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A B S T R A C T

Many applications that target dynamic land surface processes require a temporal observation frequency that is
not easily satisfied using data from a single optical sensor. Sentinel-2 and Landsat provide observations of similar
nature and offer the opportunity to combine both data sources to increase time-series temporal frequency at high
spatial resolution. Multi-sensor image compositing is one way for performing pixel-level data integration and has
many advantages for processing frameworks, especially if analyses over larger areas are targeted. Our compo-
siting approach is optimized for narrow temporal-intervals and allows the derivation of time-series of consistent
reflectance composites that capture field level phenologies. We processed more than a year's worth of imagery
acquired by Sentinel-2A MSI and Landsat-8 OLI as available from the NASA Harmonized Landsat-Sentinel da-
taset. We used all data acquired over Germany and integrated observations into composites for three defined
temporal intervals (10-day, monthly and seasonal). Our processing approach includes generation of proxy values
for OLI in the MSI red edge bands and temporal gap filling on the 10-day time-series. We then derive a national
scale crop type and land cover map and compare our results to spatially explicit agricultural reference data
available for three federal states and to the results of a recent agricultural census for the entire country. The
resulting map successfully captures the crop type distribution across Germany at 30m resolution and achieves
81% overall accuracy for 12 classes in three states for which reference data was available. The mapping per-
formance for most classes was highest for the 10-day composites and many classes are discriminated with class
specific accuracies> 80%. For several crops, such as cereals, maize and rapeseed our mapped acreages compare
very well with the official census data with average differences between mapped and census area of 11%, 2% and
3%, respectively. Other classes (grapevine and forest classes) perform slightly less well, likely, because the
available reference data does not fully capture the variability of these classes across Germany. The inclusion of
the red edge bands slightly improved overall accuracies in all cases and improved class specific accuracies for
most crop classes. Similarly, our gap filling procedure led to improved mapping accuracies when compared to
nongap-filled 10-day features. Overall, our results demonstrate the valuable potential of approaches that utilize
data from Sentinel-2 and Landsat which allows for detailed assessments of agricultural and other land-uses over
large areas.

1. Introduction

Most of the pressing challenges humanity is facing today are directly
or indirectly related to agricultural production (Johnson et al., 2014;
Michael and David, 2017). Given the projected population growth and
dietary changes in many of the fastest growing regions in the world,
agricultural production needs to be increased and improved to ensure

global food and nutrition security. The concept of sustainable in-
tensification describes the avenue towards achieving this goal while
acting on land resources and the global climate system with con-
sideration (Tilman et al., 2011; Rockström et al., 2017). In this context,
remote sensing for monitoring of agricultural land-use and manage-
ment plays a key role.
From a remote sensing perspective, agriculture is a complex
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phenomenon which poses unique challenges. For example, the type of
crop that is grown on a parcel usually changes within and between
years according to the chosen crop rotation. The same crop type can
have different temporal and spectral appearance due to local land
management, genotype features, site conditions or other environmental
factors. Individual fields vary in size by region mainly due to historical
land granting and succession practices, sometimes also due to more
recent societal approaches to land ownership (e.g. cooperatives in
Eastern Europe). They often require high (10–30m) resolution imagery
to be entirely resolved (Ozdogan and Woodcock, 2006; Fritz et al.,
2015). Temporal information is usually the key to differentiating in-
dividual crop types, making use of unique differences in seasonal
growing characteristics and crop phenology. However, detailed spectral
information can help distinguishing rather subtle differences among
morphologically similar crop types, such as certain cereals (Nidamanuri
and Zbell, 2011).
The observational nature of optical, satellite based remote sensing

data does not always directly satisfy such requirements. First, despite a
fixed orbital repeat cycle, remote sensing observations are often highly
irregular across time and space. This is because the effective observa-
tion frequency is subject to clear sky conditions but also to other mis-
sion related factors (e.g. acquisition schedules, downlink capacity, etc.).
The required intra-annual observation frequency for disentangling dif-
ferent crop phenologies can accordingly not easily be obtained for
many regions where cloud coverage is frequent. This is exacerbated
when national, regional or even global assessments of crop type or
condition are targeted, as this requires several orbital imaging swaths to
be integrated and analyzed. Coarse resolution (> 100m) sensors pro-
vide frequent temporal observations but lack the spatial detail required
to resolve individual fields in many parts of the world (Fritz et al., 2015;
Graesser and Ramankutty, 2017), but can work well if field sizes are big
as for example in Brazil's agro-industrial landscapes (Maus et al., 2016).
Spatially higher resolving sensors acquire data much more infrequently
and often additionally lack spectral bands in crucial wavelength do-
mains such as the shortwave infrared or the red edge. While the focus of
this present study is on the use of optical remote sensing data, it should
be noted that Synthetic Aperture Radar (SAR) data have been suc-
cessfully used to map crop types (Baghdadi et al., 2009; McNairn et al.,
2014; Hütt et al., 2016). The all-weather imaging capacities of SAR
sensors represent a key advantage over optical imagery and the high
temporal repeat frequency offered by the Sentinel-1 SAR constellation
improves has greatly improved the usability for agricultural mapping
and monitoring practices (Inglada et al., 2016). Approaches using
combinations of SAR and optical data exist, focusing on fusion of the
different sensor data (Reiche et al., 2015) or using both sensor ob-
servations as independent predictive features (Inglada et al., 2016).
Key agricultural mapping and monitoring applications include crop

type, crop management, crop development and health, yield predictions
as well as fertilizer or irrigation requirements. For most of these ap-
plications, reference data are required that characterize the variability
of the targeted phenomena across space and time in a representative
manner. This strong dependence on agricultural reference data is un-
fortunate since such high-quality reference data is often not available or
accessible. Consequently, routinely produced, spatially explicit and
thematically detailed crop type products are rare. The Cropland Data
Layer (CDL) is produced annually since 2008 by the U.S. Department of
Agriculture's National Agricultural Statistics Service (Johnson and
Mueller, 2010; Boryan et al., 2011). It covers the entire continental U.S.
and is based on supervised classification on a per-state level using
images acquired by different medium (30–100m) resolution sensors
(e.g. Landsat, Sentinel-2, CBERS, IRS and DMC). The approach makes
extensive use of parcel-level information provided by farmers that
provides information on crop type per parcel. This data is then used to
train supervised classification models and results in very high class-
specific accuracies for most of the important crop classes. In Canada,
the Annual Crop Inventory provides nation-wide crop maps at the

parcel-level based on supervised classification of optical and SAR
images from a range of sensors and extensive in-situ data collections
since 2012 (Davidson et al., 2017). In Europe, detailed information of
agricultural land holdings on the parcel level exists in the form of the
land parcel information system (LPIS) and the Geospatial Aid Appli-
cation (GSAA) data, which tracks individual claims for subsidies made
by the farmers (Tóth and Kučas, 2016). Both data sources, LPIS and
GSAA represent an integral element for the implementation of the
European Union (EU) Common Agricultural Policy (CAP). Un-
fortunately, LPIS data in Europe is usually treated confidential as it
contains sensitive information, for example, on individual land man-
agers and the subsidy payments they obtained. Some European coun-
tries such as the Netherlands or Austria have started making LPIS data
available, sometimes in the frame of the European Commission (EC)
Infrastructure for spatial information in Europe (INSIRES) initiative,
while Germany and most other EU countries have not released its data
publicly yet. While operational, remote sensing based crop maps at the
parcel level over Europe are not available, some first national scale crop
maps have been derived from Sentinel-2 and Landsat data in the context
of the Sentinel for agriculture project (Sen2Agri, Bontemps et al.,
2015). Recent advances in the field of machine learning have con-
siderable potential for advancing data preprocessing, such as sensor
fusion and gap filling (Shen et al., 2015; Gao et al., 2006), and to im-
prove the performance of crop- and land-cover classifications through
adaptation of techniques such as deep learning (Kussul et al., 2017;
Lecun et al., 2015).
Given the pressing societal needs, the unique requirements of

agricultural monitoring and the nature of remote sensing observations,
analysis and processing strategies are required that allow for accurate
and spatially detailed agricultural monitoring over large areas.
Fortunately the quality and quantity of medium resolution optical re-
mote sensing data has increased considerably. Landsat data has become
freely available in 2008 (Woodcock et al., 2008) and this has drastically
increased its usage (Wulder et al., 2012) and sparked many innovative
types of analyses (an overview of these is provided in Zhu, 2017). More
recently, the European Copernicus program has led to increased vo-
lumes of freely available data from Sentinel-2 a/b (S2) and its Multi
Spectral Imager (MSI, Drusch et al., 2012). While continuity con-
siderations with Landsat and the Satellite Pour l'Observation de la Terre
(SPOT) were important for the mission design, central improvements
for MSI include new spectral bands, improved spatial resolution,
greater swath width that in twin constellation offers a significantly
improved temporal observation frequency.
Despite increased repeat frequencies, optical imagers are still de-

pendent on clear-sky conditions to acquire usable imagery, and per-
sistent cloud coverage can mask out crucial phases of crop develop-
ment. Integrating data from multiple sensors that share similar
observational characteristics can considerably improve the number of
clear sky observations (Wulder et al., 2015). Temporal synthesis
through image compositing is hence a valuable tool set for combining
multi-sensor or multi-mission data. Additionally it is of major relevance
for monitoring approaches targeting large areas as it offers a range of
advantages for data integration and analysis. First, the pixel-based
processing perspective allows exploiting all imagery, including partially
cloudy images. Second, temporally and spatially heterogeneous pixel-
level observations can be transformed into time series of equidistant
and consistent datasets. Such equidistant features are required by many
methods (Testa et al., 2018; Udelhoven, 2011) and generally ease the
use of more complex processing workflows. Third, compositing also
represents an integral step for deriving gridded, higher-level products
which are overall still rare for medium resolution data. Compositing
can also provide an integrated quality assessment, through considera-
tion of several parameters such as aerosol optical depth or other proxies
for atmospheric influences, which can be advantageous for subsequent
analyses workflows for example by providing weights for time series
fitting (Jönsson and Eklundh, 2004; Maus et al., 2016).
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Temporal compositing has only recently become a viable processing
option for medium resolution data (Griffiths et al., 2013; Zhu, 2017).
Methodologically, there is a range of existing and established compo-
siting approaches. Most approaches follow a best-pixel selection
strategy. One of the simplest approaches, maximum Normalized Dif-
ference Vegetation Index (max NDVI) compositing selects the ob-
servation corresponding to the highest observed NDVI value. The max
NDVI approach can be regarded as heritage from early coarse resolution
sensors such as AVHRR, as it served the primary purpose of reducing
the influence of clouds in the absence of routinely produced cloud
masks (Cihlar et al., 1994). The approach has been reused for the
Moderate-resolution Imaging Spectroradiometer (MODIS) gridded
products by introducing an additional view angle constraint in order to
reduce the effect of strongly varying instantaneous fields-of-view due to
extreme imaging swath widths (Wolfe et al., 1998; Huete et al., 2002).
Other best-pixel compositing approaches select the observations cor-
responding to the median of a single band or index distribution
(Potapov et al., 2012) or use the multi-dimensional median across all
spectral bands (Flood, 2013). These approaches have shown to generate
very consistent results, but strongly depend on a sufficiently high
number of cloud-free observations on the pixel level to work well
(Doninck and Tuomisto, 2017). Similarity criteria used to quantify the
comparability among available cloud-free observations for a pixel
within a given temporal interval have also been used in other best-pixel
selection strategies (Frantz et al., 2017; Nelson and Steinwand, 2015).
These are, however, conceptually problematic when targeting narrow
temporal intervals and intra-annual time series. Operational con-
siderations guided the design of compositing processors for global
products, such as WELD, which follows a simple rule set that ensures
computational efficiency when processing large data volumes (Roy
et al., 2010). Parametric scoring approaches evaluate each pixel ob-
servation using a range of different parameters for which a score is
produced and the highest (optionally weighted) sum of scores de-
termines the best-pixel selection (Griffiths et al., 2013). The approach
was originally proposed allowing for multi-year data integration due to
regional data scarcity in the historic Landsat archive, while annual-time
series of reflectance composites have been produced following this
approach on continental scales in Canada (White et al., 2014), allowing
the reconstruction of complex change histories in forest ecosystems
(Hermosilla et al., 2016). A recent adaptation of the parametric scoring
approach uses local land surface phenology to generate optimized
scoring functions for the acquisition day-of-year (DOY), which im-
proves spectral consistency especially in sub-humid environments
(Frantz et al., 2017). This algorithm can be fine-tuned according to user
requirements by including application specific parameters and reg-
ulating their importance by the parameters weights (e.g. maps of
aerosol concentrations can be incorporated with a high scoring weight
when working in tropical environments typically characterized by high
aerosol loadings). Conceptually different approaches calculate new,
synthetic values rather than selecting best-pixel values from available
Level-2 observations. Examples include weighted averaging (Hagolle
et al., 2017), mean value compositing (Vancutsem et al., 2007) or de-
riving synthetic images from time series fitted harmonic models (Zhu
et al., 2015) or by selection of time-series trajectory templates (Vuolo
et al., 2017). Summarizing the two main groups of compositing stra-
tegies, those that generate new synthetic values, e.g. through averaging,
can produce outputs that are very homogenous in appearance, but the
values in the composite do represent physical observations. Best pixel
selection strategies, on the other hand, strongly depend on the quality
of the cloud masking and atmospheric correction to avoid high levels of
artifacts.
Here we present an adaptation of the parametric scoring compo-

siting processor (Griffiths et al., 2013) that targets (a) the integration of
Sentinel-2 and Landsat reflectance data, (b) the generation of equidi-
stant, dense, and intra-annual composite time series, and (c) provides
the basis for a national scale mapping of crop and land cover classes.

Our analysis is based on S2A and Landsat-8 (L8) data from 2016 plus
the last three months of 2015. We derive a time series of 10-day com-
posites, monthly and seasonal composites. We pose the following re-
search objectives:

➢ How do crop and land cover prediction accuracies differ when being
based on 10-, 30 or 60-day composite time series?

➢ How accurately can crop types be mapped based on the composited
time series data and how well does the mapped crop acreage com-
pare to official agricultural census data?

2. Study region Germany

In this study we focus on the Federal Republic of Germany (Fig. 1).
The total area is 357,376 km2. The climate is classified as Cfb according
to the Koeppen-Geiger system indicating a mild, marine west coast
climate with warm summers and no dry season. Continentality gen-
erally increases from West to East. Rainfall and temperature maxima
occur during the main summer months, i.e. June–August. Mirroring
global trends, the year 2016 tended to be warmer with less precipita-
tion compared to the long term average (DWD, 2016). A pronounced
elevational gradient exists from North to South. The Northern lowland
is governed by post-glacial deposits, usually forming a gently un-
dulating landscape, which fade to the low mountain ranges (uplands)
and finally to proper mountains towards the South, where older geo-
logical strata predominate. Soil types in the North typically comprise
post-glacial sandy loams with low water holding capacity and more
fertile and finer textured soils are found in the South. The Central
German Loess belt along the northern foot of the Central Uplands bears
the most fertile black soils. Approximately 52% of the territory of
Germany is under agricultural use while forests occupy 30% and de-
veloped areas comprise about 13%. Approximately 64% of the land
under agricultural use is used as cropland (117.6 km2) while 26% re-
presents permanent grassland (46.9) and the area of perennial crops
such as vineyards and fruit tree plantations account for< 2% (Destatis,
2017). Main crops grown are cereals, of which winter wheat (3.13Mha;
26.3% of cropland), silage maize (2.14Mha; 18.5%), winter barley
(1.27Mha; 10.8%), winter rye (0.57Mha; 4.8%), grain maize
(0.42Mha; 3.5%) and triticale (0.40Mha; 3.4%) are the most abundant.
Winter oil-seed rape (1.32Mha, 11.2%), sugar beet (0.33Mha, 2.6%)
and potato (0.24Mha; 2.0%) add to the portfolio (Destatis, 2017).
However, there are a number of applications conceivable, for which
national field-scale information on spatial crop distribution would be
essential information to use. These range from national inventories
based on simulations to decision-supporting products at farm level, for
which a more accurate attribution of crop, soil, weather and production
system promises much improved results.

3. Considerations for MSI and OLI integration

Sentinel-2 and Landsat provide overall similar observations due to
the continuity considerations in the Sentinel-2 mission design (Table 1).
However, there are differences in observation geometry and sensor
specification that need to be considered and accounted for in order to
allow for a seamless integration. Both sensors provide observations in
the main spectral domains with comparable center wavelength and
bandwidths. However, Sentinel-2 provides three spectral bands in the
red edge domain that lack corresponding measurements in OLI. On the
other hand, OLI includes bands in the thermal infrared (TIR) domain,
which lack corresponding bands for MSI. Remaining differences in
spectral bandwidths and spectral response functions ideally should be
adjusted. Spectral bandpass adjustment factors (SBAFs) can be used to
further reduce remaining differences. SBAFs for integration of MSI and
OLI reflectances can in principle be derived empirically but require
simultaneous observations as well as large and representative sampling
schemes that allow quantifying the actual difference in spectral
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measurements. Some empirically derived SBAFs have recently been
published (Flood, 2017). Atmospherically corrected surface reflectance
can be derived directly for both sensors and provides a physically based
and largely comparable unit. Ideally the same type of correction and
radiative transfer model should be used for both sensors. Several al-
gorithms exist for atmospheric correction of data from both sensors,
some providing clear advantages for certain applications and different
levels of acceptance and usage in the EO community (Doxani et al.,
2018). Bidirectional effects should also be normalized for seamless in-
tegration (Nagol et al., 2015; Roy et al., 2016). Sentinel-2 data comes in
three spatial resolutions, while the Landsat reflective bands are all
processed to 30m. Varying pixel grids between both sensors need to be
aligned and spatial registration uncertainties in multi-temporal

acquisitions should be corrected. The level-1 processing of S2 MSI data
does not yet make full use of ground control points as the global re-
ference image has not yet been completed (Gascon et al., 2017). The
absolute geodetic accuracy of the MSI data is generally assumed to be
more precise than that of OLI and subpixel misalignment issues need to
be carefully considered (Storey et al., 2016; Yan et al., 2016). Sum-
marizing, both sensor provide similar yet different observations and the
methods and tools available to users wanting to combine both data
streams do not allow for making these adjustments based on off-the-
shelf solutions. Fortunately, we were able to build our research on
harmonized Landsat Sentinel-2 data (HLS data, details in the following
Section 4.1) that is provided by NASA (Claverie et al., 2018).

Fig. 1. The study region Germany. The coverage of Sentinel-2 relative orbits, Landsat WRS2 frames and UTM MGRS tiles is provided. Shuttle Radar Topography
(SRTM) elevation data is displayed and colors relate to the elevation percentiles in meters for Germany. The monthly mean air temperatures are provided for 2016
(DWD, 2016). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Methods

4.1. Harmonized Landsat-Sentinel data & preprocessing

We used MSI and OLI data from the NASA Harmonized Landsat
Sentinel program (HLS, version 1.2, https://hls.gsfc.nasa.gov/). The
HLS program (Claverie et al., 2018) provides fully cross calibrated re-
flectance products for MSI (named M30) and OLI (L30) at 30m spatial
resolution. These products are based on L1C data for MSI and L1T data
for OLI. The HLS processing comprises a geometric subpixel alignment
of MSI and OLI data to a single MSI tile using an adapted version of the
AROP algorithm (Gao et al., 2009). These alignments are made with
respect to the baseline version 2.04 processing of S2 Level-1 data with
which a revised yaw angle correction was implemented to improve the
quality of the geolocation compared to earlier versions. The atmo-
spheric correction of the MSI and OLI data is performed for both sensor
data using the LaSRC algorithm (Vermote et al., 2016). Subsequent to
atmospheric correction, MSI spectral measurements are adjusted to
match those of OLI while bands that lack corresponding counterparts in
the OLI (i.e. Red Edge) are not adjusted. For this, a set of band wise
empirical SBAFs are applied which have been derived using a global
sample of Hyperion spectra. Directional effects are corrected using
fixed, MODIS-based coefficients following the approach presented by
Roy et al. (2016) resulting in quasi-nadir normalized surface re-
flectances. Cloud masks complement the HLS image products and are
derived using an adapted version of FMASK for MSI and using the
LaSRC cloud masking approach for OLI (Claverie et al., 2018). The HLS
data is projected to Universal Transverse Mercator (UTM) and is tiled in
the Military Grid Reference System (MGRS), which is also used for
Level-1 S2 data. The HLS data for Germany covers parts of UTM zones
30 to 33, with each tile extending over 110×100 km including an
approximately 10 km overlap in X and Y directions (Fig. 1).
We used all data acquired over Germany by Sentinel-2 MSI and

Landsat-8 OLI between early October 2015 and the end of 2016. In
terms of the regional growing cycle, this period covers the early de-
velopment of winter crops in 2015 through to the harvesting of summer
crops in late summer/autumn 2016. During this period, the S2 con-
stellation was not yet in place, and only S2A was acquiring imagery
with a repeat frequency of 10-days over Europe. The HLS data de-
scribed above contains imagery that corresponds to a total of 220 or-
bital overpasses by Sentinel-2 and 230 overpasses by Landsat-8. For
Sentinel-2, these include 22 overpasses in 2015 and 198 in 2016. For
Landsat-8, a total of 47 overpasses occurred in 2015 and 183 in 2016

(Fig. 2). The highest number of clear-sky views per pixel is 59, the
average 23 views. Approximately 25% of the pixels have 19 or less
observations for the 15months study period. High numbers of cloud-
free observations generally correspond to areas where adjacent S2 or-
bits overlap (Fig. 2).
The OLI sensor does not provide corresponding band measurements

in the red edge region where MSI provides three spectral bands at 20m
resolution (Table 1). We used a proxy value approach to generate fill
values for OLI data at the MSI center wavelength position using band-
wise linear interpolation according to Eq. (1) where ρ indicates the
reflectance value while λ denotes the center wavelength position for the
neighboring S2 spectral bands indicated by j, i and k:

= +( ) ( )/( )j j i k i k j i (1)

The MSI cloud and cloud shadow masks from the HLS data have
known shortcomings and higher omission errors compared to the OLI
masks presumably at least partly caused by missing TIR measurements
for MSI data (Claverie et al., 2018). In order to improve the S2 cloud
masks, we applied a number of spectral tests to the input reflectance.
We flagged observations as cloud affected if the reflectance in the VIS
bands was higher than 20% and the NIR was higher than the SWIR
reflectance. Additional tests flagged observations as cloudy if the Haze
Optimized Transformation value (see Section 4.2) was greater than
zero.

4.2. Compositing

We implemented a best-pixel, weighted parametric scoring pro-
cessor that was optimized for narrow temporal intervals and multi-
sensor data. The optimization for narrow intervals is given though the

Fig. 2. Number of total clear sky views from the HLS input data per pixel for the
time period from DOY 275 in 2015 to DOY 366 in 2016.

Table 1
Specifications of the Sentinel-2 and Landsat-8 missions (FOV=Field of View).

Platform (sensor) Sentinel-2 (MSI) Landsat-8 (OLI)
Swath/FOV 290 km/22° 180 km/15°
Altitude 768 km 705 km
Revisit 10 days (S2A)

5 days (S2A/B)
16 days

Band Center wavelength (spatial resolution)
Coastal 443 nm (60m) 443 nm (30m)
Blue 490 nm (10m) 482 nm (30m)
Green 560 nm (10m) 561 nm (30m)
Red 665 nm (10m) 655 nm (30m)
Red edge 705 nm (20m) –
Red edge 740 nm (20m) –
Red edge 783 nm (20m) –
NIR 842 nm (10m) –
NIR 865 nm (20m) 865 nm (30m)
Vapor 945 nm (60m) –
Cirrus 1375 nm (60m) 1373 nm (30m)
SWIR 1610 nm (20m) 1609 nm (30m)
SWIR 2190 nm (20m) 2201 nm (30m)
TIR – 10,900 nm (100m)
TIR – 12,000 nm (100m)
PAN – 590 (15m)
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choice of parameters used and the weights defined for the different
scoring functions (Table 2). In general, this type of compositing algo-
rithm generates scores for different parameters for each pixel and each
cloud-free observation, applies a user defined weight, sums up the total
score and identifies the acquisition with the highest score (Griffiths
et al., 2013). The total score per pixel (Stotal) is thus calculated as the
sum of all individual scores (Si), multiplied with the parameter weight
(Wi), divided by the sum of all weights:

=S W S W/total i i (2)

The observation corresponding to the highest overall score is then
identified and all spectral values measured for a given pixel during that
acquisition are then transferred into the composite. The relevance of
certain parameters for such a compositing approach is different when
working with multi-annual (Griffiths et al., 2013; Frantz et al., 2017)
compared to annual intervals (White et al., 2014) when targeting a
temporally narrow, 10-day interval. We defined a set of five parameters
that we consider essential for deriving intra-annual composite time
series at narrow temporal intervals, with empirically derived weights
reflecting their relative relevance. Table 2 summarizes these para-
meters, the type of scoring function and the applied weight. For ex-
ample, the score produced for the acquisition DOY is less relevant on a
narrow interval compared to a seasonal or annual interval. It is however
still of relevance when determining the best pixel from similarly qua-
lified observations. Thus the assigned weight of 0.5% reflects this lower
relevance, as derived from empirical evidence during sensitivity tests.
The highest scoring weight was assigned to Distance to Cloud/Cloud

Shadow (CDST) and Haze-optimized Transformation parameters. Both
parameters can reduce the susceptibility to errors in categorical cloud
masks while not excluding the observations from use in data scarce
situations. Pixels observed in close proximity to clouds or cloud sha-
dows are more likely to be affected by remnant cloud cover, haze or fog
and cloud related shadowing that was not detected by the cloud/
shadow masking algorithm. Users can additionally provide an optional
minimum cloud distance parameter (CDST_REQ). Pixels beyond that
distance threshold are considered to be reliable observations and obtain
a score of 1.0. A logistic scoring function assigns exponentially de-
creasing scores for pixels with CDST < CDST_REQ. We here set
CDST_REQ to 100 pixels.
The Haze-Optimized Transformation (HOT) has been developed to

identify haze and thin clouds in Landsat imagery (Zhang et al., 2002)
and has been used in the frame of the FMASK cloud masking algorithm
(Zhu and Woodcock, 2012) and more recently also in Landsat compo-
siting approaches (Lück and van Niekerk, 2016; Frantz et al., 2017). We
derived the HOT according to (Zhu and Woodcock, 2012):

=HOT ( 0.5 0.08)blue red (3)

Pixels with higher values indicate a higher likelihood to be affected
by haze or thin clouds. The logistic scoring function for the HOT score is
calculated as:

= + +S HOT1/ 1 exp 10
0.02

( 0.075)HOT
(4)

The calculation of the DOY score is based on a Gaussian scoring
function, where μ indicates the target DOY, σ is the standard deviation
and xi the DOY for which the score is calculated:

=S x µ1
2

exp 0.5DOY
i

2

(5)

The score is scaled between 0 and 1 by dividing by the maximal
possible score. The standard deviation σ is set to a value of 2.4 for the
10-day interval, 5 for the monthly and 12 for the seasonal composites.
This ensures sufficient prioritization of center dates while low values
are assigned to the edges of a given temporal interval. The sensor score
provides a simple mean for prioritizing observations made by one
sensor over those of another sensor. In the frame of this study, we favor
observations made by Sentinel-2 over those made by Landsat-8 mainly
due to the fact that no observations are made in the red edge bands for
OLI and that we use proxy values derived through linear spectral in-
terpolation. Thus, a score of 1.0 is assigned to pixels observed by
Sentinel-2 while observations made by Landsat-8 obtain a score of 0.8,
which appeared to create the most homogeneous results in initial tests.
The coverage score COV is introduced to favor tiles that provide cloud-
free coverage for a large area. This score is included in order to enhance
synoptic coverage of a few acquisitions and prevent compositing data
for unnecessary man acquisitions. The COV score is identical to the
percentage of cloud-free coverage of the area of interest i.e. the cur-
rently processed tile.
We first parameterized the compositing algorithm to generate a

time series of 10-day interval composites, resulting in a total of 45 re-
flectance composites for 9 spectral bands across the 62 MGRS tiles
(Fig. 1). We consider this the benchmark composite dataset for this
study. Besides the best-observation reflectance composite, metadata
attributes are stored in a separate metadata raster file. The values stored
per pixel include the acquisition DOY, the observing sensor, the
weighted sum of scores and the number of cloud-free observations in a
given temporal interval. Next we generated a series of monthly com-
posites using the monthly calendar days as intervals and ranging from
October 2015 to December 2016. Finally, the processor was para-
meterized to generate seasonal composites (i.e. one composite for each
calendar-based season) using the following DOY ranges as temporal
intervals:

- Spring: 095–155, target DOY 125 (04 May)
- Summer: 189–249, target DOY 219 (06 August)
- Fall: 280–340, target DOY 310 (05 November)
- Winter: 004–064, target DOY 034 (03 February)

These ranges are centered on the meteorological seasonal median
and include 30 days before and after that date. Please note that both the
monthly and seasonal composites are generated from the original input
data and not derived from the 10-day composites. The code is im-
plemented in Python and makes extensive use of the GDAL, NUMPY
and SCIPY libraries as well as SCIKIT-LEARN (Pedregosa et al., 2011)
for the subsequent machine learning analysis and mapping. The RIOS
package is used for tile processing and parallelization (Clewley et al.,
2014). The entire compositing workflow including all of the scoring
functions is based on array operations on multi-dimensional NUMPY
arrays ensuring overall computational efficiency. The implementation
also makes extensive use of the lazy-evaluation concept (Gorelick et al.,
2017) and the GDAL virtual raster format. This means that nearly all
intermediate steps and temporary rasters are stored as XML re-
presentations of the data and processing steps are only evaluated on a
per-pixel basis once the final results are written to disk.

Table 2
Parameters used for the parametric scoring compositing processor.

Parameter (abbreviation) Function type Parameter weight

10-day MONTHLY SEASONAL

Distance to Cloud/Cloud
Shadow (CDST)

Logistic 1.0 1.0 1.0

Day of Year (DOY) Gaussian 0.5 0.8 1.0
Sensor (SEN) Piecewise 0.5 0.5 0.5
Coverage (COV) Linear 0.25 0.5 0.75
Haze Optimized
Transformation (HOT)

Logistic 1.0 1.0 1.0
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4.3. Temporal gap filling

Subsequent to compositing, the benchmark 10-day interval com-
posite time series underwent a temporal gap-filling processing stage.
The benchmark dataset represents a quality-screened series of tempo-
rally binned observations at the narrow 10-day interval and this allows
for different temporal gap filling approaches. We implemented a simple
and computationally efficient solution based on band-wise linear in-
terpolation, also acknowledging that potentially long gaps due to
cloudiness over Germany do not allow for more sophisticated gap-
filling. Arrays were generated that record the preceding and subsequent
valid observations spectral value as well as DOY taken from the meta-
data raster (i.e. actual observation DOY, not mean interval DOY) to
calculate an interpolated reflectance value for a given band and in-
terval. The calculation of an interpolated reflectance value ρ for a given
band and temporal interval j is then performed using array arithmetics
and the DOYs of the preceding and subsequent observations ti and tk:

= +
t t

t t
( ) ( )

( )j
j i k i

k i
i (6)

The result of the interpolation procedure is becoming rather un-
related to the preceding and following observations when the inter-
polation fills wide gaps of 10-day intervals. We therefore introduced a
max_interval parameter that limits the number of intervals over which
the interpolation can be performed. Empirical tests here suggested a
max_interval of 10 (i.e. maximum of 100 days) being the maximum
limitation while allowing for achieving full coverages throughout the
interval time series.

4.4. Reference data

A key dataset for this study was the GSAA data from the LPIS (in the
context of this study we simply refer to this reference data as LPIS) that
was available for 2016 covering three German states: Mecklenburg-
West Pomerania (German: Mecklenburg-Vorpommern - MV),
Brandenburg (BB) and Bavaria (German: Bayern - BY). The LPIS data
originates from the Integrated Administration and Control System
(IACS) of the EU and is the basis for the payment of agricultural sub-
sidies in the frame of the EU's CAP. The dataset represents self-reporting
data, i.e. land owners use an online Geographic Information System
(GIS) to digitize their parcels on orthophotos or very high resolution
satellite imagery. The level of geometric accuracy is usually very high,
so that all non-farmed landscape elements in a parcel (e.g. hedgerows
or windmills) are excluded from the digitized areas. While overall the
LPIS data can be considered very reliable, it can contain errors e.g. due
to false claims or digitization errors. The LPIS provides e.g. the crop
type or other agricultural land-use for a given parcel representative for
months of June to August. Not all agricultural parcels are part of the
LPIS because for example some farmers might not apply for any sub-
sidies or a parcel does not qualify for payments in the frame of the CAP.
LPIS accordingly does neither provide a wall-to-wall map of all agri-
cultural plots in a country, nor does it cover other land covers or uses
than those relating to agriculture. The statistical distribution of parcel
sizes in the LPIS data showed that the highest number of parcels was
available for BY (> 1M), where also the highest share of small parcels
(< 1 ha) was found (47%). In BB and MV only 24% and 30% or parcels
were smaller than 1 ha, and the share of parcels larger than 10 ha ac-
counted for 24% and 28%, respectively, while only 1.3% of parcels
were> 10 ha in BY.
For our crop classification legend, we included all classes that ac-

counted for at least 1% of the LPIS area in each of the three federal
states (Table 3). We included some additional crop classes that ac-
counted for< 1% as these are of specific relevance in other areas of
Germany. These include, for example, sugar beet and grapevine. For
some agricultural land-use classes the LPIS provides a taxonomy that is

not directly usable in a remote sensing analysis. This especially con-
cerns the different grassland classes (Section 4.5).
We used an additional reference dataset for training and validation

of broad forest classes as well as a built-up and water classes. We used
data from the Land-use/Cover Area frame Survey (LUCAS, Palmieri
et al., 2011; Karydas et al., 2015) sample of the European Commission's
statistics office Eurostat. The LUCAS survey is carried out every three
years and is defined by a regular grid of sampling points at two kilo-
meter distance and covering the entire territory of the EU. Each sample
is first photo interpreted and then a subsample of points is visited in the
field where land cover and land-use types are registered. Additional
attributes on the type of observation (e.g. on the point, from a certain
distance) or the shape and size of the mapped landscape element (e.g.
size of parcel, width of linear element) are collected during the field
visits. As of today, the last LUCAS survey was carried out in 2015 and
we utilized this data for training and validation of the forest, built-up
and water classes. In general these classes are relatively stable in Ger-
many and we do not expect many samples of these classes being af-
fected by land changes between 2015 and 2016. We applied a con-
servative filtering of the sample points based on the attributes
describing the sample interpretation (e.g. only directly observed points,
no narrow linear features, etc.). After filtering, the LUCAS survey data
did not provide a sufficient number of points that would allow for a
balanced sample across all classes for training and validation. We
therefore sampled additional points from other datasets. For the forest
classes, we used orthophoto interpreted biotope maps that were avail-
able for the state of Brandenburg. For the built-up and water classes, we
used the Copernicus high resolution layers obtained from (Gallego
et al., 2016), which we resampled and reprojected to the 30m UTM
grid.

4.5. Training & validation data

The final class legend used for mapping consisted of 12 classes
(Table 4). Some classes, such as grassland or maize, contain a number of
subclasses that can vary according to the LPIS data from the different
states. For grassland we combined subclasses such as meadows, mowed
pastures, and planted grasses from the LPIS data from all three states

Table 3
The main agricultural classes in the LPIS for the states of Mecklenburg-West
Pomerania (MV), Brandenburg (BB) and Bavaria (BY). Classes that covered at
least 1% of the LPIS area were included.

Class Percentage of LPIS area Number of parcels

MV BB BY MV BB BY

Meadows 4.5 5.2 24.9 12,485 17,936 645,716
Winter wheat 23.3 12.5 18.5 12,837 9602 198,838
Maize (silage) 10.3 11.8 13.6 8553 10,630 174,705
Mowed pastures 12.0 15.8 8.6 24,963 37,008 114,757
Winter rapeseed 17.1 10.1 3.3 9019 6761 40,289
Winter rye 4.1 13.4 1.2 4059 15,475 17,504
Winter barley 9.1 6.9 8.3 5040 5381 103,441
Maize (other) < 1.0 1.3 3.9 – 1329 47,666
Winter triticale < 1.0 3.1 2.4 – 3691 34,950
Pastures 2.7 < 1% 1.3 6470 – 28,861
Fallow 2.1 2.4 < 1.0 15,459 11,331 –
Spring barley 1.0 < 1.0 3.1 1170 – 42,189
Planted grasses 1.6 2.7 < 1.0 3666 9965 –
Clover grass < 1.0 < 1.0 2.0 – – 37,665
Sugar beet 1.8 < 1.0 < 1.0 931 – –
Maize (energy) < 1.0 1.9 < 1.0 – 1672 –
Mountain meadows – – 1.2 – – 5486
Alfalfa < 1.0 1.1 < 1.0 – 1463 –
Spring oat < 1.0 1.1 < 1.0 – 2534 –
Winter spelt < 1.0 < 1.0 1.0 – – 11,792
Lupine < 1.0 1.0 < 1.0 – 1477 –
Durum wheat 1.3 < 1.0 < 1.0 870 – –
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and included mountain meadows only for Bavaria as this class does not
exist in the other LPIS data. Land management on all of these classes
includes mowing, while – depending on the class and federal state -
grazing by livestock can additionally occur. Thus, these classes cannot
be readily separated based on their spectral and temporal character-
istics and we used one broad grassland class that contained several
grassland subclasses. For all LPIS classes, we discarded all parcels that
were smaller than 1 ha in size. We then restricted the individual parcel
area by using a 30m inside buffer and then split the parcels per class
and state into 70% parcels for training and 30% for validation. We
additionally restricted samples for training to areas with a sufficient
number of valid (i.e. cloud-free, not interpolated) observations. For this,

we calculated the number of valid observations in 2016 (Fig. 3) and
tested different thresholds. The average value was 15 and we finally
used a value of 20, as higher values limited the reference data too re-
strictively. The threshold of at least 20 observations within the 10-day
composites was determined empirically and seemed to provide a good
balance between excluding too much area while achieving satisfying
results for the class predictions. We used a final sample size of 1500 and
1000 points for training and validation, respectively, for each of the 12
target classes in Table 4. For each state and target class we sampled
pixels from the LPIS proportionally according to the relative contribu-
tion of a subclass to the target class and potentially allowing for several
pixels being selected for a parcel. For example, we combined samples
from three subclasses for maize (maize for bio-energy, silage maize and
grain maize) according to how much of the maize area each of those
classes' subclasses contributed for a given federal state.

4.6. Agricultural census data

On the foundation of EU Regulation No 1166/2008 on farm struc-
ture surveys and the survey on agricultural production methods, EU
member states conduct national agricultural censuses every couple of
years. The most recent census launched by the Federal Statistics Office
of Germany surveyed German agriculture in 2016 (Destatis, 2017). The
census is based on questionnaires that are sent out to all farmers in
Germany. The results provide for each German federal state, among
others, the total area that was used to grow a certain type of crop. We
used the census results to evaluate how realistic the mapped area per
crop type and federal state are. While this does not qualify as a full
validation, it provides a valuable addition to the point-based validation.

4.7. Classification

We used a Random Forest (RF) classifier (Breiman, 2001) based on
the implementation available from the Scikit-learn library to map our
classes (Pedregosa et al., 2011). Random Forests generate a multitude
of decision trees by randomly drawing samples with replacement from
the training data and determining the best split at each decision tree
node by considering a maximum number of randomly selected features
(max features). We tested different parameter ranges for the number of
trees and for max features and finally used 1000 trees and 10% of the
input features considered at each split to parameterize the RF classifi-
cation models. We trained each RF model for the 10-day, monthly and
seasonal composites.
The spectral features we uses for parameterizing the RF models and

predicting the maps were the 2016 time series of multi-spectral values,
totaling 324, 108 and 36 spectral bands for the 10-day, monthly and
seasonal composites (Table 1). The inclusion of the 2015 composites
covers a crucial period of phenological development for the winter

Table 4
Final legend of target classes used for mapping of crop types and land cover in Germany, including main characteristics, such as the main time window for sowing,
time of peak greenness and the main harvesting time window. Note: cultivar choice, designated product use and the climatic gradients across Germany produce
considerably large time windows for some crops.

Class Sowing time window Peak greeness Harvesting time window

Grassland Perennial Mid April–Mid July June–Mid September
Winter cereal Mid September–Late October May Mid June–Early August
Maize Late April/Early May Mid June–Early August Mid September–November
Winter rapeseed Mid August Late March–Late April July
Spring cereals Mid March June July–Mid August
Sugar beet Mid April–Early May July–August Late September–Early November
Potato Mid April–Mid May June–July Early July–Late September
Grapevine Perennial June–August Mid August–Mid October
Deciduous & mixed forest Perennial June–August –
Coniferous forest Perennial – –
Built-up – – –
Water – – –

Fig. 3. Number of multi-sensor composites at 10-day interval in 2016 with non-
interpolated observations.
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crops and can potentially lead to improved discrimination against other
classes. On the other hand, due to different crop rotations, the use of the
2015 composites for mapping can also introduce confusion as the same
2016 crop could have different preceding crops or cover types.
In order to see if the inclusion of the red edge bands to the classi-

fication models leads to an improvement in mapping accuracy, we
parameterized separate models where we omit the three red edge bands
(compare Table 1). For the 10-day composites, we run two additional
tests for the RF models parameterization: (1) using the non-gap filled
composite time series, and (2) using the non-gap filled 10-day compo-
sites while excluding the red edge bands. Additionally we derived
variable importance metrics per target class and spectral band. For this,
we parameterized several RF models using a single spectral band from
all 10-day interval composites in 2016. In each model, we then trained
the RF as one class against all other classes using the multi-temporal
features per band.

5. Results

5.1. Composite time series

Our compositing algorithm generated a time series of 45 reflectance
composites with 9 spectral bands for the benchmark 10-day interval
composite run, extending from October 2015 to December 2016. An
example for target DOY 255 in 2016 (corresponding to September 11th)
is provided in Fig. 4. The 10-day compositing interval ranged from DOY
250 to 259 and cloud free sensor observations were available for over
96% of pixels (Fig. 4, lower right). For the majority of pixels (37%) two
clear sky observations were available in this period and about a quarter
of the pixels had either one or three observations available. Less than
7% of the pixels had four clear sky views during the 10-day interval.
61% of these pixels were observed by S2 MSI, while 35% were observed
by L8 OLI and 4% of pixels obtained values through our temporal gap
filling procedure (Fig. 4, lower row). At the scale provided, the result is
visually homogenous and free of any apparent artifacts.

Fig. 4. Example output of the 10-day interval composites for the target DOY 255 in 2016. The top row shows a true color (left, RGB= red, green, blue) and false color
(right, RGB=NIR, SWIR1, red edge 1) display. The second row shows the corresponding sensor flag (left) and the number of clear sky observations for the interval
period (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The coverage with clear sky observations was not always as good as
for DOY 255 in 2016. The composite for target DOY 275 in 2015
achieves over 80% of coverage from approximately 60% OLI observa-
tions and<20% contribution from MSI acquisitions (Fig. 5). The fol-
lowing period from DOY 285 in 2015 to DOY 65 in 2016 corresponds to
the winter months and observation density is generally very low. For
example, the 10-day composite for target DOY 35 in 2016 had only
cloud-free observations for 7.2% of the pixels considering both sensors
(OLI contributed 5.7%, MSI 1.5%). With a few exceptions, the intervals
during the summer months allowed filling at least 40% of the pixels
with cloud-free observations during 10-day periods from either of the
two sensors. The share of observations acquired by S2 increased over
the course of 2016, but the contribution of L8 OLI remained substantial
(Fig. 5). The temporal gap filling allowed achieving 100% coverage for
all 10-day interval composites using a max_interval value of 100 days.
Fortunately the first composite for DOY 275 in 2016 had>80% of
sensor observations which aided gap filling for the composites during
the subsequent winter period.
Fig. 6 shows three examples of single-pixel temporal trajectories

from the training data. All three examples feature some early OLI ob-
servations during autumn 2015 after which no observations were
available during the winter months. Clearly, the period where the dif-
ferent spectral bands show the greatest variability is the period of main
crop development during DOY 95 to 275 in 2016 that also coincides
with the period with the least amount of gap-filled values. The depicted
(second) red edge band at 905 nm during some periods shows some
behavior that is largely uncorrelated to the RED or NIR bands, for ex-
ample during DOY 175 for the potato example and during DOY 85 in
the maize trajectory. Visualized at this scale some pixel level artifacts
are discernible. The temporal interpolation provides fill values for these
unobserved periods, but do not reconstruct non-linear changes on in-
dividual parcels not captured by any satellite overpass. The band-wise
linear interpolation may still produce non-linear gap-fills for un-
observed 10-day intervals, as the visible red and the near infrared can of
course behave differently over time. The main period of crop devel-
opment in 2016 is in all three examples observed by OLI or MSI starting
around DOY 65 (March 5th). For both, potato and sugar beet, the main
green-up occurs around DOY 145, while the growing season for maize
starts shortly after. The quality of the composites suffers from occa-
sional cloud or cloud shadow remnants, as for example at DOYs 95 and
225 in the potato profile (Fig. 6a). The maize trajectory is negatively
affected by shortcomings of cloud-shadow masking that occurred
during DOY 165 in 2016. A similar effect can also be observed for sugar

beet at DOY 185 in 2016. The 2016 potato harvest is discernable
around DOY 235 when the SWIR trajectory intersects the NIR re-
flectance (occurring possibly slightly earlier, as DOY 225 is affected by
cloud shadows). Maize harvest occurs around DOY 255 in 2016, while
the sugar beet harvest occurs later but is not clearly discernable due to
no available observations during DOY 285 to 305.
The time series profiles extracted from the training data clearly

show how the winter versus spring or summer crops follow similar
temporal reflectance patterns (Supplementary material, S02–S12).
Accordingly, the reflectance values in the VIS and SWIR bands decrease
when the canopy consolidates while the reflectance in NIR and red edge
bands behaves conversely. The built-up and water classes interestingly
follow a seasonal patterns while the variability (one standard deviation
is indicated by the grey patterns) is much larger as for example for the
forest classes.
The variable importance suggests that clearly different spectral

features are of varying relevance during different parts of the year. For
example S-14 shows how the relevance of all bands (except SWIR) for
the discrimination of rapeseed is high during the DOY intervals 125 and
135. As indicated by the phenology time series plots (S-07) this is the
period where high NIR and red edge reflectance occurs, due to the
bloom and canopy closure during spring. For the discrimination of
potato (S-17) the red edge bands also have high variable importance
scores during the main growth period (S-05).

5.2. Crop type and land cover mapping

A crop and land cover map was obtained for the entire country by
predicting the land-cover class for each pixel based on the full vector of
spectral values obtained from the gap filled 10-day interval composite
time series for 2016 (Fig. 7).
Spatial patterns of land-use and cover are well preserved in the map.

The main centers of crop production in Germany (the North Sea
polders, the North-Eastern ground moraines, the Central German Loess
belt, the Loess areas of the South German Scarplands and the flood
plains along the main rivers) become apparent in shades of blue and
magenta, indicating the prevalence of winter and summer cereals
(Fig. 7, Frame 3) or in hues of yellow and orange if crop rotations in-
clude a greater abundance of rapeseed (North-East and West), potato
(Central North) or maize (several regions). The crop land as char-
acterized here mirror the spatial distribution of high to medium agri-
cultural yield potentials as identified by Soil Quality Rating (Mueller
et al., 2012; BGR, 2014). The main grassland areas are identified in the

Fig. 5. Coverage of Germany by sensor for 10-day multi-sensor composites from target DOY 275 in 2015 to 355 in 2016.
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North-West (Schleswig-Holstein and Lower Saxony) and far South
(Southern Bavaria), mostly located on poor, shallow or not well-drained
soils (often shallow groundwater tables) or on slopes too steep for
highly mechanized agriculture. At this stage, we refrained from separ-
ating different grassland types (pastures and meadows, managed at
different intensities), but the presented approach bears the potential to
also look more closely into these.

5.3. Accuracy assessment

The overall accuracy (OAC) of the crop and land cover map using
the 10-day interval composites features is 80.92% for the 12 classes
(Fig. 8). The OAC increased to 81.37% after applying a 5-pixel
minimum mapping unit. The OAC obtained using monthly features is

just slightly below (79%). Using the seasonal features resulted in lower
OAC of 74.6%. In all cases, the OAC achieved when including the red
edge bands was higher than if the red edge bands were left out (Fig. 8).
This difference was rather gradual for the 10-day composites (0.2%),
but slightly higher when using monthly (0.4) or seasonal features
(1.0%). When mapping was based on the non-gap filled 10-day com-
posite time series, the OACs was reduced by 0.9% (80.0%) and when we
additionally excluded the red edge bands from the non-gap filled time
series the OAC was reduced by an additional 1.5% (79.4%).
Class-specific user's (UAC) and producer's (PAC) accuracies for the

crop classes are, with few exceptions, highest for the 10-day features
and lower for monthly and lowest for the seasonal features. The most
pronounced differences in class specific accuracies between different
input feature sets are observed for both cereal classes, potatoes, maize

Fig. 6. Examples of time series profiles taken from the 10-day interval composite data set and spanning the period from DOY 275 in 2015 to 355 in 2016. Example (a)
is potato, (b) is maize and (c) is sugar beet. Each point in the trajectory corresponds to a 10-day interval. Interpolated (i.e. gap filled) values are shown as unfilled
symbols, while observations by S2 MSI are in magenta and those observed by L8 OLI are in light green. The visualized trajectories correspond to the NIR, SWIR
(1600 nm, compare Table 1), Red and Red Edge (740 nm) bands. The corresponding image chips for each interval are shown below (RGB=NIR, SWIR1, Red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and sugar beet. Less pronounced are the differences for the grassland
class, which achieved 79.5% PAC and 72% UAC. The non-agricultural
classes, i.e. the rather static forest, built-up and water classes show only
minor differences in class-specific accuracies for the different input
feature sets. However, there is some degree of confusion between the
built-up and water classes with for example winter cereal. The seasonal
variability of spectral values for the training data of these classes (Figs.
S1–S10) is pronounced suggesting a certain degrees of mixtures of
materials so that spectral temporal similarities result over the course of
the time series. The overall best-performing crop classes are rapeseed,
sugar beet and maize with PAC and UAC values above 80% with the
exception of maize, which is associated with a slightly higher com-
mission error. Winter cereal (> 80% PAC and UAC) is mapped with
higher accuracy than spring cereal using the 10-day interval compo-
sites. Potato and Grapevine classes achieved rather low PAC values
(49% and 62%, respectively). When excluding the red edge bands from
the features used in the classifications, class specific accuracies showed
different responses. For the grassland class, incorporating the red edge
bands led to slight decreases in PAC and UAC values when using 10-
day, monthly and seasonal features. Conversely, maize class specific
accuracies were improved in all cases when the red edge bands were
included with most differences being around 2%. In general, the dif-
ferences related to red edge bands are were largest in the seasonal and
most gradual in the 10-day time-series. Moreover, crop classes showed
the greatest effect when using or omitting the red edge bands.

When mapping was based on nongap-filled 10-day features most
class specific accuracies achieved lower values. For example, the PACs
were 2% lower for winter cereal and maize and 3.4% lower for pota-
toes. The drop in UACs was at least 4% for maize, summer cereal and
potato. The only exception was sugar beet where the UAC and was 9%
higher when nongap filled features were used. All nonagricultural
classes decreased by between 2% and 4% in UAC. These class specific
accuracies were further reduced when we additionally omitted the red
edge bands from the nongap filled 10-day composites.
Moderate confusion occurs between the winter and spring cereal

classes (Table 5). The before-mentioned high commission error for
maize is partly based on confusion with potato. Also noteworthy is, for
example, the confusion between grassland and grapevine as well as
spring cereal and potato. For the nonagriculture classes, most confusion
exists between both forest classes between built-up and water.

5.4. Comparison with the agricultural census data

Fig. 9 shows scatterplots comparing the mapped area against the
area reported in the 2016 agricultural census for different crop types
aggregated to the level of the federal States. The estimate of the mapped
grassland area compared relatively well with the census data with a
tendency towards an overestimation of the mapped area. The average
difference between mapped and census area over all states (excluding
the city states of BE, HH and HB), for the grassland class was 2%. A

Fig. 7. Result of the wall-to-wall crop type mapping using the benchmark 10-day interval composite time series. The state borders are shown as white lines, while the
three states for which reference data was available are shown with magenta outlines (from North to South: Mecklenburg-Vorpommern (MV), Brandenburg (BB) and
Bayern (BY)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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larger underestimation of 22% occurred in Schleswig-Holstein (SH) and
the estimate for Brandenburg was 25% above the census area. The
mapped estimate for all cereal types combined is on average 11% above
the census area, but slightly underestimated for some states with large
cultivation areas, namely North Rhine-Westphalia (NW) and Lower
Saxony (NI) where the mapped area is 4% and 5% below the census

area. The mapped maize and rapeseed classes compare very well to the
census area, as indicated by low RMSE and small regression offset va-
lues (Fig. 9), with a minor tendency for overestimation of 2% and 3%,
respectively. Larger underestimations for maize occurred in NI (12%)
and overestimations for rapeseed in MV (10%). The comparisons for
sugar beet and potato appears to be more scattered, but overall acreages
are all below 75,000 ha which is much lower than for the other crops.
On average, the mapped estimates are 8% below (sugar beet) and 14%
above (potato) the areas reported in the agricultural census. Most no-
tably, BY and NW are slightly underestimated for sugar beet (19% and
11%, respectively) and for potato (19% and 29%, respectively) ac-
cording to our mapped acreages.

6. Discussion

Sentinel-2 and Landsat provide observations of similar nature, but
differences in observing geometry, spectral bands and geolocation exist
and need to be addressed. Integrating both data sources allows im-
proving the temporal frequency of time series. Compositing provides an
opportunity for integrating observations from both sensors and ac-
cordingly approaches are needed to derive intra-annual series of multi-
sensor composites. Such data can greatly improve many applications
focusing on dynamic land surface processes, such as agricultural mon-
itoring and crop type mapping.
The HLS dataset is the first multi-mission, harmonized reflectance

product that accounts for sensor differences in geometry, viewing an-
gles and spectral bandpasses and minimizes these differences using
state-of-the-art algorithms. This provides users with analysis-ready data
that can directly be used in different application scenarios. The full
normalization currently only works for 30m data, for which S2 bands
are spatially aggregated. This is unfortunate, as many regions in Europe
and around the world feature small-scale farm and landscape structures
and would therefore profit from higher resolution imagery. Especially
agriculture in Africa and other developing countries is characterized by
small scale subsistence agriculture where a 30m resolution is clearly
insufficient. One of S2 key improvements is its native spatial resolutions
of 10 and 20m and these represent an indispensable asset for agri-
cultural monitoring in the context of food security. Combining MSI and
OLI at 20m might be a better option in the future, possibly allowing for
full cross-calibration when combining 10/20m Sentinel-2 with 30m
Landsat data. The MSI red edge bands lack corresponding bands in OLI.
Neglecting these bands would be unfortunate, as they allow for im-
proved differentiation of crops. This is why we strove to provide a
simple solution using spectrally interpolated values as a proxy, but this
topic requires future research to apply more sophisticated methods to
data.
Our compositing approach allowed transforming the spatially and

Fig. 8. Validation results of the classifications using only the 2016 10-day,
monthly and seasonal composites as features. For each bar, the black outlined
bar indicates the accuracy achieved when including the red edge bands and the
colored bar shows the accuracy that was achieved when the red edge bands
were not included in the classification. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Table 5
Confusion matrix for the point-based validation of the classification based on the 10-day interval composites (2016 features).

Grassland Winter cereals Maize Rapeseed Summer cereals Sugar beet Potatoes Grapevine D/M forest C forest Built-up Water Sum UAC

Grassland 795 17 9 8 19 3 4 228 9 10 2 1104 72.01
Winter cereals 42 1300 9 74 46 7 65 3 4 28 3 1581 82.23
Maize 20 27 932 3 35 45 189 22 1 3 7 3 1287 72.42
Rapeseed 1 4 2 867 11 2 1 2 890 97.42
Summer cereals 39 102 8 33 836 7 129 12 1 1 12 4 1184 70.61
Sugar beet 14 3 9 2 3 923 116 2 1072 86.10
Potatoes 9 2 7 2 14 20 488 542 90.04
Grapevine 4 4 3 2 17 621 1 5 657 94.52
D/M forest 10 4 7 7 2 4 693 75 42 17 861 80.49
C forest 2 1 249 899 18 4 1173 76.64
Built-up 42 26 11 5 18 2 46 23 12 8 798 8 999 79.88
Water 26 11 2 3 8 24 27 9 76 959 1145 83.76
Sum 1000 1500 1000 1000 1000 1000 1000 1000 995 1000 1000 1000
PAC 79.50 86.67 93.20 86.70 83.60 92.30 48.80 62.10 69.65 89.90 79.80 95.90
OAC 80.92

P. Griffiths et al. Remote Sensing of Environment 220 (2019) 135–151

147



temporally heterogeneous observations made by both sensors into
equidistant reflectance composites. One key advantage of compositing
is that large areas can be processed and analyzed in a systematic
manner, i.e. mapping can be based on systematically generated gridded
products. One disadvantage is that some cloud-free observations might
not be considered. This effect is generally not that detrimental when
working on narrow temporal intervals. However, similar to the above
mentioned problem that the full 10m resolution might not suffice for
certain small holder landscape structures, a 10-day compositing

interval is likely to be found insufficient to accurately depict specific
crop developments in certain areas around the globe. Given the ac-
quisition schedules in place for S2 and L8 during 2016 and the resulting
density of observations, testing finer intervals would not have been
feasible. Best-pixel compositing strategies strongly depend on high
quality cloud and cloud shadow masking. While for Landsat the quality
of cloud masks is already relatively high, the performance of cloud
masking algorithms for S2 needs to be further optimized and the lack of
TIR measurements by MSI needs to be compensated (Frantz et al.,

Fig. 9. Comparison of the mapped area per crop type and federal state versus the area reported in the 2016 agricultural census. Please note that small city states (BB,
HH, HB) were omitted from fitting the regression.

P. Griffiths et al. Remote Sensing of Environment 220 (2019) 135–151

148



2018). Evaluation of selected parameters such as cloud/shadow dis-
tance or HOT values is likely more suited for optimizing narrow tem-
poral windows than selecting a best observation based on a one-di-
mensional measure (e.g. max NDVI, median NIR) which generally does
not perform well when only few candidate observations exist for a
narrow temporal window. However, our best-pixel evaluation approach
is dependent on high-quality cloud screening (e.g. Fig. 6). A narrow
temporal compositing interval also allows for simple temporal gap
filling for which we use a linear, temporal-spectral interpolation. This
approach seems largely valid as long as the temporal gap does not
become too large. On the other hand, most machine learning ap-
proaches perform better even on gap-filled time series including larger
temporal gaps compared to time series values that contain lots of no-
data values. The max_interval parameter leaves this to the user decide
what is most suited for a given application. Cloud coverage was espe-
cially high during the winter months, which is typical for many tem-
perate regions, and the amount of clear sky observations is conse-
quently greatly reduced. Identification of the most meaningful temporal
periods through feature selection procedures could be used to learn
more about value of the entire time series versus selected seasonal
observations for mapping purposes. Our approach could additionally
incorporate the spatial neighborhoods around a pixel or make use of
observations acquired by SAR sensors such as Sentinel-1 (Reiche et al.,
2015) or by coarse-resolution sensors such as OLCI onboard of Sentinel-
3 (Donlon et al., 2012) that provides many spectral bands in the VISNIR
spectral domain.
The achieved overall accuracies are promising but have to be con-

sidered with caution as the point-based validation for the agricultural
classes was only performed across the three states for which the re-
ference data was available. Our crop and land cover map achieved the
highest overall and class-specific accuracies when using the full spectral
features of the 10-day interval composites for training and prediction.
The observed differences in class-specific accuracies between 10-day
and monthly or seasonal composites were larger for highly dynamic
classes such as cereal crops or rapeseed and much less for the non-
agricultural classes. This finding confirms assumptions regarding the
value of high temporal repeat observations for mapping dynamic phe-
nomena such as agriculture, and that short interval composites preserve
much of the required temporal information. Including the red edge
bands led to improvements of overall accuracies in all cases, and had
the most pronounced effect on crop classes, where several class-specific
accuracies were improved. This suggests that including the red edge
bands, even if those for L8 were simply derived by spectral interpola-
tion, can lead to improvements in mapping accuracy. However, the
strongest overall difference was observed for the features sets with a
lower temporal resolution, suggesting that improvements at least par-
tially depend on the type of classifier and number of features. Similar
effects on the mapping accuracy were observed when we using the non-
gap filled 10-day features in the RF models. While the reduction in OAC
was rather gradual, class specific accuracies for several crop types were
reduced considerably.
Our mapped area estimates compare very well to the census esti-

mates, especially for cereals and maize. For grassland the agreement is
slightly lower, which is not surprising considering the class hetero-
geneity of different grassland sub-classes in Germany. Various man-
agement schemes apply, from grasslands for conservation to high-in-
tensity grasslands with up to five to six mowing cycles per year (Franke
et al., 2012). Future iterations may include more specific crop classes
(e.g. individual spring cereals, etc.) including some that were excluded
from the first analysis. Many of the selected classes may still contain
other crops that have not been classified due to their relatively small
share in overall land cover, e.g. leafy vegetables grown in the Rhine
valley being classified as sugar beet or potato. Also grapevine turned
out difficult to identify, as many of the vineyards are managed with
complete or alternating inter-row grass covers of very different species
composition, impeding the training for this class. As our training data

for vineyards was spatially restricted to Franconia in Northern Bavaria,
our classification does not achieve realistic mapping results for many of
the morphologically very different vineyards in the wine-growing re-
gions along the Mosel and Rhine valleys. With further training data sets
from these areas, higher accuracies are expected. Finally, it should be
noted that, while this study focused only on the mapping performance
using different image based datasets, the accuracy of area estimates can
be further optimized by combining map-based area estimates with
sample-based statistics (Gallego, 2004; Olofsson et al., 2014). Adjusting
mapped crop acreages using statistics based on map validation can
greatly improve area estimates and complement classification-based
mapping (Kontgis et al., 2015).
National-scale assessments of crop and land cover are of great value

for many subsequent analyses such as environmental impact assess-
ments or investigating the effects of (supra-) national policies such as
the EU CAP. Especially in combination with mapped agricultural
management activities, crop type maps can enter into crop growth and
agro-ecosystem models for simulations of yields, nitrate leaching, water
loss, greenhouse gas emissions and more, towards monitoring of en-
vironmental variables that are otherwise difficult or impossible to
measure across large areas. Simulation modeling on the basis of a fine-
scale observed land cover map will also support the consideration of
other ecosystem services in landscape management and optimization.
These observed maps will gradually replace aggregated land-use ap-
proaches, in which the aggregation step is another source of uncertainty
of the simulation result (Hoffmann et al., 2016), and improve large-
scale assessments currently based on single-crop evaluations (Eitzinger
et al., 2013; Asseng et al., 2015; Donatelli et al., 2015) by a much more
elaborated crop distribution. This is especially important for assess-
ments of long-term carbon dynamics in agricultural soils (Taghizadeh-
Toosi and Olesen, 2016; Wiesmeier et al., 2016) and related emissions
(Blanke et al., 2017).

7. Conclusions and outlook

The presented results show that the combined use of Sentinel-2A
and Landsat data provides an improved number of observations to map
the distribution of crops over large areas using a compositing processor
optimized for narrow temporal intervals. This capability will be further
improved by adding data from Sentinel-2B. Moreover, Sentinel-1 C-
band radar data can provide weather-independent and complementary
observations that could further enhance such analyses. As we found
that short compositing intervals improve the mapping accuracy for
most crops, future research may focus on creating a deeper under-
standing concerning critical phenological periods for different classifi-
cation problems in different regions of the world. Crops like maize,
rapeseed, sugar beet but also cereals are overall well detected and the
narrow 10-day interval clearly outperforms seasonal features and leads
to slightly higher accuracies compared to monthly features. The explicit
derivation of phenology parameters bears great potential to further
improve insight on land use and management of different classes that
goes beyond conventional mapping. Here the expected increase in ef-
fective observation frequencies through Sentinel-2B will be crucial.
Multi-sensor integration will commonly face problems of non-corre-
sponding bands. Our results show, that using a simple proxy for missing
red edge observations in OLI, improves mapping performance in gen-
eral and specifically for crop classes. Moreover, gap-filling procedures
applied to time series of 10-day interval composites further improves
the machine learning based prediction of crop and land cover classes.
Further research into more sophisticated approaches for gap filling or
red edge proxy value generation bears great potential for time series
based crop and land cover mapping. Analysis ready data such as
available from HLS and higher-level gridded products, such as the 10-
day composite time series, are highly valuable inputs for scaling crop
type mapping to national scales and beyond.
Having produced a first single-year wall-to-wall crop map, one can
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soon expect multi-year analyses that disentangle crop rotation patterns
using similar processing and analyses approaches. With respect to agro-
ecosystem modeling, feeding observed crop rotations into simulations
are expected to improve future yield and soil carbon assessments sig-
nificantly, replacing the gross assumptions that still need to be made for
current scenarios, and getting away from pretty unrealistic single-crop
evaluations. While current, process-based agro-ecosystem simulation
models, are already fit for purpose (Kollas et al., 2015), the required
input data products for large-scale simulations are still at the dawn of
becoming available. This also includes the simulation of grassland
biomass and quality dynamics for different applied purposes. Also here,
models are at hand (Kipling et al., 2016), but science still lacks ap-
propriate methods to inform them for simulations of grassland eco-
system services. The presented intra-annual reflectance composites re-
present a milestone on this way towards model-data fusion for
environmental monitoring and assessment. The crop and land cover
map produced in this study is accessible under https://doi.pangaea.de/
10.1594/PANGAEA.893195.
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