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A B S T R A C T   

Crop diversification is gaining traction due to the positive benefits in the delivery of ecosystem services (ESS) and 
the promotion of biodiversity. Agroecosystem simulation models can contribute to the design of diversified 
cropping systems but require calibration and validation before they can be applied. However, data availability is 
still very limited, particularly for diversified cropping systems. Therefore, the main goal of this study was to 
evaluate the suitability of the Nelder-Mead optimization method and the leave-one-out (LOO) validation method 
to calibrate and validate a diversified cropping system with a limited dataset, by using either a fixed year 
combination for calibration and validation for all crops or using a flexible year combination for every crop. Crop 
phenology was manually calibrated for all year combinations and the best parameter set based on the LOO- 
validation was selected for the subsequent step. Next, a four-parameter set related to crop growth and 
biomass dynamics was chosen for parameter optimization in the calibration step. To measure model performance 
during both steps, the root mean square error (RMSE) in days was used for phenology and a weighed relative 
RMSE (RRMSE) was used for crop growth, with the intermediate and final biomass contributing to 50% of the 
error and the other 50% corresponding to grain yield. Data for model comparison was collected at the patch
CROP landscape experiment in Brandenburg, Germany. Observed data included daily weather, soil information, 
crop phenology, intermediate and final above ground biomass and grain yield for summer seasons 2020, 2021, 
and 2022 and winter seasons 2020/2021 and 2021/2022 (referred as 2021 and 2022, respectively). Summer 
crops included maize, soybean, lupine and sunflower, while winter crops were wheat, barley, rye and rapeseed. 
Results showed that the Nelder-Mead method was successful in reducing the error between observed and 
simulated data. As for the LOO-validation, the method showed that different year combinations led to a similar 
RMSE for phenology. However, for crop growth, optimum year combination was critical, as it differed for all 
summer crops but not for winter crops. For the summer crops, the lowest errors in the LOO-validation were 
observed in lupine, maize and soybean, with <20.6% RRMSE, while sunflower resulted in a reasonable LOO- 
validated value with 31.2% RRMSE, but a poor performance in the calibration step with 68.7% RRMSE. For 
the winter crops, the 2022 calibration year and the 2021 validation year combination resulted in the lowest 
RRMSE for wheat, barley and rapeseed. However, for rye, both year combinations led to a large error, with the 
lowest error when using the 2021 season for calibration (65.9% RRMSE) and 2022 season for validation (33.0% 
RRMSE). The flexible LOO-validation method was useful to make optimal use of the limited dataset as it allowed 
a more through model testing and pointed to differences among summer and winter crops. The newly validated 
model has the potential to be used for the design of diversified cropping systems.   

1. Introduction 

About half of the arable land in Germany is dedicated to cereal 
production, with wheat (Triticum aestivum L.) as the dominant crop, 
followed by barley (Hordeum vulgare L.) and rye (Secale cereale L.) 

(Destatis, 2023), under cropping systems that are highly intensive and 
productive (Ewert et al., 2005). However, management practices have 
also led to a series of environmental concerns related to pollutants 
released to the environment and declines of biodiversity in agricultural 
areas (Aguiar et al., 2020; Barbieri et al., 2017; Crossley et al., 2021; 
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Geiger et al., 2010). Crop diversity is an alternative that offers multiple 
benefits to the agroecosystems in terms of delivery of ecosystem services 
(ESS), resource use, productivity and promotion of biodiversity (Beil
louin et al., 2021; Dainese et al., 2019; Smith et al., 2023; Tamburini 
et al., 2020). Moreover, it can improve resilience of cropping systems to 
better cope with negative impacts of climate change (Marini et al., 2020; 
Zampieri et al., 2020). Hence, studies on crop diversification have 
received increasing attention (Hufnagel et al., 2020). Process-based 
agroecosystem simulation models (or agroecosystem models) can 
contribute to the design of diversified cropping systems. They have been 
widely used to understand crop responses to management and envi
ronmental factors (Enders et al., 2023; Martre et al., 2017; Thorburn 
et al., 2018). These models comprise a set of mathematical functions that 
represent relevant biophysical processes related to crop development 
and growth (Chenu et al., 2017). When validated, agroecosystem models 
are flexible tools that can potentially be used for cropping system design, 
as they allow to conduct virtual experiments that otherwise would not 
be possible in field conditions due to their cost and management feasi
bility (Jones et al., 2003). They use input data such as weather data, soil 
physical and chemical characteristics, crop management, and crop ge
netic information to simulate crop development, growth and yield 
(Asseng et al., 2014). 

For the current study, the SIMPLACE (Scientific Impact assessment 
and Modeling Platform for Advanced Crop and Ecosystem management) 
modelling framework was selected. The framework has been developed 
during the last decade and main uses include climate change impacts 
assessments, model uncertainty and crop management (Enders et al., 
2023). In the past 10 years, about 60% of the more than 80 published 
model application studies have been performed for wheat and maize, 
but the full range of model applications comprise about 22 crops (Enders 
et al., 2023). The advantage of this modelling framework resides on its 
flexibility due to its structure, which consists of a set of modules, called 
SimComponents. SimComponents can be easily exchanged depending 
on data availability and complexity needed. Each SimComponent con
tains main mathematical functions for a specific process affecting crop 
development and growth. An agroecosystem model within the frame
work is generated by combining a set of SimComponents. 

Prior to their application, agroecosystem models need to be cali
brated and validated. Model calibration is the process by which a set of 
model parameters are fitted to field observations to reduce the errors 
between the simulated and observed results (Wallach et al., 2021). 
Validation is a next step where the crop model is tested against a new 
independent set of observed data, that has not been used for calibration 
(Kersebaum et al., 2015). Calibration is often done by manual trial and 
error or it can be done in an automatic procedure (Seidel et al., 2018). 
The quality of model calibration depends on the quantity and quality of 
the observed data. Often observations can be limited, which may lead to 
larger errors when validating or applying the model as the calibration 
may not be representative in wide range of environments. 

For model calibration, one approach for parameter optimization is 
the use of the Nelder-Mead algorithms for unconstrained optimization of 
non-smooth functions in general (Buis et al., 2011; Cui et al., 2023; 
Lagarias et al., 1998; Nocedal and Wright, 1999; Wang and Shoup, 
2011), its popularity relays on its simplicity and no need for gradient 
computation (Silva et al., 2018). The method consists of finding the 
minimum of an objective function (e.g. root mean square error or 
RMSE), which is evaluated at the vertices of a simplex, moving away 
from the poorest values (i.e. higher RMSEs) (Nelder and Mead, 1965; 
Olsson and Nelson, 1975). Despite that the method is common in other 
research domains, it is not widely adopted for crop or agroecosystem 
model calibrations. Dumont et al., (2014), showed that the performance 
of the Nelder-Mead method was comparable with other optimization 
methods such as the standard least square, the weighted least square, 
and a transformed likelihood function when using it for parameter 
identification in the STICS model. Therefore, there is a potential to use 
the method for parameter optimization for a diverse set of crops. 

With regards to model validation, one method is the use of the leave- 
one-out (LOO) model validation or cross-model validation, a method 
that can be beneficial when limited data is available. The LOO- 
validation is a methodology used to choose the model that results in 
the lowest error of prediction, in the validation step (Wallach et al., 
2019). One advantage of this method is that it allows to use all the data 
in an iterative process for both calibration and validation (Nurulhuda 
et al., 2022; Thorp et al., 2007). This procedure assumes that each 
element of the sample is drawn independently at random from the target 
population (Wallach et al., 2019). Such an approach is contrary to the 
traditional method of splitting the data and using one fixed set for 
calibration and one set for validation (Seidel et al., 2018), which may 
lead to a higher error of prediction in a diversified cropping system. 
Thorp et al., (2007), used cross-model validation to test how many 
seasons were sufficient for model calibration of maize grain yield, results 
showed that the prediction error decreased as the number of seasons 
were added to the calibration step in the LOO-validation procedure. 
Xiong et al., (2008) used LOO-calibration instead, for rice yields in 
China, where the method showed relative higher bias for grain yield 
estimation, with reasonable results reproducing the spatial variability of 
yield and phenology. The LOO-validation procedure has been often 
applied for model selection, but it can be also useful when exploring 
model performance for different crops in a diversified cropping system. 
It can help to understand whether there are any model performance 
patterns depending on the crops and to identify options for model testing 
and improvement when needed. Therefore, the main goal of this study 
was to assess the suitability of the Nelder-Mead method for crop growth 
parameter optimization and apply the LOO-validation method to vali
date an agroecosystem model for simulating a large range of crops with a 
limited dataset. The specific objectives were: a) to assess the suitability 
of the Nelder-Mead optimization procedure to reduce the simulation 
error in the calibration step, b) to assess whether the application of the 
LOO-validation method leads to a different result when using fixed year 
selection or flexible year selection by crop, c) to understand if the year 
selection of the summer crops can contribute to the parameter selection 
in the winter crops, with less data available d) to assess for which crops 
the LOO-method performs best and understand the model limitations 
when simulations are poor for the optimization and LOO-validation 
steps. Our hypotheses are that (1) model parameter optimization re
duces the error in the calibration and validation set, that (2) a flexible 
choice of year combination by crop for the LOO-validation gives an 
improved result (lower simulation error) than fixed year combination 
choice for all crops in a diversified cropping system setting and that (3) 
year combination of the crops (here summer crops) with more years of 
observation can inform on the best year combination for the crops (here 
winter crops) with less years of observation. Despite that crop diversi
fication of a system may comprise different components such as spatial 
arrangements and/or temporal aspects of crop rotations with crop types, 
for the current study, we focus on the component of crop types, and 
therefore, the calibration and validation are carried out as individual 
crops. 

2. Materials and methods 

2.1. Experimental location 

The data collection has been carried out in the experimental platform 
patchCROP, which is located in Tempelberg, Brandenburg, Germany 
(52.4426◦ N, 14.1607◦ E, altitude 68 m). In terms of geomorphology, the 
site is classified as a young moraine landscape, shaped by past glacia
tions, and characterized by an undulated relief and heterogeneous soils 
characteristics (Koch et al., 2023; Meyer et al., 2019). The soil at the top 
layer is dominantly sandy with an appearance of a clayey layer at 
different depths in the subsoil, with no immediate influence of ground 
water (APW, 2023). The area is located in a transition zone between 
humid oceanic and dry continental climate, long term average 
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temperature from 1980 to 2010 was 9.2 ◦C, while annual precipitation 
for the same period was 568 mm. Daily weather data (maximum, mean 
and minimum temperature, solar radiation, precipitation, wind speed 
and relative humidity) from the 1st of January 2020–31 st of August 
2022 were obtained from two weather stations located in the eastern 
and western end of the main patchCROP field. Weather stations are 
maintained by the Leibniz-Centre for Agricultural Landscape Research 
(ZALF) and undergo yearly calibration procedures. Monthly tempera
ture values and cumulative rainfall for the summer and winter periods 
are shown in Fig. 1. June and July daily maximum temperature (Tmax) 
were the highest in 2021, while cumulative precipitation from April to 
October, shows that 2020 was the wettest season and 2022 was the 
driest season for summer crops. Similarly, cumulative precipitation from 
October to end of July shows that season 2020/2021 was the wettest for 
winter crops. 

2.2. The patchCROP experimental platform 

The patchCROP is a landscape experiment platform (landscape lab
oratory) within an on-farm context, which was implemented in spring 
2020 (Grahmann et al., 2021). The central experiment was established 
within a 70-ha field and it consists of 30 “patches” measuring 72×72 m 
each (Fig. 2a). Patches are subdivisions of a large heterogeneous field 
into smaller and more homogenous units for site-specific management 
(Grahmann et al., 2021). In addition, reference patches are established 
every year in the neighboring fields, having the same crops present as in 
the diversified patch field, but grown as sole crops in a large field 
(Fig. 2b). For logistical reasons, the patch is further divided into four 
centric quadrants of 18×18 m each (Fig. 2c), one for soil related sam
pling, one for crop related measurements, one for biodiversity mea
surements and a multi-purpose quadrant for additional measurements. 
The remaining area around the quadrants is used as a buffer zone 
(Fig. 2c). 

Prior to the experiment, the field was grouped into a high and low 
yield potential zone to account for spatial differences in long-term yield 
variability and soil characteristics by applying an advanced cluster 
analysis (Donat et al., 2022). A specific 5-year crop rotation was 
established for each yield potential zone. The crop selection was based 
on the crop market value, crop nutritional requirements and capacity to 
tolerate abiotic stresses. The high yield potential zone included winter 
rapeseed (Brassica napus, cv. Ambassador), winter barley (cv. Wallace), 
soybean (Glycine max, cv. Acardia), maize (Zea mays L., cv. P8349) and 
winter wheat (cv. Universum), while the low yield potential zone 
comprised sunflower (Helianthus annuus L., cv. Seabird), winter and 

spring oats (Avena sativa L., cv. Fleuron and Delfin, respectively), maize 
(cv. P8349), lupine (Lupinus angustifolius, cv. Boragine) and winter rye 
(cv. Tayo). Cover crops (phacelia, white mustard-Sinapis alba, Ram
till-Guizotia abyssinica and a mixture of ramtill and phacelia) were 
chosen depending on the previous and subsequent crop, harvest date 
and common agricultural policy regulations. 

In addition, three management treatments are considered: i) con
ventional management (“business as usual”), ii) reduced pesticide 
management, using crop protection based on control thresholds and iii) 
reduced management + flower strips, which is also a reduced pesticide 
treatment surrounded by 12-m wide perennial flower strips to promote 
beneficiary insects (Dovydaitis et al., 2023). For the current work, the 
conventional management treatment data from the main field was 
selected as the agroecosystem model is not capable of simulating 
reduced pesticide management. The reference patch data was used when 
high weed pressure was observed in the main field. This was the case for 
sunflower (2020, 2021 and 2022) and soybean (2021 and 2022). Oats 
were excluded from the study as different cultivars were used during the 
2021 and 2022 harvest seasons. The 2022 year for lupine was excluded 
as it grew under different soil conditions than the previous two years. 

2.3. Field data collection 

2.3.1. Soil data 
Soil data was collected in the main field using a Pürckhauer soil 

auger of 1 m length. Two representative samplings, one for the high 
yield potential zone and one for the low yield potential zone were 
selected. Soil samples by horizon layer were collected and analyzed for 
chemical and physical characteristics. Soil layer information regarding 
bulk density, pH, soil texture, soil organic carbon (SOC), and soil hy
draulic properties are shown in Table 1. The soil profile in the high yield 
potential zone tends to have a lower sand proportion than in the low 
yield potential zone. In the high yield potential zone, a loamy layer 
appears at 53 cm soil depth, while the low yield potential profile shows a 
dominantly sandy soil profile down to 1 m depth. The SOC in the top 
layer is 0.89% and 0.78% in the high and low yield potential soil, 
respectively. The lower boundary was extended to 2 m assuming that 
soil characteristics were the same in deeper soil as the ones found in the 
last layer of the 1 m soil auger. 

2.3.2. Crop data 
Crop phenology was visually assessed during the whole growing 

cycle every one or two weeks using the BBHC scale (Meier, 2018). 
Selected intermediate above ground biomass samples were collected at 

Fig. 1. Cumulative monthly precipitation for summer (April to October) and winter crops (October to August) and monthly minimum (Tmin), mean (Tmean) and 
maximum (Tmax) temperature from 1st of April 2020–31 st of October, 2022. 
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BBCH 39, 60/61 (flowering) and 70/71 (end of flowering). For barley, 
wheat, rye and lupine, 0.5 m2 were collected per sample, for sunflower, 
0.45–1 m2, for maize between 0.75 and 1.5 m2, and for soybean be
tween 0.9 and 1 m2, depending on the year and the phenological stage. 
Representative samples were collected around the edges of the biomass 
quadrant by considering the heterogeneity of plant density within the 
patch. The quadrant central area remained undisturbed for the final 
biomass collection and grain yield harvest. Four above ground biomass 
samples were collected during 2020 and 2021 and three samples were 
collected in 2022 for each measurement date. Above ground biomass 
samples were oven-dried at 60◦C for 48 hours to calculate the dry 
weight. 

The grain yield per patch was determined in the center of the 
biomass quadrant (18×18 m) in the patches using an experimental plot 
harvester (Hege 180, Germany) in three sub-plots of 18 m length and 
2 m width in 2020 in six sub-plots of 9 m length and 2 m cutting width 
(harvest area of 18 m2) in 2021 and 2022. Yields were converted to 9% 
moisture level for oil seeds and 14% for cereals. 

In addition, yield component cuts were collected at physiological 
maturity (around BBCH 89) for each crop in the biomass quadrant in 
2021 (six cuts per patch) and 2022 (four cuts per patch) in an area of 
0.25 m2 for wheat, barley, rye and lupin; 0.125 m2 for rapeseed; 0.5 m2 

for soybean and sunflower and 0.75 m2 for maize. Individual plants 
were counted, as well as the number of spikes, cobs, pods and flowers 

(crop-specific) and entire samples were dried at 30◦C for 5–7 days 
before further processing. The grain was harvested with a threshing 
machine (Haldrup LT-35) and dry weight of grain and straw were 
determined to calculate harvest index, which was then used to calculate 
final above ground biomass (based on the grain yield per patch) in 2021 
and 2022. 

2.3.3. Crop management 
The farm applies conservation agriculture principles; therefore, all 

crop residues are left in the field and straw is not removed. Additionally, 
reduced tillage is applied for all crops using a shallow or deep chisel 
plough from 15 to 25 cm depth, respectively for seed bed preparation. 
Hence, no ploughing is carried out. Prior to the establishment of the 
patchCROP experiment in March 2020, the field was planted with nar
row crop rotations (rye - rye - rapeseed). Management was carried out 
using site-specific nitrogen application, potassium and compost fertil
ization according to soil management zones. Data used for the current 
study comprises 2020, 2021, and 2022 summer seasons and 2021 
(2020/2021) and 2022 (2021/2022) winter seasons. Sowing, emer
gence, flowering, physiological maturity and harvest dates are presented 
in Table 2. 

The summer crops were planted in the window between the end of 
March (with lupine being the first sown crop) and early May (for soy
bean as the last sown), and harvested up to the end of October. While 

Fig. 2. patchCROP landscape experiment set up for the 2023 season. a) main 70 ha field, b) reference fields around the main field c) patch description, soil, biomass, 
biodiversity and multipurpose quadrants, buffer area of 18 m with around the quadrants. 

Table 1 
Soil physical and chemical characteristics for two representative soils at the patchCROP, Tempelberg, Brandenburg, Germany. No carbonate presence in the selected 
profiles.  

Yield 
potential 

Bottom 
depth (m) 

Bulk density1 (g 
cm¡3) 

pH2 Sand3 

(%) 
Silt3 

(%) 
Clay3 

(%) 
SOC4 

(%) 
Field capacity5 

(cm3 cm¡3) 
Wilting point5 

(cm3 cm¡3) 
Saturation point5 

(cm3 cm¡3) 

High  0.32  1.5  6.7  68.7  23.0  8.3  0.89  0.170  0.064  0.397   
0.53  1.7  6.3  67.3  23.4  9.3  0.21  0.171  0.075  0.342   
2.00  1.7  7.2  59.8  23.9  16.3  0.30  0.204  0.101  0.346 

Low  0.37  1.5  6.5  90.0  7.0  3.0  0.78  0.095  0.034  0.385   
0.75  1.7  6.4  84.3  11.4  4.3  0.18  0.110  0.042  0.333   
2.00  1.7  5.9  90.0  7.0  3.0  0.07  0.089  0.036  0.328 

1Based on weight of 100 cm3 of soil volume, measured in a soil pit in the main field; 2 Measured using CaCl2 solution; 3 Sieving-sedimentation method, according the 
German soil particle classification; 4 Soil organic carbon, measured using an elemental analyzer for C/N model: Euro EA 3000, chromatographic separation; 5 

Calculated using HYPRES pedotransfer function for European soils (Wosten et al., 1999, 2001). 
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winter crops were planted as early as the end of August (e.g. rapeseed), 
to Mid-November with winter wheat being the last sown crop. Winter 
crops were harvested in the following year, around the end of July. Split 
mineral fertilizer applications were carried out according to fertilizer 
availability, vegetative stage, grain extraction and soil yield potential 
using solid urea or liquid as urea ammonium nitrate (UAN) as fertilizer 
source. Additionally, potassium, phosphorus and magnesium fertilizer 
were occasionally applied to reach fertility class and avoid crop defi
ciency. Fertilizer application dates and amounts per crop are shown in  
Table 3. 

2.4. Model description 

For the current work the model SIMPLACE <Lintul5, Slim, SoilCN>

was used. The Lintul5 SimComponents simulate phenology, potential 
biomass and biomass production as affected by nutrients and water 
supply (Wolf, 2012). Simulations are performed in a daily time step. 
Crop phenological development is based on temperature sum, for winter 
crops, crop phenology is additionally affected by photoperiod effect. 
Temperature sum for crop development starts at emergence, the crop 
reaches flowering when simulated developmental stage (DVS) reaches 1 
and physiological maturity occurs once the crop reaches DVS 2. Poten
tial biomass growth is based on the intercepted photosynthetically 
active radiation and radiation use efficiency (RUE). Potential biomass is 
then limited by water (TRANRF) and nutrient stress (nitrogen limited, 
NNI). The stress factors vary from 0 to 1, with 1 meaning no limitation, 
the lower the stress factor, the higher the magnitude of the stress. The 
TRANRF is calculated as the ratio of actual evapotranspiration and po
tential transpiration. Whereas NNI is calculated based on crop nutrient 
demand and available supply. Both factors affect crop growth, leaf death 
rate, specific leaf area and crop partition (Wolf, 2012). Daily biomass is 
then partitioned into the different organs depending on the DVS. Soil 
water balance and nutrient movement is simulated using SlimWater 
(Addiscott and Whitmore, 1991), which uses a simple bucket approach 
by further subdividing the soil profiles in thinner layers of 5 cm thick
ness. Crop N demand, N turnover and leaching of soil mineral N are 
calculated using the NPKDemandSlimNP SimComponent. Finally, 
SoilCN (Corbeels et al., 2005) simulates soil organic carbon and nitrogen 
turnover in the soil in several storage pools along the soil profile. 

2.5. Model initial conditions 

Each crop was simulated individually, as the full 5-year rotation 
length is not completed yet and data available corresponds to the time 

period from spring 2020 to August 2022. Due to lack of data on the soil 
initial conditions and given the rainfall patterns in the area, where low 
rainfall before winter crop sowing is common but soil water tends to be 
higher when summer crops are planted in spring, we assumed the soil 
initial water content to be 100% and 30% of the crop usable water 

Table 2 
Sowing, emergence, flowering, maturity, and harvest dates for different crops in a diversified cropping system, patchCROP, Tempelberg, Brandenburg, Germany, 
2020–2022.  

Crop name and cultivar Sowing date Emergence date Flowering date Maturity date Harvest date 

Grain maize cv. P8329 16/04/2020 07/05/2020 19/07/2020 10/09/2020 20/10/2020  
16/04/2021 11/05/2021 22/07/2021 27/09/2021 10/11/2021  
29/04/2022 09/05/2022 25/07/2022 18/09/2022 20/10/2022 

Soybean cv. Acardia 30/04/2020 19/05/2020 08/07/2020 20/08/2020 22/09/2020  
15/05/2021 28/05/2021 06/07/2021 20/09/2021 16/11/2021  
10/05/2022 20/05/2022 09/07/2022 15/09/2022 11/10/2022 

Lupine cv. Boragine 03/04/2020 14/04/2020 10/06/2020 10/07/2020 31/07/2020  
30/03/2021 14/04/2021 13/06/2021 15/07/2021 16/07/2021 

Sunflower cv. Seabird 06/04/2020 6/04/2020 08/07/2020 14/08/2020 15/09/2020  
01/04/2021 01/04/2021 11/07/2021 19/08/2021 04/10/2021  
31/03/2022 30/03/2022 10/07/2022 25/08/2022 07/09/2022 

Winter wheat cv. Universum 28/10/2020 05/11/2020 14/06/2021 14/07/2021 23/07/2021  
15/11/2021 16/12/2021 07/06/2022 12/07/2022 20/07/2022 

Winter barley cv. Wallace 21/09/2020 30/09/2020 28/05/2021 24/06/2021 16/07/2021  
20/09/2021 27/09/2021 15/05/2022 14/06/2022 05/07/2022 

Winter rye cv. Tayo 02/10/2020 08/10/2020 04/06/2021 13/07/2021 13/07/2021  
13/09/2021 21/09/2021 24/05/2022 05/07/2022 05/07/2022 

Winter rapeseed cv. 01/09/2020 09/09/2020 12/05/2021 06/07/2021 23/07/2021 
Ambassador 26/08/2021 06/09/2021 10/05/2022 25/06/2022 20/07/2022  

Table 3 
Fertilizer dates and amounts for summer and winter crops in a diversified 
cropping system, patchCROP, Tempelberg, Brandenburg, Germany, 2020–2022.  

Crop name and cultivar Date Total N (kg N ha¡1) 

Grain maize cv. P8329 17/04/2020 13.0  
22/05/2020 138.0  
16/04/2021 13.5  
17/04/2021 101.1  
04/06/2021 61.3  
20/05/2022 71.0  
23/06/2022 60.7 

Soybean cv. Acardia - - 
Lupine cv. Boragine - - 
Sunflower cv. Seabird 24/03/2020 41.0  

06/04/2020 18.0  
01/04/2021 18.0  
08/04/2021 68.3  
30/03/2022 18.0  
05/04/2022 52.6 

Winter wheat cv. Universum 14/03/2021 70.7  
27/03/2021 59.9  
07/05/2021 50.0  
19/05/2022 55.1  
11/03/2022 80.0  
05/04/2022 44.3 

Winter barley cv. Wallace 17/03/2021 48.2  
08/04/2021 71.1  
07/05/2021 25.0  
11/03/2022 44.9  
05/04/2022 44.8  
10/05/2022 41.7 

Winter rapeseed cv. Ambassador 29/09/2020 60.0  
17/03/2021 48.2  
20/03/2021 51.6  
23/04/2021 10.0  
10/08/2021 46.5  
11/03/2022 41.6  
21/03/2022 60.2 

Winter rye cv. Tayo 17/03/2021 61.5  
01/04/2021 51.1  
14/05/2021 25.0  
11/03/2022 60.2  
05/04/2022 39.4  
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(water between field capacity and wilting point) for summer and winter 
crops, respectively. Similarly, soil mineral N at the beginning of the 
experiment was not available, therefore, soil initial mineral N was set to 
200 kg/ha and 70 kg/ha for the high and low yield potential soil, 
respectively, based on end of season measurements during 2020 and 
2021, with about 70% allocated to the top soil layer of the 2-m soil 
profile. The model was reinitialized every season, about 30 days before 
sowing, which also allows the model to have more realistic soil water 
and nitrogen conditions in the soil profile at the time of sowing. No 
residue application from the previous crop was considered. Crops within 
the high yield potential zone were simulated with the representative 
high yield potential soil (Table 2). While the low yield potential crops 
were simulated using the low yield potential soil, except for sunflower, 
where the crop growth patterns from the reference plots suggested that 
soil characteristics were better represented by the high yield potential 
soil. 

2.6. Parameter selection for model calibration 

For phenology, observed data related to crop emergence, flowering 
and physiological maturity were used. Phenology parameters for cali
bration were the temperature sums for the time from sowing to emer
gence (TSUMEM), from emergence to flowering (TSUM1) and from 
flowering to physiological maturity (TSUM2). For crop growth, three 
intermediate biomass cuts in 2020, two intermediate and the final above 
ground biomass in the rest of the seasons, and grain yield from all sea
sons were used to compare with the crop growth simulations. The 
parameter selection for the optimization procedure was done based on 
previous experience with model applications and sensitivity analyses 
(Enders et al., 2023; Faye et al., 2023; Gaiser et al., 2013; Seidel et al., 
2021), crop growth characteristics of summer and winter crops and the 
number of observed variables. Table 4 shows a four-crop parameter set 
related to RUE and leaf area dynamics. The RUETB, is the RUE table as 
function of developmental stage (DVS), which is a main driver of 
biomass accumulation, and tends to be the highest during the vegetative 
stage and declines after flowering. Biomass growth and leaf area index 
(LAI) are directly related. Potential biomass growth is calculated based 
on LAI, light interception and the extinction coefficient. Biomass accu
mulated within a day is then partitioned into the different plant organs, 
the biomass portion to the leaves is then converted to LAI increase using 
specific leaf area (SLA), which is the ratio of leaf area to leaf weight. 
Therefore, the following parameters related to LAI dynamics were 
additionally chosen: RGRLAI and SLATB (related to increase in LAI), 
DVSDLT (related to leaf senescence) and RDRL (related to leaf death rate 
due to water stress). Crop parameter ranges (Table 4) were selected to 
avoid unrealistic parameters values when the optimization was applied. 
Initial crop parameter values were extracted from the default crop files 
of Lintul5 (Wolf, 2012). 

The RUETB and SLATB tables as function of DVS are shown in Fig. 3. 
For these ones, when applying the multiplication factor, the whole curve 

was equally shifted at every DVS (default value was 1). Default pa
rameters for RGLAI were 0.01 for soybean, 0.029 for maize and sun
flower, 0.031 for lupine, 0.0075 for barley, 0.0082 for rye and wheat 
and 0.08 for rapeseed. While default DVSDLT for all crops was set to 1.1 
based on the assumption that, when occurring, crops senescence typi
cally starts after flowering. The RDRL was set to 0.05 for all crops except 
rye, which was 0.01 due to the crop tolerance to water stress. The 
RUETB factor, RGRLAI and DVSDLT were optimized for both winter and 
summer crops, the SLATB factor was optimized just for the summer 
crops, whereas the RDRL was optimized just for the winter crops (for 
optimization procedure see Section 2.7). 

2.7. Parameter optimization 

Parameter optimization was done stepwise, by first selecting the 
optimum parameter set for phenology for each crop. For crop 
phenology, the model was manually calibrated by modifying the tem
perature sums for the dates from sowing to emergence (TSUMEM), from 
emergence to flowering (TSUM1) and from flowering to physiological 
maturity (TSUM2). As measure of model performance, the average for 
the root mean square error (RMSE, in days) for emergence, flowering 
and physiological maturity dates was calculated for calibration and 
validation. Best phenology parameters were chosen by crop, according 
to the LOO-validation (described in Section 2.8) and fixed for the crop 
growth parameter optimization step. The optimized parameter set 
combination for crop growth for each crop was generated using the 

Table 4 
Parameter selection and ranges for crop growth optimization in calibration step 
using the Nelder-Mead method.  

Parameter Definition Multiplication 
factor ranges 

RUETB Radiation use efficiency as function of 
developmental stage (MJ m2 d− 1). 

0.8–1.2 

RGRLAI Daily maximum relative increase in LAI (-). 0.1–0.5 
SLATB Specific leaf area as function of 

developmental stage (just for summer crops) 
(m2 g− 1). 

0.2–1.0 

DVSDLT Developmental stage above which death of 
leaves starts in dependence of mean daily 
temperature (-). 

0.9–1.4 

RDRL Maximum relative death rate of leaves due 
to water stress (just for winter crops) (-). 

0.5–1.5  

Fig. 3. Model curves for a) default radiation use efficiency (RUETB) and b) 
specific leaf area (SLATB) as a function of developmental stage for summer and 
winter crops at the patchCROP landscape experiment. 
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Nelder-Mead method (Nelder and Mead, 1965), the method is imple
mented within the General-purpose optimization, optim in R (package 
stats version 4.1.1). The objective function to perform the optimization 
was a weighed relative root mean square error (RRMSE). This method 
allows to optimize the four-parameter set simultaneously. The rest of 
crop parameters was fixed in the model. To measure model perfor
mance, a weighed relative root mean square error (RRMSE) was calcu
lated, where the average RRMSE of the intermediate and final (when 
available) above ground biomass points contributed to 50% of the 
RRMSE and the other 50% corresponded the final grain yield. Optimized 
parameters were then used to run the model for the LOO-validation step. 
The suitability of the Nelder-Mead method for parameter optimization 
was measured by comparing the RRMSE of the simulated above ground 
biomass and grain yield when using the default crop parameters vs, the 
RRMSE when simulations were performed with the optimized parameter 
resulting from the Nelder-Mead application. 

2.8. Leave one out (LOO) or cross-model validation 

For a given set of crop seasonal data, one season is picked for model 
calibration and the rest of the data set is left for model validation. In a 
following step, another season is picked for calibration and the rest is left 
for validation, two-year combinations are also performed (in the case of 
the summer crops), and the left-out year is used for validation. The 
procedure is repeated until all possible seasonal combinations are per
formed. Parameter selection is based on the model (or year choice) that 
gives the lowest predictive error (i.e. lowest error in the validation step). 
To measure model performance, the average RMSE for phenology (as 
described in Section 2.7) was used. While for crop growth, the RRMSE 
(as described in Section 2.7) for above ground biomass and grain yield 
was used. 

For the LOO-validation procedure in the current study, three and two 
seasons for summer and winter crops, respectively, were used. There
fore, for the summer crops, single year combinations for 2020, 2021, and 
2022 were picked for model calibration, as well as the two-year com
bination 2020+2021, 2020+2022 and 2021+2022, the left-out years 
for each combination were used then for LOO-validation (Fig. 4). For the 
winter crops, only a single year combination was possible, 2021 was first 
calibrated and 2022 remained for LOO-validation and in a second step 
the opposite combination was performed. The same procedure was 
applied for each crop, individually. 

In order to answer the hypothesis on whether a flexible year com
bination is more advantageous than a fixed year combination when 
simulating a diversified cropping system, all possible year combinations 
for calibration and validation were applied to every crop. For the fixed 
year combination, the average error by each year combination (RMSE 
for phenology or RRMSE for crop growth) was calculated. While for the 
flexible year combination, all year combinations were applied to every 
crop, solely the best year combination using the LOO-validation method 
was chosen by crop and the average error for the specific crop combi
nations was calculated. In a first step, the best phenology parameter set 
by crop was selected according to the LOO-validation, and then used for 

the crop growth parameter optimization and validation. 

3. Results 

3.1. Parameter optimization and LOO-validation for crop phenology 

The phenology parameter list and the RMSE for the calibration, as 
well as the year combination selection according to the LOO-validation 
are shown in Table 5. Best year combination for the LOO-validation 
varied among crops. For summer crops, the best year combination 
RMSEs ranged from 0.7 in soybean with 20&21 calibration (CAL) + 22 
validation (VAL) years, to 3 days for sunflower (20&22CAL + 21VAL). 
For the winter crops, the RMSE was similar for either year combination, 
except for winter wheat, where season 22CAL+21VAL resulted in the 
lowest RMSE in the validation with 1.7 days. Often, multiple year 
combinations led to the same RMSE for the summer and winter crops 
suggesting that the model was able to capture the year-to-year 
variability. 

3.2. Parameter optimization and LOO-validation for crop growth 

Optimized parameter sets for the best year combinations are shown 
in Table 6. For summer crops, optimized LAI-related parameter RGRLAI 
decreased close to the minimum allowed range, except for sunflower. 
Similarly, the SLATB factor parameter was lower than the default value 
in all crops, except for sunflower. The optimum value for RUETB factor 
for all summer crops was 0.8, except maize with 0.91. For the winter 
crops, wheat, rye and rapeseed, the opposite trend was observed, where 
the parameter optimization often led to a higher RGRLAI value. Simi
larly, the optimum value for the RUETB factor was higher than the 
default for most crops, except for rye. The RDRL optimum value for 
barley, rapeseed and rye was lower than for wheat. The DVSDLT showed 
more variation among summer and winter crops, with values ranging 
from 0.99 (soybean) to 1.54 (maize and wheat). 

On average, the application of the Nelder-Mead optimization method 
to calibrate crop growth resulted in a reduction of the average simula
tion error and its variability (represented as standard deviation) for the 
calibration and LOO-validation steps. The global average for the RRMSE 
for the calibration set was reduced from 68.5% when using the default 
parameter set vs. 29.1% when simulating with the optimized parameter 
set. While for the validation set, the average RRMSE was reduced from 
68.5% to 55.0% (Fig. 5). 

Fig. 6 shows the LOO-validation results for all the possible year 
combinations for summer and winter crops. Fixed year combinations 
typically led to a large RRMSE either in the calibration or LOO- 
validation step, while a flexible year combination resulted in a lower 
error in both calibration and LOO-validation steps for both, summer and 
winter crops. For summer crops, calibration years 2021 and 2022 and 
their combination led to the highest RRMSE in the LOO-validation step, 
particularly for soybean and sunflower, despite that the average cali
bration values by crop were <26%. The lowest errors in the LOO- 
validation were observed in lupine, maize and soybean, with 11.7, 
17.8 and 20.6% RRMSE, respectively. For sunflower, the LOO-validation 
resulted in a reasonable RRSME value of 31.2%, in spite of a poor per
formance in the calibration step with 68.7% RRMSE. For the winter 
crops, optimum year combination for LOO-validation was more stable, 
with 2022CAL+2021VAL combination resulting in lowest RRMSE for 
winter wheat, barley and rapeseed. However, for rye, both year com
binations led to a large error, with the lowest error obtained in the 
2021CAL+2022VAL combination (RRMSE of 65.9% and 33.0% for 
calibration and LOO-validation, respectively). 

Daily outputs of simulations for summer and winter crops corre
sponding to biomass growth, grain yield and water (TRANRF) and 
nutrient (NNI) stress are shown in Figs. 7 and 8 respectively. Simulated 
results show that the dominant stress was due to water limitation in all 
crops, though summer crops were more affected than the winter crops. 

Fig. 4. Names of year combination for LOO-model validation for summer crops 
comprising 2020, 2021 and 2022 seasons. 
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Best year combinations in summer crops showed that years with lower 
simulated stress in the calibration, performed better in both the cali
bration and LOO-validation step. The model tends to perform well with 
the optimized parameters. In sunflower the model showed strong water 
stress and was not able to capture the increasing grain yield trend shown 
in the observations. Similarly for rye, both seasons show a very high 
degree of water stress limiting crop growth and resulting in poor RRMSE 

in the calibration step. For the winter crops, the model shows stronger 
simulated water stress during the 2022 season. Despite that the model 
tends to capture the above ground biomass and final yield reasonably 
well, the model was not able to capture the increasing yield trend in the 
2022 season. 

Error contribution for above ground biomass and grain yield is 
shown in Fig. 9. Error contribution varied for summer and winter crops, 

Table 5 
Year combinations for LOO-model validation by crop, generated parameter set by year combination and average root mean square error for emergence date (when 
available), anthesis and maturity date for different crops in a diversified cropping system, patchCROP, Tempelberg, Brandenburg, Germany, 2020–2022.  

Crop name and cultivar Year combination Parameters (◦C d) RMSE1 (days) 

TSUMEM2 TSUM13 TSUM24 Calibration Validation 

Grain maize cv. P8329 20CAL + 21&22VAL 110 850 750 0.0 5.2 
21CAL + 20&22VAL 100 870 820 0.0 6.6 
22CAL + 20&21VAL 75 900 735 0.0 5.2 
20&21CAL + 2022VAL 100 850 815 2.6 5.0 
21&22CAL + 20VAL 75 890 770 2.7 3.55 

20&22CAL + 21VAL 85 890 765 2.0 5.3 

Soybean cv. Acardia 20CAL + 21&22VAL 70 455 520 0.5 10.3 
21CAL + 20&22VAL 70 410 795 0.0 5.7 
22CAL + 20&21VAL 80 445 750 0.0 4.8 
20&21CAL + 2022VAL 70 430 685 4.0 0.75 

21&22CAL + 20VAL 70 440 765 3.9 6.0 
20&22CAL + 21VAL 80 435 680 0.9 6.3 

Lupine cv. Boragine 20CAL + 21&22VAL 95 720 590 0.0 1.6 
21CAL + 20&22VAL 90 700 650 0.3 1.7 
22CAL + 20&21VAL 90 700 660 1.7 1.5 
20&21CAL + 2022VAL 95 700 620 0.8 1.3 
21&22CAL + 20VAL 90 710 605 0.9 0.85 

20&22CAL + 21VAL 90 700 620 0.8 1.3 

Sunflower cv. Seabird 20CAL + 21&22VAL 130 970 650 0.0 6.1 
21CAL + 20&22VAL 75 980 710 0.0 3.5 
22CAL + 20&21VAL 75 1040 850 0.0 4.3 
20&21CAL + 2022VAL 75 1010 680 0.6 4.0 
21&22CAL + 20VAL 75 1035 765 2.5 3.0 
20&22CAL + 21VAL 75 1015 770 1.9 3.05 

Winter wheat cv. 21CAL + 22VAL 80 930 760 0.0 5.3 
Universum 22CAL + 21VAL 110 830 670 0.0 1.75 

Winter barley cv. 21CAL + 22VAL 140 820 520 0.0 4.05 

Wallace 22CAL + 21VAL 100 770 480 0.0 4.3 

Winter rye cv. Tayo 21CAL + 22VAL 80 860 780 0.0 4.7  
22CAL + 21VAL 90 980 760 0.0 4.05 

Rapeseed cv. 21CAL + 22VAL 30 390 740 0.0 5.05 

Ambassador 22CAL + 21VAL 180 440 610 0.0 5.0 

1 Root mean square error; 2 Temperature sum from sowing to emergence; 3 Temperature sum from emergence to flowering; 4 Temperature sum from flowering to 
physiological maturity; 5 Best parameter set based on LOO-model validation (see Section 3.1). 

Table 6 
Optimized parameter set for summer and winter crops in a diversified cropping system patchCROP when applying the Nelder-Mead method.  

Crop name and cultivar Best year combination1 Parameter type RGRLAI2 DVSDLT2 RDRL2 SLATB factor2 RUETB factor2 

Grain maize cv. P8329 21&22CAL + 20VAL Default  0.0294  1.10  0.050  1.00  1.00 
Optimal  0.0029  1.54  0.050  0.75  0.91 

Soybean cv. Acardia 20&22CAL + 21VAL Default  0.0100  1.10  0.050  1.00  1.00 
Optimal  0.0010  0.99  0.050  0.60  0.80 

Lupine cv. Boragine 20CAL + 21VAL Default  0.0310  1.10  0.050  1.00  1.00 
Optimal  0.0031  1.16  0.050  0.94  0.80 

Sunflower cv. Seabird 20&22CAL + 21VAL Default  0.0294  1.10  0.050  1.00  1.00 
Optimal  0.0229  1.26  0.050  1.11  0.80 

Winter wheat cv. Universum 22CAL + 21VAL Default  0.0082  1.10  0.050  1.00  1.00 
Optimal  0.0094  1.54  0.043  1.00  1.14 

Winter barley cv. Wallace 22CAL + 21VAL Default  0.0075  1.10  0.050  1.00  1.00 
Optimal  0.0100  1.17  0.010  1.00  1.20 

Rye cv. Tayo 21CAL + 22VAL Default  0.0082  1.10  0.010  1.00  1.00 
Optimal  0.0107  1.28  0.005  1.00  0.80 

Rapeseed cv. Ambassador 22CAL + 21VAL Default  0.0800  1.10  0.050  1.00  1.00 
Optimal  0.0852  1.08  0.013  1.00  1.20 

1 see definitions in Fig. 4; 2 see parameter definition in Table 4 
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in general above ground biomass contributed in higher magnitude to the 
total error in the summer crops, but the opposite was observed in the 
winter crops, where grain yield often contributed the most to the total 
error. In summary, for phenology LOO-validation showed that many 
different year combinations can lead to a reasonable result. However, for 
crop growth, particularly for summer crops, the year combination was 
key to pick the best model parameter set, as results showed that year 
combination differed for every crop. 

4. Discussion 

4.1. Parameters optimization 

Manual calibration of the phenology data successfully reduced the 
model error (RRMSE) for all crops. As for the crop growth parameters, 
the Nelder-Mead method was successful in reducing the average error 
between observed and simulated above ground biomass and grain yield 

data for all summer and winter crops. Results are similar to Cui et al., 
(2023), who reported that the Nelder-Mead method reduced the 
normalized RMSE from 10.3% to 6.4% from a 30-year sole winter wheat 
grain yield data. The four-parameter set selected for the optimization 
step was below the median number of 6 reported by Seidel et al., (2018). 
The parameter selection and ranges was based on the amount of data per 
crop, previous model knowledge and expert opinion, however, there is a 
risk that the selected parameter number and choice can compensate for 
model errors (Seidel et al., 2018; Wallach, 2011). Higher incidence of 
simulated water stress in rye and sunflower resulted in limited 
improvement of the model performance in the calibration or validation 
step. However, it is known that rye tends to be more resistant to water 
stress than other winter cereal crops like wheat (Uprety and Sirohi, 
1987), which is not currently considered in the model. More detailed 
data sets from different environments and further model testing would 
be useful to improve model performance for these crops. With regards to 
number of included years for model optimization, Thorp (2007) sug
gested that adding more seasons to the calibration step reduced the 
error, in the current study, this was true for summer crops (except lupin, 
where two years were used). The use of an optimized function for model 
optimization for crop growth parameters helped to reduce the personal 
bias compared to manual calibration approach and it also speeds up a 
procedure that is typically time consuming, especially when having 
multiple crops or long time series (Röll et al., 2020). 

4.2. LOO-validation 

Applying the LOO-validation for phenology resulted in similar RMSE 
for the different year combinations, suggesting that the model was able 
to capture the year-to-year variability and that year combination se
lection may not be crucial for the success of the validation procedure for 
phenology. Nurulhuda et al., (2022) reported that, for the same crop, 
multiple parameter combination sets lead to a similar result or equi
finality, which was true for crop phenology; but not for the simulated 
above ground biomass and grain yield, where the LOO-validated values 
would often drastically change from one year combination to another. 
Minimizing RRMSE for summer crops was heavily dependent on the year 
combinations for calibration and validation, whereas for winter crops 
RRMSE values were less dependent on year combinations except for rye. 
Therefore, a LOO-validation with flexible years combination offered an 
advantage over a fixed years combination, especially for the summer 
crops. This was possibly due to the fact that summer crop phenological 
development and timing of sensitive stages during the vegetative and 
grain filling phases occur during a different period of the year for each 

Fig. 5. Box plot for relative root mean square error (RRMSE) for intermediate 
and final (when available) above ground biomass and final grain yield, for 
model calibration (CAL) and validation (VAL) when running the model with the 
LOO-validated phenology parameter set either with the default crop growth 
parameter set or the optimized parameter set using the Nelder-Mead method for 
all year combinations for summer (maize, soybean, lupine and sunflower) and 
winter (wheat, barley, rye and rapeseed) crops at the patchCROP landscape 
experiment. For each box plot, horizontal lines represent, from top to bottom, 
the 10th percentile, 25th percentile, median, 75th percentile and 90th 
percentile, and the average (triangle). Circles represent the single year combi
nation by crop. 

Fig. 6. Average relative root mean square error (RRMSE) for intermediate and final (when available) above ground biomass and final grain yield, for each year 
selection (bars) and by crop (points) for model calibration (CAL) and validation (VAL) for the optimized parameter set for summer (maize, soybean, lupine and 
sunflower) and winter (wheat, barley, rye and rapeseed) crops at the patchCROP landscape experiment for the seasons from 2020–2022, when using a fixed year 
combination or when using a flexible year combination by crop. Error lines represent standard deviation. 
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crop. Also, their season is much shorter, contrary to the winter crops 
which have a longer growing season with less inter-annual variability in 
growth and yield. This trend was also observed in regionally observed 
crop data for spring and winter crops in Central Europe by Hlavinka 

et al., (2009), who reported that spring crops were more sensitive to 
water stress than winter crops, as the latter tend to have a more exten
sive rooting system and a longer growth period. The fact that years with 
lower simulated stress in the calibration, performed better in both the 

Fig. 7. Daily simulations for crop growth, grain yield and water (TRANRF) and nutrient (NNI) stress for the best year combination (parameter set in Table 6) 
according to the LOO-validation method for summer crops (maize, soybean, lupine and sunflower) at the patchCROP experiment for the 2020–2022 seasons. Error 
lines represent standard deviation or 3–4 replicates per sampling date. 
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calibration and LOO-validation step confirms, that data for calibration 
should be close to optimal crop growth conditions especially for crops 
where stress response functions are not already known (Kersebaum 
et al., 2015). The LOO-validation allows a more thorough use of the data 

when the amount of data is limited, which is a common limitation when 
crop models are calibrated (Seidel et al., 2018). By conducting both the 
calibration and validation procedures, we can get a better confidence on 
how the calibrated parameters perform during the validation. Moreover, 

Fig. 8. Daily simulations for crop growth, grain yield and water (TRANRF) and nutrient (NNI) stress for the best year combination (parameter set in Table 6) 
according to the LOO-validation method for winter crops (wheat, barley, rye and rapeseed) at the patchCROP experiment for the 2020–2022 seasons when applying 
the LOO-model validation method. Error lines represent standard deviation or 3–4 replicates per sampling date. 
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as year combination selection for LOO-validation in the summer crops 
varied by crop, it did not provide useful information on the year com
bination choice for the winter crops. 

4.3. Other influences of modeling results 

The model optimization for growth parameters and LOO-validation 
performed reasonably well for lupine, maize and soybean crops, as 
well as wheat, barley and rapeseed. However, model performance for 
less studied crops such as sunflower was less satisfactory. Other factors 
not accounted in the model may have contributed to this, such as the use 
of two soil profiles for a large field, which may not be fully represen
tative for all plots in the low and high yield potential zones. The model 
showed very strong water stress particularly in the low yield potential 
soil, which also may suggest that the model needs to be more thoroughly 
tested on whether it can properly simulate water stress dynamics in 
extreme conditions such as entirely sandy soil profiles. The selected 
crops for the study are currently growing in a rotation mode, but the 
current simulations neglected the potential carry-over effects between 
crops, as well as the effects of cover crops and residues. As for the carry- 
over effects, residual mineral N and N released right after harvest of the 
previous crop is rapidly leached out in the dominantly sandy soils, such 
as the ones at the study site, and fertilization is typically the major 
source of N supply to the crops. Therefore, no considerable effect on crop 
parameter estimation was expected. Moreover, carry-over effects tend to 
play a bigger role in low input systems, but rotation effects may be 
reduced when N fertilizer and water supply are adequate (Kollas et al., 
2015). In terms of soil carbon, changes due to rotation tend to be min
imal in the short term, but have a significant impact in the long term 
(Basso et al., 2018; Grosz et al., 2017; Teixeira et al., 2015). Basso et al., 
(2018) reported that simulated soil organic carbon declined from 0.7% 
to 4.4% (relative to the initial value) within a 30-year period under 
different temperature scenarios in different locations. Moreover, results 
for Teixeira et al., (2015) and Faye et al., (2023), suggest that model 
sensitivity to consideration of carry over effects in crop rotation was 
higher for soil-related variables (such as soil water and soil nitrogen) 
than for crop productivity variables like grain yield. Similarly, crop 
residues may not have a significant impact on model performance for 
crop growth in the short term, but for long term model applications it 
should be considered as it can have important impacts on soil aggre
gates, soil carbon and soil moisture conservation (Basso et al., 2020; 
Kollas et al., 2015). In this case, soil model routines also need to be 
validated. 

4.4. Future research priorities 

Results were poor sunflower in the calibration step, mostly due to 
strong water limitations. Further field experimentation and model 
testing would be helpful to improve model performance. The same ap
plies to winter rye, where the better resistance to drought may need to 
be accounted for, on the basis of more experimental data. Moreover, 
once the first five-year cycle of the current rotation is completed, further 
model testing would be needed to test the model capabilities in terms of 
simulating the temporal aspects of crop rotations such as the carry over 
effects and implications of crop residues crop productivity, resource use 
and soil dynamics related to water, nutrients, and organic carbon. 

5. Conclusions 

The current study showed the value of using the Nelder-Mead 
method and the LOO model validation for a more efficient data utili
zation when data is limited for model calibration and validation, which 
is often the case in multi-crop studies. Also, it points to the relevance of 
using a LOO model validation for diversified cropping systems with 
multiple crops, which can contribute to reduce the simulation error, 
especially for crops with a larger inter-annual yield variability like 
summer crops in Germany. For winter crops, the LOO-validation showed 
less sensitivity. Further field experimentation and model testing for 
under-represented crops (such as sunflower and cover crops) can also 
contribute to improve model performance. The newly calibrated and 
validated crop model has the potential to be used to conduct virtual 
experiments to understand the tradeoffs and synergies of diversified 
cropping systems in regards to the delivery of ESS and crop productivity 
for multifunctional and resilient cropping systems of the future. 
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