parameter values and in particular to improved 
calibration approaches and procedures. Improving parameter values 
should be a major goal of the crop modeling community, on a par with 
work on improving model equations.
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