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A B S T R A C T

Crop simulation models are important tools in agronomy. Typically, they need to be calibrated before being used 
for new environments or cultivars. However, there is a large variability in calibration approaches, which con-
tributes to uncertainty in simulated values, so it is important to develop improved calibration procedures that are 
widely applicable. The AgMIP calibration group recently proposed a comprehensive, generic calibration protocol 
that is directly based on standard statistical parameter estimation in regression models. Weighted least squares 
(WLS) is used to handle multiple response variables and forward regression using the corrected Akaike Infor-
mation Criterion (AICc) is used to select the parameters to be calibrated. The protocol includes two adaptations, 
which are specific to each model and data set. First, initial approximations to the WLS parameters are obtained 
by fitting variables one group at a time. Secondly, “major” parameters are identified that are intended to reduce 
bias, analogously to the constant in linear regression. In this study, new diagnostic tools to be included in the 
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protocol are proposed and tested in a case study. The diagnostics test whether the protocol does indeed lead to 
good initial approximations to the WLS parameters, and whether the protocol does indeed substantially reduce 
bias. These diagnostics provide in-depth understanding of the calibration process, reveal problems and help 
suggest solutions. The diagnostics should increase confidence in the results of the protocol. Having a reliable, 
generic calibration approach, like the augmented AgMIP protocol, is essential to using crop models more 
effectively.

1. Introduction

Crop simulation models are widely used in agronomic research to 
screen management options, to estimate the impact of climate change, to 
better understand the complex interactions in the soil-plant-atmosphere 
system, and to address a wide array of agricultural challenges and 
environmental perturbations (Asseng et al., 2014; Boote, 2019; Boote 
et al., 2010). The models are built on theoretical understanding of the 
interacting processes within the studied system, but their use requires 
numerical parameter values that require model calibration. Typically, 
crop model simulation studies begin with a data set representative of 
some “target” population and the model is fitted to those data by cali-
bration. Then the calibrated model is used for further scenario analyses 
and risk assessment. The calibration step is necessary because model 
parameters are not constants of nature but rather dependent on the 
approximations in the model in interaction with a specific set of envi-
ronments (Fath and Jorgensen, 2011; Janssen and Heuberger, 1995; 
Wallach, 2011). This also means that the calibration (or more precisely 
the parameters calibrated) can have a major impact on simulated values, 
and thus, on the predictive quality of crop models. Therefore, effective 
calibration is essential for robust predictions (Grassini et al., 2015).

Calibration of crop models is complex and time-consuming (Seidel 
et al., 2018), with no consensus on the best procedure so far (Ahuja and 
Ma, 2011; Seidel et al., 2018; Wallach et al., 2021b). Calibration can be 
also numerically demanding, because of model discontinuities (Liu 
et al., 2018) and local optima (César Trejo Zúñiga et al., 2014). Several 
studies have examined specific aspects of calibration, such as the way to 
conduct sensitivity analysis in order to choose the most sensitive pa-
rameters to estimate (Richter et al., 2010; Wang et al., 2023), different 
ways of searching for the parameter values that minimize the sum of 
squared errors (Harrison et al., 2019; Jha et al., 2021), or Bayesian 
parameter estimation (Gao et al., 2021; Van Oijen et al., 2005). There 
have also been studies for specific crop models, with recommendations 
as to how to calibrate those models (Adnan et al., 2019; Berton Ferreira 
et al., 2024; Kersebaum, 2011). All of these studies have concerned a 
specific crop model and/or specific model parameters rather than the 
overall calibration activity.

Recently, the AgMIP calibration group (https://agmip. 
org/crop-model-calibration-3/#) proposed for the first time a calibra-
tion protocol that is comprehensive, i.e. it considers all the steps 
involved in crop model calibration and generic, i.e.it is applicable to 
essentially any crop model and data set. A simplified version of the 
protocol was tested for phenology in a multi-model study and found to 
give, on the average, better predictions and less variability than usual 
calibration approaches (Wallach et al., 2023). The full protocol was also 
tested using the STICS model in combination with artificial data, which 
allowed for exact performance evaluation. The results showed that the 
protocol was easily applicable and avoided over-fitting, i.e. 
goodness-of-fit and errors in predicting for new environments were 
similar (Wallach et al., 2024). Of course the overall results depend on 
the model and the data set as well as on the calibration approach. To 
evaluate the protocol specifically, one needs to look in depth at the 
calibration procedure.

The AgMIP protocol contains two major innovations compared to 
usual practice. The first concerns the way to handle multiple observed 
variables, for example days to anthesis, biomass and yield. A common 
way of dealing with this problem in crop model calibration is to calibrate 

parameters using only one or only a few types of variable at a time 
(Hlavinka et al., 2013; Winn et al., 2023; Wolf et al., 1996). One defines 
an order for considering the variables, and then performs the calibration 
sequentially according to the predefined order. This has the important 
advantage that rather than considering all important model parameters 
at the same time, one only needs to consider the subset of parameters 
related to the variable being treated, which reduces numerical problems. 
A difficulty is that, due to the interconnections of processes within the 
calibrated model, fitting parameters to a variable may affect (degrade) 
the fit to variables considered earlier in the order. Due to such feedbacks, 
at the end of the procedure there may be a poor fit to those earlier 
variables (Guillaume et al., 2011). To mitigate this problem, in some 
cases one adds a final step in the calibration, where all parameters are 
allowed to vary. The goal is to find parameter values that give more 
acceptable overall results (Hlavinka et al., 2013; Winn et al., 2023). 
However, this is generally done in an ad hoc manner, without an explicit 
overall objective function. In some cases, with relatively few variables, 
all variables are treated together, but weights are not generally explicitly 
based on statistical theory (Guo et al., 2021).

A standard way to handle multiple variables in regression is 
weighted least squares (WLS). In this approach, the overall objective 
function is a sum of weighted squared errors, where each variable is 
weighted by the inverse of the standard deviation of model error. This 
can be done in two stages. One begins with some approximation to the 
parameter values, perhaps based on ordinary least squares (OLS). Based 
on the resulting fit to the model one estimates the standard deviation of 
model error for each variable, and that provides the weights for the final 
WLS step (Seber and Wild, 1989). The AgMIP calibration protocol fol-
lows the above statistical approach, but uses usual crop model calibra-
tion practice to obtain the initial estimate of optimal parameter values. 
Specifically, according to the protocol, one first treats one variable 
group at a time to obtain initial estimates of optimal parameter values. 
Then, those initial estimates are used for simulation, the resulting model 
error standard deviations are calculated, and are used as weights in the 
final WLS parameter estimation.

The second innovation concerns the choice of which parameters to 
estimate. Crop models in general have many parameters. In order both 
to simplify the calculations and to avoid over-fitting, only a small frac-
tion of the parameters is fit to data. Several different approaches for 
choosing the parameters to estimate are commonly used for crop models 
(Wallach et al., 2021b). One is to perform a sensitivity analysis to 
identify the most sensitive parameters and calibrate them first (Zhao 
et al., 2014). Another is to identify the most important model parame-
ters based on expert knowledge, independently of the available data (He 
et al., 2017). These might be the parameters identified as being cultivar 
dependent (Jha et al., 2021). Sensitivity analysis and model expertise 
can be combined, and might also be combined with testing various pa-
rameters in order to identify the parameters that give the greatest 
improvement to the fit (Wallach et al., 2021b). None of these approaches 
is specifically designed to avoid over-fitting.

The problem of choosing which parameters to estimate is very 
similar to choosing the terms and associated parameters to include in a 
linear regression model, which is a well-studied problem in statistics. 
There are several standard statistical methods for subset selection in 
regression models. The order of terms to consider can be based on for-
ward, stepwise, or backward regression. The decision as to whether to 
include a term can be based on a likelihood ratio test, Bayesian 
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Information Criterion (BIC), he Akaike Information Criterion (AIC) or 
the version corrected for small sample size (AICc) (Claeskens and Hjort, 
2001; Morozova et al., 2015). Normally, one automatically includes an 
intercept, i.e. a constant term, which ensures that the model bias is zero 
(Turgal and Doganay, 2017). The same methods can be applied to 
nonlinear models like crop models. In nonlinear models, for each 
parameter considered, one compares the model where that parameter is 
fitted to the data with the model where that parameter has its default 
value. If a parameter is not accepted, then it is set to its default value and 
not to zero. The AgMIP calibration protocol again adopts a standard 
statistical approach, but adapted to crop models. The choice of param-
eters to estimate is done separately for each variable group. For each 
group, a strictly limited number of “major” parameters are identified, 
which are to be estimated from the data. These parameters should be 
chosen with the main goal of reducing bias (like the constant term in 
linear regression). In addition, a list of “candidate” parameters is 
defined. Those parameters are considered in turn, using the equivalent 
of forward regression. Each additional candidate is tentatively added to 
the list of parameters to estimate. If that leads to a decrease in the AICc 
criterion, the parameter is accepted for estimation. If not, it is fixed at its 
default value.

Thus, the protocol is directly based on standard statistical ap-
proaches, but the implementation also includes choices, which depend 
on expert knowledge of the model. In particular, the order of fitting the 
variable groups and the choice of major parameters depend on the 
specific model and data set. The statistical basis can be considered 
reliable, but it is important to evaluate the model-specific choices. The 
purpose of this study is to propose diagnostics for examining the crop 
model-specific choices made when implementing the AgMIP calibration 
protocol. These diagnostics provide new insights into the calibration 
procedure, and should increase confidence in the results. If problems are 
identified, the diagnostics can indicate alternative choices. The appli-
cation and interpretation of the diagnostics is illustrated with a case 
study. Note that this is the first application of the protocol to real (as 
opposed to artificial) data.

2. Materials and methods

2.1. Data

The experimental data were obtained from multi-year variety trials 
that were conducted by Arvalis Institut du vegetal, Paris at multiple 
locations in France. The data here are for a typical winter wheat variety 
used in France. Eight different variables were measured (Table 1). Date 
of maturity was not directly observed but rather estimated as 15 cal-
endar days before harvest date (ARVALIS, 2022). The full data set has 
data from 22 site-years (hereafter environments). A subset of fourteen 
environments (six different sites, five different years) was used for 
calibration. The subset with the other eight environments (five different 
sites, two different years) was used for evaluation. All data are repre-
sentative of conventionally managed wheat fields in the major wheat 

growing regions of France, with effective weed, pest and disease control, 
under current climate (this is the “target population”). The calibration 
and evaluation subsets had no sites or years in common. Thus, the 
evaluation of the calibrated model is a rigorous test of how well the 
model can predict behavior for environments of the target population 
independent of those used for calibration. Further details about the 
experiments and the environments can be found in Wallach et al. 
(2021a).

2.2. The DSSAT-NWheat model

The N-Wheat model, incorporated within the DSSAT Cropping Sys-
tem Model (Hoogenboom et al., 2019), is widely used to simulate the 
growth and development of specific wheat cultivars under diverse 
environmental and management conditions (Kassie et al., 2016). This 
model serves as a scientific and practical tool for the evaluation of 
agricultural practices and optimization of resource use and the assess-
ment of climate change impacts on crop production (Fallah et al., 2020; 
Jing et al., 2021). The model requires daily weather data and detailed 
soil profile data, such as texture, organic matter content, and hydraulic 
properties as input. Furthermore, crop management practices, including 
planting dates, irrigation schedules, and fertilizer applications are 
incorporated to predict key agronomic outcomes, such as biomass and 
yield, for a given growing season. In particular, the N-Wheat model can 
estimate the nitrogen content of grains, which influences grain quality. 
For instance, nitrogen uptake is determined by the interaction between 
soil nitrogen availability and crop nitrogen demand (see Supplementary 
Information).

2.3. The calibration protocol

The calibration protocol is described in detail in Wallach et al. ( 
(2024). The protocol involves 8 steps. Steps 1–5 translate the generic 
recommendations of the protocol into specific variables and parameters 
of the model and require no calculations. Steps 6–8 concern the calcu-
lations. Once steps 1–5 are done, steps 6–8 can be done automatically 
without further modeler input. The steps of the protocol are described 
briefly below. 

1. Select the default values for all parameters, explain and document 
the choice. This is important, since in general the large majority of 
parameters will not be fit to the data, but rather will retain their 
default values.

2. List the observed variables together with the corresponding simu-
lated variables if any. The recommendation is to use in the calibra-
tion all the observed variables that have corresponding simulated 
variables.

3. Group the variables and order the groups. All phenological variables 
are in the phenology group. Multiple measurements over time of the 
same variable (such as biomass in this study) are together in the same 
group. Other variables are in a group by themselves. The order 

Table 1 
Overview of observed data with number of data points for each variable that were used for calibration and evaluation.

variable explanation number of observations in calibration 
subset

number of observations in evaluation 
subset

BBCH30 days after sowing to start of stem elongation (development stage 
BBCH30)

14 8

BBCH55 days after sowing to start of heading (development stage BBCH55) 14 8
BBCH90 days after sowing to physiological maturity (development stage 

BBCH90)
14 8

biomass aboveground biomass dry matter at various dates (g/m²) 44 31
biomass N % N in total aboveground biomass at harvest (%) 9 5
grain 

number
grains/m² (number/1000) 13 7

yield dry grain yield (g/m²) 13 7
protein protein in grain (%) 13 6
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should be such that fitting later variables in the order will have little 
or no effect on the fit to earlier variables in the order. Usually, 
phenology is the first group, since fitting other variables in general 
has little or no effect on the fit to the phenology data.

4. Select the major parameters for each group. There is a strict 
maximum for the number of major parameters per group. The 
phenology group can have as many major parameters as observed 
development stages. Groups with multiple measurements over time 
can have two major parameters, which either affect the variable at 
different periods or affect the average value and the rate of change 
over time. All other groups have only one variable, and can have at 
most one major parameter. As far as possible, the major parameters 
should be parameters that have nearly the same effect in all envi-
ronments, i.e. that act like additive constants. The main role of the 
major parameters is to reduce bias. For example, for phenology, the 
major parameters will usually be degree days to different develop-
ment stages. In general, a parameter that acts like a constant term in 
the model, i.e. has a similar effect in all environments, will nearly 
eliminate bias (see Supplementary equations S5-S8 for the demon-
stration that a constant term eliminates bias).

5. Select the candidate parameters for each group. The candidate pa-
rameters are those parameters that are expected to explain the 
variability between environments. The candidate parameters should 
be ordered as far as one knows by importance. There is no strict limit 
on their number, but increasing the number increases computing 
time and the risk of choosing unimportant parameters by chance.

6. Choose the parameters to estimate and do the estimation, for each 
variable group in turn. For each group, first estimate the major pa-
rameters using ordinary least squares (OLS), i.e. minimize the sum of 
squared errors. Here, and throughout the protocol, biomass values 
are replaced by ln(biomass). The major parameter or parameters for 
a variable group constitute the initial list of parameters to estimate. 
Then each candidate parameter is considered in turn. The candidate 
is added tentatively to the list of parameters to estimate, and all the 
parameters in the list are estimated using OLS. If the result is a 
decrease in the corrected Akaike Information Criterion (AICc), the 
candidate is added definitively to the list of parameters to estimate. If 
not, it is fixed at its default value and one goes on to the next 
candidate. AICc is calculated as: 

AICc = n ln(SS
/

n)+2p+
2p(p+ 1)
n − p − 1

(1) 

where SS is the sum of squared errors for all variables in the group, n 
is the number of data points and p the number of estimated 
parameters.

7. Calculate the weighted least squares (WLS) parameter values. The 
overall objective function is defined as: 

J =
∑

(yij − ŷij

wi

)2

(2) 

where yij is the observed value of observation j of variable group i, 
ŷij is the corresponding simulated value, and wi is the weight for 
group i. The weight for group i is 

wi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SS/(n − p)

√
(3) 

8. Evaluate goodness-of-fit and estimate prediction error. Many 
different metrics and graphs can be used to judge the goodness of the 
fit. Prediction error can be estimated using data splitting or cross 
validation. The metrics used here are defined below.

2.4. Metrics for goodness-of-fit and for prediction error

Common measures of goodness-of-fit are mean squared error (MSE), 
root mean squared error (RMSE), relative root mean squared error 
(RRMSE) and Nash-Sutcliffe Efficiency (NSE), defined as 

MSE = (1
/

n)
∑
(yi − ŷi)

2 (4) 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE
√

(5) 

RRMSE =
RMSE

y
(6) 

NSE = 1 − MSE
/
MSEy (7) 

where n is the number of observed values, yi is the ith observed value, ŷi 
is the corresponding simulated value, y is the average over the observed 
values and MSE y←is the MSE value when the predictor is the average of 
the observed values. It is MSE applied to the calibration data that is 
minimized in the OLS calculations. The above metrics can also be 
applied to the evaluation data, to evaluate how well the model predicts 
for new environments. When the values of the metrics are presented 
below, we will specify whether they refer to goodness-of-fit, i.e. to the 
calibration data, or to prediction error, i.e. to the evaluation data. We 
will also specify what data have been used for calibration of the model.

We also introduce one additional metric, called skill, specifically for 
evaluating prediction error. Skill measures, often used in climate 
modeling, compare the prediction error of a model with the error of a 
simple, “naive” predictor (Hargreaves, 2010). Here, the naive predictor 
is the mean of the observations in the calibration data. The equation for 
the skill measure is 

skill = 1 − MSE
/
MSEŷcalibration (8) 

MSE is the mean squared error of the model applied to the evaluation 
data. MSEŷcalibration is mean squared error for predicting the evaluation 
data when the predictor is the average of the observed calibration data. 
The skill metric resembles NSE, but is fundamentally different. NSE 
applied to the evaluation data compares the model to the average of the 
evaluation data, which of course one does not know before actually 
doing the measurements for the evaluation environments. The skill 
measure on the other hand compares the model with the average of the 
calibration data, which is known. Thus, the skill measure compares the 
model with a simple predictor, which could be used in practice. A 
negative skill value indicates that one would obtain better predictions 
using the average of the calibration data than by using the model.

MSE can be decomposed into three terms, namely squared bias 
(bias²), squared differences in standard deviations (SDSD) and lack of 
correlation weighted by the standard deviations (LCS) (Kobayashi and 
Salam, 2000). 

MSE = bias²+ SDSD + LCS (9) 

bias² =
[(

1
/

n
)∑

yi − (1/n)
∑

ŷi

]2
(10) 

SDSD = (σy − σs)²(n − 1)
/
n (11) 

LCS = 2σyσs(1 − r)(n − 1)
/
n (12) 

where σy and σs are respectively the sample standard deviations of the 
observed and simulated values and r is the correlation coefficient of 
observed and simulated values.

2.5. New diagnostics

After fitting parameters to one variable group at a time, the 
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estimated parameters are supposed to be a good first approximation to 
the WLS parameters. The first two diagnostics concern this assumption. 
A first diagnostic here concerns the extent of feedbacks between variable 
groups. If feedbacks are important, then some variable groups will be 
poorly fit after treating all the variable groups, so the estimated pa-
rameters will likely not be a good approximation to the overall best 
(WLS) parameters. The proposed diagnostic here is to plot the simulated 
values of each variable after each variable group has been used for 
calibration (see Fig. 2 for an example). If there are no feedbacks, then the 
simulated values for a variable will not change after the corresponding 
variable group has been used for calibration. If feedbacks are found to be 
important, one conclusion might be that the chosen order of treating the 
variable groups should be changed.

Suppose one has a good first approximation to the WLS parameters. 
Then in searching for the best WLS parameter values, it should suffice to 
explore the parameter space in the vicinity of the first approximation. 
This is important, since often, there will be a large number of parameters 
to estimate at the WLS stage, so searching the full parameter space 
would be numerically difficult. According to the protocol, the search for 
the WLS parameter values has multiple starting points, including a 
starting point at the first approximation to the WLS parameters. The 
second diagnostic is to examine the results for different starting points. If 
the first approximation is good, that starting point should lead to the 
smallest value of the criterion J (Eq. (2)). If there are other starting 
points that give a much smaller value of J than the first approximation, 
then the first priority should be to improve the first approximation 
(based on the other diagnostics). An alternative would be to improve the 
search of the parameter space, to obtain more confidence in the WLS 
parameters.

The second pair of diagnostics is related to the choice of “major” 
parameters, which might better be called “bias-reducing” parameters. 
The assumption in the protocol is that, for many variables, squared bias 
makes a large contribution to MSE and that one can reduce that 
contribution substantially by fitting the major parameter to the data. 
The first diagnostic here is to examine squared bias as a fraction of MSE 
for the default parameter values. It is expected that for most variables, 
the squared bias contribution will be large. If the squared bias contri-
bution is very small for some variable, there is no point in identifying a 
major parameter for that variable.

The second diagnostic tool here is to examine squared bias for each 
variable before and after the major parameter associated with that 
variable has been fit to the data. One expects a substantial reduction in 
squared bias. If there is a negligible reduction in squared bias, one must 
reconsider the choice of major parameter.

2.6. Implementation of the protocol

The modeling group working with DSSAT-NWheat (who are co- 
authors of this study) followed the above protocol and first filled out 
the protocol documentation tables for protocol steps 1–5. All calcula-
tions were then performed automatically using R scripts based on the use 
of the R packages CroptimizR (Buis et al., 2023), version 0.7.0, and 
CroPlotR (Vezy et al., 2023), version 0.10.0, as described in Wallach 
et al. (2024). All the necessary R scripts, functions, and data for applying 
the protocol to the datasets used here are freely available and docu-
mented on GitHub at https://github.com/sbuis/AgMIP-Calibration-Ph 
ase-IV. A generic implementation of the protocol, applicable to any 
dataset, will be fully integrated into the next version of CroptimizR.

The use of CroptimizR required writing an R wrapper function for 
DSSAT-NWheat. The wrapper handles the communication between 
CroptimizR and the crop model, enables the transfer of parameter values 
to the model and retrieves the required simulated outputs. The optimi-
zation algorithm used by CroptimizR is the Nelder-Mead simplex, which 
is a powerful, robust algorithm for parameter estimation in nonlinear 
models (Kumar, 2023).

3. Results

3.1. Application of protocol to the DSSAT-NWheat

Parameter values for the winter wheat variety Gamenya within the 
N-Wheat model were used as the defaults (step 1). This variety seems to 
be close to the variety used in the experiments in terms of maturity 
group.

All of the observed variables except ears/m² have simulated equiv-
alents in the DSSAT-NWheat model (Table 2) and were used for cali-
bration (step 2). The variables were grouped as prescribed by the 
protocol, and the order of the groups was chosen to respect the protocol 
prescription that fitting later variable groups in the order should have a 
minor or no effect on the fit to earlier groups (step 3).

The major parameters for each variable group are shown in Table 3
(protocol step 4). These are parameters expected to have a similar effect 
in all environments, based on expert opinion. The candidate parameters 
for each group, again based on expert opinion, are shown in Table 4
(protocol step 5). That table also shows which candidate parameters 
reduce AICc and are therefore chosen for estimation (protocol step 6). Of 
the ten candidate parameters, four were chosen for estimation. The 
default values of the parameters and the values after protocol steps 6 and 
7 are shown in Table 5.

Only a selection of the metrics from step 8 of the protocol are shown. 
Plots of simulated versus observed values for each variable group are 
shown in Fig. 1. The RRMSE values for the calibration data, for each 
simulated variable and after each step of the protocol, are shown in 
Table 6. For the default parameter values, RRMSE ranges from 9 % to 
77 % depending on the simulated variable. At the end of the protocol 
(after step 7) RRMSE is very small for the phenology variables and for ln 
(biomass) (maximum 4.3 %) but larger for final biomass, biomass N, 
grain number, yield and protein content (14–25 %). The RRMSE values 
for the evaluation data similarly have small values for phenology and ln 
(biomass), and larger values for the other variables. The similar levels of 
error for the calibration and evaluation data show that there is no evi-
dence of over-fitting. The skill values obtained show high skill (near 1) 
for phenology and ln(biomass) and quite high skill for grain number but 
negative skill for the other variables ( Fig. 2,  Tables 7 and 8)

3.2. Diagnostics

The first diagnostic tool is a set of graphs to visualize the extent of 
feedbacks. Fig. 2 shows the simulated values for each variable for each 
calibration environment using the default parameter values and then 
after fitting each variable group. Only final biomass is shown for the 
biomass group. If there are no feedbacks, the simulated values of vari-
ables in a variable group will not change after that variable group was 
used for fitting. This is largely the case. For example, consider the three 
phenology variables BBCH30, BBCH55 and BBCH90. The simulated 
values change appreciably in going from step “def” (simulation using the 

Table 2 
Observed variables and the corresponding simulated variables (protocol step 2). 
The variables are combined into groups. The order in which the groups are used 
for parameter estimation is indicated in the last column (protocol step 3).

Observed 
variable

Name of the simulated 
variable

Calibration 
group

order for 
calibration

BBCH30 Date_BBCH30 phenology 1
BBCH55 Date_BBCH55 phenology 1
BBCH90 Date_BBCH90 phenology 1
biomass Biomass (all dates) ln(biomass) 2
biomass N N_in_biomassHarvest biomass N 3
grain number Grain_Number grain Number 4
yield Grain_Yield yield 5
protein ProteinContentGrain protein 6
ears number none - -
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default parameter values) to step “phe” (simulation with parameters 
estimated using the phenology data). In subsequent steps, where pa-
rameters are estimated using the biomass data, the biomass N data, the 
grain number data, the yield data and the protein data, simulated 
phenology does not change at all. That is, estimating parameters related 
to those later steps has no effect on the simulated phenology. The only 
evidence of feedbacks is that the simulated values of final biomass and of 
biomass N do change somewhat after parameters are fitted to yield. The 
table of RRMSE values (Table 6) tells much the same story. The RRMSE 
values in general do not change after the group of a variable is used for 
calibration, with minor exceptions in the case of final biomass and 
biomass N. Overall, it seems that the order of fitting the variable groups 
is acceptable.

The second diagnostic concerns the search for the WLS parameter 
values. In searching for the best WLS parameters here, the simplex al-
gorithm was started at the parameter values after step 6, and at 19 
additional starting values chosen by Latin hypercube sampling covering 
the full parameter space. The smallest value of the weighted objective 
function was found when starting from the results of step 6 (detailed 
results not shown). The conclusion is that there is no evidence that the 

parameter values obtained at the end of protocol step 6 are a poor first 
approximation to the WLS parameters.

The third diagnostic is the fraction of MSE for the calibration data 
due to squared bias for the default parameter values and for the 
parameter values after protocol step 7. Table 9 shows that for the default 
parameter values, squared bias represents 0.11–0.94 of MSE. The frac-
tion is over one half for seven of the nine variables. The fraction of MSE 
due to squared bias after step 7 is below 0.20 for all variables except final 
biomass, which is not a specific target of calibration (it is included with 
ln(biomass)). Squared bias is clearly initially an important part of 
overall error, and that contribution is substantially reduced by the 
protocol.

The final diagnostic tool is examination of the effectiveness of the 
major parameters in reducing squared bias. Table 10 shows the values of 
squared bias after each variable group has been used for calibration. For 
the groups where candidate parameters are accepted (phenology, ln 
(biomass), yield), the table also shows squared bias after estimating just 
the major parameters for that group. For each response variable, the 
difference between squared bias after estimating the major parameters 
for the corresponding group and squared bias just before that, measures 
how effective the major parameters are in reducing squared bias. The 
major parameters reduce squared bias to less than 4 % of its previous 

Table 3 
Major parameters for each variable group (protocol step 4). Default values and 
minimum and maximum values for each parameter are shown.

Group Parameter Short explanation Default value 
(min, max)

phenology P1 Thermal time from seedling 
emergence to the end of the 
juvenile phase

400 (300,600)

PHINT Phyllochron interval 110 (70,120)
P5 Thermal time (base 0 oC) from 

beginning of grain fill to maturity
700 (200,800)

ln(biomass) RUE1 Pre-anthesis radiation use 
efficiency, 
g plant dry matter/MJ PAR

3.8 (3,5)

RUE2 Post-anthesis radiation use 
efficiency, 
g plant dry matter/MJ PAR

3.8 (3,5)

biomass N MXNUP max N uptake per day 0.6 (0.4,1)
grain 

number
GRNO Coefficient of kernel number per 

stem 
weight at the beginning of grain 
filling

22 (20,30)

yield MXFIL Potential kernel growth rate 1.9 (1,3)
protein INGNC % protein, initial grain N conc 0.03 (0.01,0.04)

Table 4 
The candidate parameters for each variable group (protocol step 5). Default values and minimum and maximum values for each parameter are shown. A candidate 
parameter is chosen for estimation during the optimization process if it leads to a reduction in the AICc criterion (as indicated by “Y” in the last column).

Group Parameter Default value 
(min,max)

Short explanation Reduces AICc

phenology VSEN 1.6 
(1,5)

sensitivity to vernalisation Y

PPSEN 2 
(1,5)

sensitivity to photoperiod N

ln(biomass) STMMX 1.5 
(1,5)

Potential final dry weight of a single tiller (excluding grain) N

P2AF 0.6 
(0.4,0.8)

threshold AD in a layer becoming effective on root growth N

ADLAI 1 
(0.5,1)

threshold aeration deficit (AF2) affecting LAI (set to 1.0 for no stress run) N

PLGP1 1400 
(1000,2000)

for calculating plag: potential leaf growth. plag= plag_p1 *cumph(istage)* *plag_p2 Y

PLGP2 0.6 
(0.4,0.8)

for calculating plag: potential leaf growth. plag= plag_p1 *cumph(istage)* *plag_p2 N

SLAP1 280 
(250,400)

ratio of leaf area to mass at emergence (cm2/g) Y

SLAP2 270 
(200,300)

ratio of leaf area to mass at end of leaf growth (cm2/g) N

yield STEMN 0 
(0,1)

0 =original C to grain translocation, > 0–1.0 sets % of C of stem to be transloc. to grain Y

Table 5 
Values of parameters at various stages of the protocol. For each parameter, the 
table shows the default value, the value after fitting each variable group sepa-
rately in protocol step 6, and the final WLS value (after protocol step 7).

Group Parameter Default 
value

Value after step 
6

Value after step 
7

phenology P1 400 463.03 462.45
phenology PHINT 110 118.13 118.08
phenology P5 700 676.76 677.65
phenology VSEN 1.6 4.98 4.98
ln(biomass) RUE1 3.8 4.35 4.35
ln(biomass) RUE2 3.8 3.02 3.04
ln(biomass)    
 PLGP1 1400 2000 1994.31
ln(biomass) SLAP1 280 400 399.98
biomass N MXNUP 0.6 0.4 0.4
grain 

number
GRNO 22 26.76 26.87

yield MXFIL 1.9 1.71 1.71
yield STEMN 0 0.088 0.15
protein INGNC 0.03 0.033 0.034
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value for the three phenology variables and for grain number. We 
conclude that for those variables there are parameters that substantially 
reduce bias and those parameters were correctly identified. The squared 
bias contribution is reduced to about 20 % of its previous value for the ln 
(biomass) group (about 30 % for final biomass) after estimating the 
major parameters for biomass. Here, the bias reduction is again quite 
effective. On the other hand, the protein major parameter only reduces 
squared bias for protein to about 70 % of its previous value. The biomass 
N major parameter actually increases squared bias for biomass N. This 
suggests that one should make a different choice of major parameter for 
biomass N, or perhaps choose not to have a major parameter. The 
squared bias for yield is hardly affected by fitting the major parameter 
for yield, but is then very substantially reduced by fitting the candidate 

parameter. It seems that the major and candidate parameters should be 
exchanged.

4. Discussion

4.1. Overall results

A very important property of the protocol is that it greatly simplifies 
the overall calibration activity, which is often very time-consuming 
(Seidel et al., 2018) and requires model expertise throughout. A major 
simplifying feature is that the protocol clearly separates the model 
expertise steps from the calculation steps. Once the tables that sum-
marize the model expertise are finalized, the calculations can all be 

Fig. 1. Goodness-of-fit for each variable group. The observed values are the calibration data. The simulated values are the corresponding results of the model after 
the full calibration procedure (after protocol step 7). It is biomass and not ln(biomass) that is shown. In the graph of phenology, DAS is days after sowing. For each 
variable, the Nash Sutcliffe Efficiency (NSE) value is shown. For phenology, the three NSE values refer to stages BBCH30, BBCH55 and BBCH90 in that order.
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automated, as was done here using scripts based on the CroptimizR 
software (Buis et al., 2023).

The protocol is intended to be applicable to essentially all models and 
data sets. It was previously applied to the STICS model with an artificial 
data set (Wallach et al., 2024). Here, it was applied to DSSAT-NWheat, 
another widely used crop model, using real data. The application to a 
new model structure was straightforward. In a previous study a 
simplified version of the protocol, which uses only phenology data for 
calibration, was used by 16 different model structures in a multi-model 
exercise (Wallach et al., 2023). This further illustrates the genericity 
with respect to model structure. The genericity can also be seen from the 
formulation of the protocol, which is clearly not model specific. In order 
to apply the protocol, the only requirements are that the model simulate 
variables which correspond to at least a subset of the measured vari-
ables, and that the model have parameters which affect those simulated 
variables. This makes the protocol applicable to essentially all crop 
models.

The structures of the data sets (types of variables, number of envi-
ronments) were very similar between the previous artificial data study 
and the present study, so this is not a test of genericity with respect to 
data. However, the data set here has a fairly large diversity of measured 
variables, which illustrates the versatility of the protocol. In the multi- 
model study using only phenology data (Wallach et al., 2023), the 
protocol was applied to a data set with very different phenology mea-
surements than here, illustrating further that the protocol is not specif-
ically adapted to a particular data set. Again, the formulation of the 
protocol clearly allows one to take into account a very wide range of 
types of data. The fact that the protocol allows one to easily use all the 
observed data with simulated equivalents is important, since it is ex-
pected that fitting as many observed variables as possible gives the most 
realistic overall description of the dynamics of the crop system (Pasley 
et al., 2023).

The goodness-of-fit and prediction errors after calibration here can 
be compared to the results in the artificial data study using the STICS 
model (Wallach et al. (2024). In both studies, calibration largely im-
proves goodness-of-fit for phenology and ln(biomass), which are very 
well simulated (RRMSE less than 5 % error in both studies). For the 
calibration data, yield has the highest RRMSE value (16 %) or second 
highest value (22 %) for the artificial data and the data set here, 
respectively. It remains to be seen whether similar behavior occurs for 
other models and data sets. This would not be very surprising, since 
many more equations are involved in yield simulation than in simulating 
phenology. In both studies, the errors in predicting for the evaluation 
environments were similar to the errors for the calibration environ-
ments, i.e. there was no evidence of over-fitting (Aho et al., 2014). This 
is as expected, since the AICc criterion is designed to avoid over-fitting 
and provide good predictions.

The skill values here for phenology, biomass and grain number are 
positive, indicating that the model predicts better for new environments 

than using the average of observed calibration values. The skill measures 
are negative for biomass N, yield and protein, meaning that for these 
three variables, the model is a worse predictor than the average of the 
observed values. There is clearly a problem in predicting N uptake, 
which may be one of the causes of the poor yield predictions. This should 
be explored further. Note also that final biomass is poorly predicted, 
which could also impact yield prediction.

4.2. Diagnostics

The new diagnostics provide an in-depth evaluation of the model 
-specific choices made in implementing the protocol. The first two di-
agnostics concern the calculation of a first approximation to the WLS 
parameter values. An important underlying assumption of the protocol 
is that estimating parameters for one variable group at a time will pro-
vide a good first approximation. It is common practice to calibrate crop 
models using one or a few variables at a time (Dua et al., 2018; Pasley 
et al., 2023). However, there is little general guidance as to the way to 
choose the order of the variables, beyond the suggestion that the order of 
treating variables should be such that the “most independent” variables 
are treated first (Pasley et al., 2023). Here, we propose a more concrete 
definition of the objective, namely to minimize feedbacks, and propose a 
graphical method for visualizing to what extent the chosen order sat-
isfies that objective. This diagnostic is not specific to the AgMIP cali-
bration protocol. It would be useful for any calibration approach that fits 
parameters to data in stages. In the case study here, feedbacks are small. 
Also, the parameter values after step 6 are the best starting point for the 
search for the WLS parameters. Overall, the diagnostics indicate that the 
choices related to the first approximation to the WLS parameters are 
acceptable. If the graphical diagnostic reveals large feedbacks, one 
should first reconsider the order of the variable groups, based on 
knowledge of the model structure, and redo the protocol if a different 
order of variable groups seems more logical. If no better order seems 
reasonable, but if nonetheless the first approximation to the WLS pa-
rameters gives the best fit in the WLS step, one might reasonably accept 
the results of the protocol. Otherwise, a change in the definitions of the 
variable groups might be necessary, but that is beyond the subject here.

The second pair of diagnostics concern the choice of major param-
eters and the effect on bias reduction. Bias reduction, which requires 
only a single parameter per variable, is the “low-hanging fruit” of cali-
bration. This justifies starting the calibration of each variable group with 
“major” parameters chosen to reduce bias. The diagnostics evaluate to 
what extent bias is important, and to what extent it is reduced by esti-
mating the major parameters. The first diagnostic here is to examine the 
initial fraction of MSE due to square bias, to better understand the 
importance of bias. If squared bias is negligible, there should be no 
major parameter, only candidate parameters. The second diagnostic is 
the observed reduction in squared bias resulting from estimation of the 
major parameters. If a chosen major parameter does not substantially 

Table 6 
RRMSE values for the calibration data, for each simulated variable at each calibration stage. The table shows results using default parameter values, parameter values 
after using each variable group separately for calibration, and after using all variable groups together for estimating all parameters, i.e. after protocol step 7. The value 
in bold in each column is the RRMSE value after fitting the associated variable group. Final biomass i.e. biomass at maturity is included in the ln(biomass) group, but 
results are also shown specifically for this variable.

Calibration step BBCH30 BBCH55 BBCH90 ln(biomass) Final biomass Biomass N Grain 
number

Yield Protein

default 0.35 0.155 0.088 0.182 0.77 0.18 0.74 0.7 0.2
phenology 0.03 0.016 0.034 0.06 0.18 0.26 0.3 0.4 0.28
ln(biomass) 0.03 0.016 0.034 0.043 0.15 0.3 0.27 0.42 0.31
biomass N 0.03 0.016 0.034 0.042 0.15 0.3 0.27 0.41 0.31
grain number 0.03 0.016 0.034 0.042 0.15 0.3 0.2 0.41 0.36
yield 0.03 0.016 0.034 0.043 0.20 0.24 0.2 0.22 0.14
protein 

(end of step 6)
0.03 0.016 0.034 0.043 0.20 0.24 0.2 0.22 0.14

Calibration step7 0.03 0.016 0.034 0.043 0.19 0.25 0.2 0.22 0.14
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Fig. 2. Simulated values for each calibration environment at each stage of the protocol. Each plot refers to a single variable. Each line in a plot shows the simulated 
results for a single calibration environment, at each calibration step. The x-axis notations indicate simulated values that use the default parameter values (“def”), 
parameter values after fitting the phenology group (“phe”), the ln(biomass) group (“bio”), biomass N (“N”), grain number (“gra”), yield (“yie”), protein (“pro”) and 
after the WLS step, step7 (“wls”).
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reduce bias, that is an inappropriate choice of major parameter. The 
choice should be reconsidered, based on understanding of the model. 
(One should not simply try multiple choices of major parameter, without 
an underlying rationale). If the conclusion is that there is a better choice 
of major parameter, it should be used. If there is no better choice of 
major parameter, then there should be no major parameter, only can-
didates. In the case study, the major parameter for biomass N does not 
reduce bias, but no better choice was identified. The protocol should be 
rerun with the parameter MXNUP as a candidate, and no major 
parameter. The diagnostics show that the major parameter for yield does 
not reduce bias, but the candidate parameter does (Table 10). Here, one 
should switch major and candidate parameters.

The best choice of order of treating variable groups and the choice of 
bias-reducing parameters are model-specific choices. This implies that it 
would be very helpful to have recommendations for each specific model.

4.3. Documentation

The formulation of the protocol includes several documentation ta-
bles, which describe the results of the model expertise steps and the 
calculation steps. This is intended to facilitate collaboration, reproduc-
ibility of the calibration process and transparency when reporting re-
sults. We suggest that reporting on the diagnostics proposed here should 
also be a systematic part of the documentation. That would be useful for 
the modeling group doing the calibration, but also as justification of the 
choices made in applying the protocol.

4.4. Limitations

This is a case study, with a particular crop model and data set. It is 
important to test the calibration protocol much more widely, with other 
models, crops, and data sets.

In this case study, it was possible to arrange the order of variable 

Table 7 
RRMSE values for the evaluation data. RRMSE values using the default parameter values and parameter values after steps 6 and 7 of the protocol are shown. Final 
biomass (i.e. biomass at maturity) is included in the ln(biomass) group, but results are also shown specifically for this variable.

Calibration Step BBCH30 BBCH55 BBCH90 ln(biomass) Final biomass Biomass N Grain 
number

Yield Protein

default 0.301 0.14 0.075 0.15 0.64 0.29 0.651 0.607 0.084
step 6 0.039 0.02 0.028 0.043 0.27 0.3 0.096 0.094 0.207
step7 0.039 0.02 0.028 0.042 0.26 0.31 0.095 0.109 0.193

Table 8 
Skill values. The skill values measure how well the model predicts for the evaluation environments. The skill values using the default parameter values and parameter 
values after steps 6 and 7 of the protocol are shown. A positive value means that the predictions of the model have smaller MSE than predictions using the average of the 
observed values. Final biomass (i.e. biomass at maturity) is included in the ln(biomass) group, but results are also shown specifically for this variable.

Calibration step BBCH30 BBCH55 BBCH90 ln(biomass) Final biomass Biomass N Grain 
number

Yield Protein

default − 12.25 − 4.45 − 2.23 − 0.32 − 32.89 − 0.42 − 16.23 − 57.18 0.59
step6 0.78 0.89 0.55 0.89 − 5.10 − 0.51 0.63 − 0.4 − 1.51
step7 0.78 0.89 0.55 0.9 − 5.10 − 0.6 0.63 − 0.87 − 1.19

Table 9 
Fraction of MSE for the calibration data contributed by squared bias. Values refer to simulations of each variable based on default parameter values, parameter values 
at the end of step 6 and parameter values after the WLS step, step 7.

Calibration step BBCH30 BBCH55 BBCH90 ln(biomass) Final biomass Biomass N Grain 
number

Yield Protein

default 0.9188 0.9405 0.7766 0.588 0.86 0.38 0.885 0.871 0.111
step 6 0.00024 0.0043 0.0052 0.079 0.79 0.14 0.034 0.102 0.022
step7 0.00095 0.0043 0.0052 0.074 0.74 0.17 0.031 0.175 0.003

Table 10 
Values of bias² for the calibration data. Values refer to simulations of each variable using the default parameter values and after each stage of the calibration. For the 
variable groups phenology, ln(biomass) and yield, both major and candidate parameters were estimated. For these groups, bias² after estimating just the major pa-
rameters are shown, and then the results after estimating both major and candidate parameters. The value in bold in each column is the value of bias² after fitting the 
major parameters of the corresponding variable group.

Calibration step BBCH30 BBCH55 BBCH90 ln(biomass) final biomass biomass N grain number yield protein

default 2.70E+ 03 969.878 414.41 0.8172 1611016 0.018 233.92 321166 0.5397
phenology major 7.0eþ 01 13.796 0.13 0.0220 68744 0.024 36.17 40228 0.6126
phenology 5.10E− 03 0.046 0.41 0.0334 41169 0.023 34.77 53967 2.4085
biomass major 5.1e− 03 0.046 0.41 0.0067 12492 0.052 14.42 72150 4.3296
biomass 5.10E− 03 0.046 0.41 0.0014 12564 0.045 20.34 67656 3.5663
biomass N 5.10E− 03 0.046 0.41 0.0029 16006 0.050 21.16 66025 3.5663
grain number 5.10E− 03 0.046 0.41 0.0029 16082 0.048 0.65 60998 4.739
yield major 5.1e− 03 0.046 0.41 0.0029 15651 0.048 0.66 58542 3.9387
yield 5.10E− 03 0.046 0.41 0.0062 98584 0.013 0.65 2571 0.0756
protein 

(end of step 6)
5.10E− 03 0.046 0.41 0.0062 99332 0.012 0.65 3647 0.0515

step7 2.00E− 02 0.046 0.41 0.0057 84980 0.016 0.59 6462 0.0068
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groups so that feedbacks are small. This may not always be the case. For 
example, some models might have LAI dependent on biomass and 
biomass dependent on LAI. If there are observations of both, there would 
be substantial feedbacks regardless of the order of variables. More 
experience in applying the protocol is necessary in order to determine 
the extent of such problems, and to what the consequences are for 
calculation of the WLS parameters.

We have not discussed the choice of algorithm for searching for the 
best parameter values. The protocol focuses rather on simplifying the 
numerical problem, by fitting variable groups one at a time and by 
making a good choice of the major parameters. An underlying 
assumption is that estimating many parameters will be extremely diffi-
cult because of model discontinuities (Liu et al., 2018) and local optima 
(César Trejo Zúñiga et al., 2014). However, it would be of interest to 
explore the use of global minimizers (César Trejo Zúñiga et al., 2014; 
Jha et al., 2022) with the protocol.

The protocol is based directly on frequentist methods of parameter 
estimation in regression. An alternative would be a Bayesian approach, 
where one calculates a distribution of parameter values rather than a 
single best value (Berton Ferreira et al., 2024). However, a Bayesian 
approach would probably also require a choice of parameters to include 
in the calculation, since crop models typically have dozens if not hun-
dreds of parameters. A Bayesian approach also requires a way of 
combining different variables in the overall likelihood function. A 
comprehensive Bayesian approach would need to specify how to handle 
such problems. It would certainly be of interest to compare such a 
Bayesian approach with the protocol here.

5. Conclusions

The AgMIP calibration protocol for crop models is directly based on 
statistical methods. However, the application of those methods requires 
choices, which are specific to each model and data set. The new diag-
nostic tools proposed here serve to evaluate those choices. They provide 
in-depth understanding of the calibration process, reveal problems and 
help suggest solutions.

Many fundamental questions related to crop models, including the 
importance of different observed variables for calibration, the relation 
between amount of data and prediction accuracy, the difference in 
prediction error between different model structures or the possibility of 
extrapolation, require a generic calibration approach that can be relied 
on to use the available data effectively. We suggest that the AgMIP 
calibration protocol, including the new diagnostics, is a promising 
candidate for such a calibration approach.
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