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Abstract: Monitoring land degradation (LD) to improve the measurement of the sustainable develop-
ment goal (SDG) 15.3.1 indicator (“proportion of land that is degraded over a total land area”) is key
to ensure a more sustainable future. Current frameworks rely on default medium-resolution remote
sensing datasets available to assess LD and cannot identify subtle changes at the sub-national scale.
This study is the first to adapt local datasets in interplay with high-resolution imagery to monitor
the extent of LD in the semiarid Kiteto and Kongwa (KK) districts of Tanzania from 2000–2019.
It incorporates freely available datasets such as Landsat time series and customized land cover
and uses open-source software and cloud-computing. Further, we compared our results of the LD
assessment based on the adopted high-resolution data and methodology (AM) with the default
medium-resolution data and methodology (DM) suggested by the United Nations Convention to
Combat Desertification. According to AM, 16% of the area in KK districts was degraded during
2000–2015, whereas DM revealed total LD on 70% of the area. Furthermore, based on the AM, overall,
27% of the land was degraded from 2000–2019. To achieve LD neutrality until 2030, spatial planning
should focus on hotspot areas and implement sustainable land management practices based on these
fine resolution results.

Keywords: land degradation neutrality; SDG; land productivity; land cover; NDVI; Landsat;
vegetation-precipitation relationship; soil organic carbon; Google Earth Engine

1. Introduction

Land degradation (LD) is defined as the “continuous reduction or loss of the pro-
ductivity of the land due to a combination of natural and anthropogenic causes” [1]. It
is a global problem and affects people, their livelihoods and nature. Studies suggest that
up to 3.2 billion people live and depend on degraded lands [2] and that approximately
a quarter of the world’s lands are affected by LD [3,4]. Poor people, who often rely on
agriculture, are most vulnerable to LD [5,6]. Lost ecosystem services due to land use and
land cover (LULC) change and LD account for up to USD 10.5 trillion loss per year, which
is about a sixth of the world’s gross domestic product (GDP) [7]. Furthermore, biodiversity
is declining globally, with tremendous losses in sub-Saharan Africa because of LD [6].
Projections suggest that lower productivity in the face of climate change will drive LULC
change globally. Moreover, the population growth, combined with a changing diet, will
have an enormous influence on agriculture and thus LD [8]. It is for these reasons that the
world community introduced the sustainable development goal (SDG) 15.3, which aims to
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“restore degraded land and strive to achieve an LD-neutral world”, highlighting the global
importance of this issue [9,10].

Tanzania is a hot spot of LD, with more than half its area showing signs of
degradation [2,11]. It has the highest annual forest area net loss in East Africa and the fifth-
highest worldwide [12]. The cost of LD has been summed up to USD 2.3 billion annually
in the first decade of the new millennium [13]. Seventy-five percent of the total labor force,
mostly rural people, work and depend on the agricultural sector, which is accountable
for about 30% of the GDP [14]. Although the cultivated area increased in the last years,
the output per hectare (ha) decreased, both in annual and perennial crops, even though
fertilizer consumption quadrupled at the same time [15]. The number of undernourished
people is growing and is currently more than 30% [16]. The population is increasing while
agricultural productivity is stagnating, and the economic dependency on natural goods is
still high. The consequences of this dilemma area persisting pressure on land and, thus, a
probable conversion of natural into cultivated land in the coming years. The poor people’s
food security is also at risk, and in the coming years, in the face of climate change, new
insecurities are likely to arise [17]. This holds especially true for the rural semiarid central
districts of Kiteto and Kongwa (KK).

Agricultural intensification and sustainable land management (SLM) are keys to halt
and reverse LD [18–20]. One major constraint that prevents action is the lack of spatial
information on the extent and magnitude of LD [18]. In contrast to the laborious fieldwork,
remote sensing offers the unique opportunity to consistently assess vast areas over a long
period [2–4]. Unfortunately, the existing LD maps have a coarse spatial resolution and
provide inconsistent estimates of the affected area [8]. For example, previous estimates of
the extent of LD in Tanzania range from 41% to half of the country [2,3,11]. These variations
emanate from differences in definitions of LD, monitoring methods and lack of appropriate
data [6,21]. In the course of SDG 15.3 implementation, standard methods for assessing LD
were introduced, making reports more comparable.

This new standard methodology, recommended by the United Nations Convention
to Combat Desertification (UNCCD), includes the usage of three sub-indicators for the
complimentary assessment of LD [22]. The first sub-indicator, land cover (LC), reports
changes in vegetation cover. The second, land productivity (LP), captures changes in
ecosystem functions. The last, soil organic carbon (SOC), indicates slower changes resulting
from biomass alterations [20]. The three sub-indicators are aggregated to form the land
degradation indicator. Improvements in one indicator cannot compensate losses in others,
as they are complementary and not additive. Thus, the “one-out, all-out” approach is
applied whereby even if one indicator shows signs of decline and the others are positive,
the land is deemed to be degraded [23].

The recent Tanzanian national LD-neutrality (LDN) report follows these guidelines [24].
However, it only assesses LD for the first ten years of the 21st century and mainly uses
global default data with a coarse spatial resolution. The 1 km coarseresolution is inadequate
to monitor LD in small mountainous and highly fragmented landscapes, as it may miss
out on smaller than pixel size LD areas [25].

Overall, only a few studies have been published on the subject of SDG 15.3.1 mon-
itoring and assessment. Gichenje and Godinho [26], for example, conducted a baseline
assessment of the SDG indicator 15.3.1 for the years 1992 to 2015 using the Advanced
Very High Resolution Radiometer (8 km, AVHRR) Normalized Difference Vegetation In-
dex (NDVI) time series and the European Space Agency (ESA) Climate Change Initiative
(CCI) LC map in Kenya. In Mozambique, Frederique et al. [27] analyzed only the LD
sub-indicator LP trend using the Moderate Resolution Imaging Spectroradiometer (250 m,
MODIS) NDVI from 2001 to 2016.

However, these studies share the common disadvantage of applying only default
methodology and global datasets for national and subnational LD assessments. Though
Akinyemi et al. (2020) used a customized 30m resolution LC map to assess the LC sub-
indicator of SDG 15.3.1 in Botswana, this study relied on AVHRR time-series assessment
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for the LP sub-indicator. Furthermore, no studies exist in Africa that used high-spatial-
resolution datasets the assessment of more than one sub-indicator of SDG 15.3.1. Therefore,
it is vital to overcome the existing research gaps and use high-resolution spatial data to
provide improved information on the SDG 15.3 [28].

In this light, the main aim of our study was to assess the SDG 15.3.1 indicator based
on the newly adopted approach based on the higher resolution (compared to default
UNCCD datasets) 30m Landsat time series and 30m LC maps and compare our results to
the estimates of the SDG 15.3.1 based on the default UNCCD data and methods.

Our study addressed the following research questions:

• How much land is degraded, and where are the hotspots of LD in KK?
• How do the individual sub-indicators affect LD?
• Does using higher resolution data (30 m) improve the delineation of LD compared to

moderate-resolution data (250 m)?

2. Materials and Methods
2.1. Study Area

The study site is situated in Kiteto and Kongwa districts, located in Dodoma and
Manyara regions of Central Tanzania, respectively (Figure 1). The elevation ranges between
850 and 2100 m above sea level. The study area has a hot arid steppe climate [29]. The
average monthly temperature stays between 19 and 25 ◦C all year, and the precipitation
is roughly 600 mm a year, with interannual differences of 500 to 800 mm. Large parts of
northern Kiteto and more minor areas of the mountainous region in Kongwa are protected
areas for nature and landscape conservation.

2.2. Materials

The SDG 15.3.1 indicator and its three LDN sub-indicators were computed using the
recommended default method (DM) with Trends.Earth [30] and the adapted methods (AM)
using high-resolution Landsat (and other) datasets (Table 1).

Figure 1. Location of the study area in Central Tanzania (A,B) and protected areas (C).
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The DM (LC) map provided by the UNCCD is based on the 300 m ESA CCI LC map
(Table 1). The AM utilized 30 m LC maps for 2000–2018 in the study area that the Regional
Centre for Mapping of Resource for Development (RCMRD) developed. Both datasets were
disaggregated into the six LC classes as defined by Intergovernmental Panel on Climate
Change (IPCC), i.e., forestland, grassland, cropland, wetland, urban, and otherlands [31].

The recommended global default dataset uses the MOD-13Q1-coll6 (250 m) MODIS-
NDVI products [30]. In contrast, the AM was calculated based on a 30 m resolution NDVI
from a combination of Landsat 5, 7 and 8 (Table 1). The Landsat time series were accessed
and analyzed using Google Earth Engine [32], based on atmospherically corrected surface
reflectance collections (Table 1). The Landsat 5 and 7 data were spectrally harmonized with
Landsat 8 series using linear transformation [33]. As a further step to improve the image
quality, the fmask was adopted to mask out clouds and cloud shadows [34,35]. Generally,
the images with cloud cover scores higher than 80% were removed. Finally, the NDVI
was calculated for each image, and then the images of the same admission time were
merged and clipped to the extent of the study area. As it is recommended to constrain
the observation period to the growing season to reduce the number of irrelevant assets
for the computation and enhance the quality of the time series [22], we used the imagery
from November to June. When using Trends.Earth, there is no possibility to apply the
computation to the growing season, so the DM uses the whole calendar year. In order to
integrate the rainfall information, data from Climate Hazards Group InfraRed Precipitation
with Station (CHIRPS) were used (Table 1).

Table 1. The datasets used for land degradation neutrality (LDN) reporting. For the land cover, the European Space Agency
Climate Change Initiative (ESA-CCI) and the Regional Center for Mapping of Resources for Development (RCMDR) were
used. Land productivity is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat. The
precipitation is based on the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). Lastly, the soil
organic carbon content is derived from SoilGrids250m.

LDN
Sub-Indicators Method Data Resolution/Year Reference

Land Cover
Default Method (DM) ESA-CCI 300 m (2000–2015) [36]

Adapted Method (AM) RCMRD 30 m (2000–2018) [37]

Land Productivity

DM MOD-13Q1-coll6 250 m (2000–2015) [38]

AM
Landsat 5 30 m (2000–2013)

[39]Landsat 7 30 m (2000–2019)
Landsat 8 30 m (2013–2019)

DM/AM CHIRPS 0.05 arc◦ (2000–2019) [40]

Soil Organic Carbon DM/AM SoilGrids250m 250 m [41]

The SOC metrics were derived from the SoilGrids250m dataset [41] for the DM and
the AM, as there is no national SOC database for Tanzania. SOC is measured at a depth of
30 cm and is stated as mass per area (e.g., tons per hectare (t/ha)) [22].

2.3. Methods

The calculation of the SDG 15.3.1 indicator is based on the “one out, all-out” approach
(Ref. [23] and Figure 2). The three LD sub-indicators (LC change, LP decline and loss of
SOC) are estimated, and if one indicator signals degradation, the LD indicator will reflect
this as well. A baseline is needed to compare the progress of LDN. The baseline year (t0)
was set to be 2015 and is computed as the average of the period leading up to t0 (2000–2015).
The indicators are then remeasured in regular time intervals leading to 2030, and change is
used to monitor the progress to accomplish LDN [20].
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Figure 2. Steps to derive the sustainable development goal (SDG) indicator 15.3.1 from the sub-indicators. I represents
Improvement, S represents Stable and D represents degraded (based on [31]).

To calculate the indicator for the reporting year 2019 (t1), it is necessary first to assess
the baseline util t0 and then calculate the change from the baseline to t1 (Figure 2). As a final
step, combine both results. The details of the calculation of each indicator are explained in
the following section. The three LD sub-indicators were created from satellite images using
cloud-based geospatial computing. The indicators were calculated using Trends.Earth [30]
and Google Earth Engine [32] for the DM and AM, respectively. As Trends.Earth currently
only enables the computation for the baseline period (BP), the DM is only available from
2000 to 2015.

2.3.1. Sub-Indicator 1: Land Cover Transitions and Degradation

The first SDG 15.3.1 indicator is the LC change. To assess the LC degradation, the
transitions between 2000–2015 and 2015–2018 were analyzed for the baseline and the first
monitoring period (MP), respectively. To determine whether changes from one LC class to
another are interpreted as degradation, a change matrix can help visualize the transitions
(Table 2) based on the Good Practice Guidance by the UNCCD [31]. It is recommended
to adopt this matrix for the national context. Therefore, transitions from grasslands to
croplands were not considered LD for the AM to avoid tradeoff between ecosystems and
food security and between nomadic and sedentary living.

2.3.2. Sub-Indicator 2: Loss of Land Productivity

LP is described as “the biological productive capacity of the land”. It is closely
associated with net primary productivity [42], which can be measured directly with earth
observation methods [22]. NDVI is a widely used index detecting LP [26,43,44]. The LP
sub-indicator consists of three distinct components, namely trend, state and performance.

The LP trend component measures the trajectory of change in productivity over time.
It is calculated at the pixel level using linear regression and the Mann Kendall significance
test [22,45,46]. Positive and negative changes in NDVI indicate increasing and decreasing
productivity associated with vegetation recovery and degradation, respectively. The eight
most recent years of data were used to create a new distinct and significant time series
that is more responsive to present land conditions. Further, following [47], we accounted
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for the effect of rainfall variability on vegetation productivity trends by using the rain use
efficiency (RUE) method.

The LP state component represents recent changes in LP compared to the BP. The
yearly NDVI mean images of the shortened BP (2000–2012) were normalized and assigned
to classes from 1 to 10 based on their percentiles. To avoid annual fluctuations, contem-
porary values of the three-year anteceding t0 and t1 were classified in this scheme. Areas
with a reduction of two or more classes were classified as degraded, while the rise by two
categories was interpreted as an improvement [31].

The LP performance component examines local productivity compared to similar
ecoregions defined by the unique combination of SoilGrids [41], soil taxonomy great groups
and LC classes (Table 1). The 90th percentile in each ecoregion was calculated as a proxy
for the maximum productivity level. The LP performance was then calculated based on
the ratio of the observed mean NDVI value per pixel and the NDVImax (90th). Values below
0.5 indicate regions where the LP is low and LD may prevail [31].

The overall LP sub-indicator is calculated based on the three components mentioned
earlier. As the LP trend is based on a statistically significant test, it is most influential, and
its status determines LP degradation. Only if both LP status and LP performance show
negative results, does the LP indicator also show degradation [22]. If only the LP state
component shows degradation, this could indicate “early signs of decline” because the
other indicators may not have detected the most recent LD. Further, if only performance
shows degradation, there is no temporal trend, and the land is classified as “stable but
stressed” [22]. In contrast to the Good Practice Guidance by UNCCD, Trends.Earth (DM)
also incorporates the “early signs of decline” state component into the LP degradation [30].

Table 2. Land cover transition matrix (2000–2015) based on the adapted methods (AM). Green, beige and brown colors
indicate improving, stable and declining conditions of land cover categories, respectively. The area in km2 and the possible
cause of the land cover transition are indicated in the matrix. The change is based on the high-resolution land cover dataset.

AM Land Cover Category in 2015 (km2)
2000 Total (km2)

Forestland Grassland Cropland Wetland Urban Otherland

A
M

la
nd

co
ve

r
ca

te
go

ry
in

20
00

(k
m

2 )

Forestland Stable
1969.4

Vegetation loss
226.8

Deforestation
237.5

Inundation
9.2

Deforestation
3

Vegetation loss
72.7 2519

Grassland Afforestation
36

Stable
6932.4

Agricultural
expansion

806

Inundation
26.4

Urban
expansion

40.4

Vegetation loss
253.5 8094.6

Cropland Afforestation
24.1

Withdrawal of
agriculture

221.8

Stable
3622.3

Inundation
10.3

Urban
expansion

14.7

Vegetation loss
76.2 3969.3

Wetland
Woody

encroachment
3.1

Waterbody
drainage

53.4

Waterbody
drainage

77.3

Stable
131.4

Waterbody
drainage

3.4

Waterbody
drainage

28.5
297.1

Urban Afforestation
0.4

Vegetation
establishment

11.4

Agricultural
expansion

32.8

Wetland
establishment

0.5

Stable
141.5

Withdrawal of
settlements

7.3
193.8

Otherland Afforestation
7.6

Vegetation
establishment

118.2

Agricultural
expansion

149.7

Wetland
establishment

15.1

Urban
expansion

8.1

Stable
1718.9 2017.5

2015 total (km2) 2041 7563.9 4925.6 192.9 211 2157 17,091.4

2.3.3. Sub-Indicator 3: Degradation of Soil Organic Carbon

The Good Practice Guidance for the SOC sub-indicator is based on the maximum
equilibrium SOC content at a location that is controlled by environmental factors such as
rainfall, evaporation, solar radiation, and temperature [22]. The content can change based
on three distinct change factors: First, the land-use factor represents SOC stock changes
based on the type of land use. Second, the management factor reflects the management
practice of the land use (e.g., grazing intensity on grasslands). Third, the input factor
represents the different amounts of carbon input into the soil [22,48,49]. While the LULC
change factor can be used with LC as a proxy, there are presently no sufficient datasets
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available to provide information about the management or the input for the other two
indicators. Thus, the only indicator to assess SOC changes is the second LD indicator LC
change [22].

3. Results

Three sub-indicators, namely LC transitions, LP decline, and SOC loss, were estimated
to derive the SDG 15.3.1 indicator using the default and adapted methods. The patterns of
each sub-indicator based on DM and AM are described in the following sections starting
with the BP from 200 to 2015 for both DM and AM. The first monitoring period from 2015
to 2019 is only assessed using the AM, as the data necessary for this period are currently
not available in Trends.Earth.

3.1. Sub-Indicator 1: Land Cover Transitions and Degradation

According to the DM based on the medium-resolution 300 m LC maps, over 99% of
the study area remained stable in the BP (2000–2015) (Table A1). Urban areas covering
less than 0.1% of the study area experienced the highest relative expansion (56%). The
forestlands were the only other LC class that increased in area significantly (4.4%) in the BP.

In contrast to the DM, the AM with high-resolution (30 m) LC data revealed that
6.7% of the total area changed to a less desirable LC class, signifying LD, and only 2.3%
of analyzed areas improved. The area of (semi)natural LC, such as forestlands (−19%),
grasslands (−6.6%) and wetlands (0.1%), mostly declined, whereas the croplands recorded
the highest spatial gain (24.2%) (Figure 3 and Table 2).

Figure 3. Sankey plot describing the land cover transitions between the years 2000, 2015 and 2018 using high-resolution
land cover data. Bands represent the actual proportion of land that changed class over time.
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The trend observed in the BP continued in the first years of the MP (Figure 3 and
Table A2). Overall, from 2015 to 2018, 3.3% of the total area was degraded during the MP,
while 1.2% of the area changed to a more desirable LC. Grass- and forestlands continued to
decline by 3 to 9%, respectively, while anthropogenic(-influenced) covers such as cropland
and urban areas expanded. Compared to about 3000 ha forests lost per year (a) in the BP,
the rate doubled to 6000 ha/a in the MP. Similarly, the changes in croplands increased from
6000 ha/a in 2000–2015 to 7500 ha/a in 2015–2018.

3.2. Sub-Indicator 2: Loss of Land Productivity

The DM revealed that the LP sub-indicator showed degradation in 71.1% of the
area during the BP from 2000 to 2015 (Table 3). The LP component trend showed “de-
cline” in 26.8% of the area (Figure A1A). Another 44.3% of the study area showed “early
signs of decline” (LP component state, Figure A2A), and the rest (28.9%) remained stable
(Figure 4A). According to DM, croplands were most affected (48.4%) by LP decline in
2000–2015 (Figure 5). Forestlands with only about 11.7% marked as degraded were less
affected compared to their actual LC share (Figure 5).

Table 3. The land productivity (LP) status in percent for the default (DM) and adapted methods
(AM) for the baseline period from 2000 to 2015, as well as for the first monitoring period of 2015-2019.
Furthermore, the land cover share of the degraded area in the target year is depicted.

DM
2000–2015

AM
2000–2015

AM
2015–2019

LP Status (%)
Degraded 71.1 8.2 12.2

Stable 28.9 91.3 87.7
Improved 0 0.5 0.1

Figure 4. The land productivity sub-indicator generated using (A) the default approach with MODIS imagery, (B) the
adapted approach with Landsat imagery for the baseline period, and (C) the adapted approach with Landsat imagery for
the monitoring period 2015–2019.
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Figure 5. The bar chart showing the distribution of land productivity (LP) decline sub-indicators over the land cover classes
using the default (DM) and adapted methods (AM). The dashed lines show the actual land cover share.

Based on the AM applied between 2000 and 2015, the final composite indicators of LP
decline revealed that 8.2% of the study area was degraded between 2000 and 2015 (Table 3).
This is nearly entirely based on the 8.2% “decline” of the LP trend component (Figure A1B).
Further, 9.1% and 1.4% of the study area were marked as showing “early signs of decline”
(Figure A2B) and “stable but stressed” areas (Figure A3B), respectively (Figure 4B). Grass-
and croplands accounted for 43.5% and 42% of the degraded area (Figure 5). The decline in
forestlands was, in turn, detected only on 2.6% of the total degraded area.

LP declined over 12.2% of the study area during the MP from 2015 to 2019 (Figure 4C).
With an increase from 9.1% up to 17% of the area, the share of areas with “early signs of
decline” (state component) was higher than during the BP (Figure A2). The area where LP
was improving was reduced from 855 to 171 km2 compared to the BP.

3.3. Sub-Indicator 3: Degradation of Soil Organic Carbon

Soil organic carbon was not directly computed but rather assessed through LC classes’
alteration and the related change factors [49]. SOC did not change significantly with the
DM during the BP from 2000 to 2015: 99.9% of the land did not change the in SOC content
by more than 10% (Table 4). Changes in the individual LC classes were also neglectable.

In contrast to DM, the AM approach revealed that during the BP of 2000–2015, 8.4%
of the land was degraded due to SOC diminishment, while 2.1% increased in SOC content
(Figure 6). The average SOC stock declined from 51.2 to 50.2 t/ha in 2015, losing 1,592,423 t
of carbon over 16 years (Table 4). Forestlands had significantly higher SOC stocks (62.2 t/ha)
at t0 than the other LC classes. Based on the transitions in LC, the amount of SOC in forests
dropped by 19%, while SOC under agricultural use increased by 25.1%.
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Figure 6. The soil organic carbon sub-indicator generated using the adapted approach with SoilGrids250m for the (A)
baseline and (B) monitoring period.

In the MP, the SOC content experienced significant losses on 3.7% of the land. The
same trend was observed in other LC classes (forest-, grass- and wetlands) that gradually
lost SOC in the MP (Table 4).

Table 4. The soil organic carbon (SOC) content for the default (DM) and adapted methods (AM) for
the baseline period from 2000 to 2015 as well as for the first monitoring period of 2015–2018.

DM SOC AM SOC AM SOC

2000 2015 2000 2015 2018

Status (%)
Degraded 0.1 8.1 3.7

Stable 99.9 90 94.7
Improved 0 2 1.7

SOC (t/ha)

Study area 51.2 51.2 51.2 50.2 49.9
Forestland 54.7 54.7 63.2 62.2 62
Grassland 55 55 50.7 49.7 49.5
Cropland 46.2 46.2 46.5 46.9 46.9
Wetland 45.1 45.1 49.2 47 46.7
Urban 36.2 36.2 39.5 42.8 42.8

Otherland 0 0 46.2 47.6 47.6
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3.4. Combined Sustainable Development Indicator 15.3.1 for the Baseline and First
Monitoring Period

During the BP from 2000 to 2015, the DM method identified 71.1% of KK’s area as
degraded and only as 0.5% improved (Figure 7A). This result is mainly caused by the sub-
indicator LP, while the two other indicators LC and SOC showed nearly no degradation.
The LP degradation was mainly driven by the state component of LP in 70.3% of the
total area.

Figure 7. The sustainable development goal (SDG) 15.3.1 indicator “proportion of land that is degraded over total land
area” for the baseline period with the (A) default and (B) adapted methods, and (C) for the first monitoring period using
the adapted method.

On the contrary, during the BP, the AM showed that 16.4% of the area was degraded
and 2.7% improved (Figure 7B). The distinct sub-indicators influenced the final indicator
more evenly with 52.4%, 50% and 31.7% by SOC, LP and LC, respectively, compared to
the DM.

The AM for the first MP (2015–2019) showed that 16% of the total area was degraded,
1.5% improved and more than 82% remained stable (Figure 7C). Forests and grasslands
were the least affected among LC classes. Croplands (38%) and wetlands (7%) experienced
the most degradation between 2015 and 2019. Over three-fourths of the degradation was
driven by the LP sub-indicator, whereas LC and SOC only contributed 20% and 23% to
LD, respectively.

3.5. Combined Sustainable Development Indicator 15.3.1 over 20 Years Using the AM

Over the whole period of 20 years (2000–2019), which results in the SDG 15.3.1
indicator at timestep t1, 27.7% of KK was degraded, and 2.8% of KK improved (Figure 8A).
Thus, the LD was widespread across the two studied districts and formed several LD
clusters (Figure 7B,C). The degradation was not equally distributed over the study area:
the biggest LD hotspots were Central and Western Kiteto, as well as Western Kongwa
(Figure 8A). Even though the land covered by forests decreased and the land covered by
crops increased from 2015 to 2018, the degraded proportion changed conversely as follows:
The degraded area covered by forests increased to 3.9%, while the area covered by crops
sank to 41.9%. While SOC’s degraded area only changed slightly, the relative contribution
sank from 50 to 30% (Figure 8B). The degraded area, which is solely influenced by LP, rose
over 50% and interplayed with others over 70%.
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Figure 8. (A) The sustainable development goal (SDG) 15.3.1 indicator “proportion of land that is degraded over total land
area” for the years 2000–2019 and (B) the contribution to the SDG 15.3.1 indicator by its three sub-indicators land cover (LC)
change, land productivity (LP) decline and soil organic carbon (SOC) loss.

4. Discussion

The presented study is the first in Africa to support the monitoring of the SDG 15.3.1
indicator using fine-spatial-resolution (30 m) satellite time series data for LD assessment.
This is a key contribution considering that previous studies used 250 m to 8 km resolution
data [24,26,50] for LP sub-indicator monitoring, unlike our study that utilized long-term
Landsat time series for SDG 15.3.1 monitoring. Furthermore, it is the first sub-national
study that assesses the SDG 15.3.1 indicator in Tanzania for the BP and includes the MP
until 2019. The first 4 out of 15 years of the SDG time frame are assessed and could
help identify hotspot areas for targeting the appropriate measures to combat LD in the
study area.

The presented LD assessment in KK districts confirmed that the LD problem is acute
in Tanzania. The Tanzanian target is to achieve LDN by 2030 [24]. Both KK are part
of declared LD hotspot regions, which need to improve 25% of the area based on the
status at t0. According to our analysis, only 2.7% of the land area has improved and
27.7% is degraded. Next to the (sub)national targets, there are also specific targets to avoid,
minimize and reverse LD in Tanzania [24]. Among others, about half of the current national
forest area should be restored, 50% of the national croplands should improve LP and the
SOC content in croplands should rise to 54.5 t/ha [51]. Despite these more specific and
ambitious targets, our results show a negative trend in all LD sub-indicators analyzed,
suggesting that more efforts are needed to combat LD in the study area.
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Precisely, instead of restoring forest areas, even more trees were cut over 19 years
(14.7% to 10.9% tree cover). In croplands, LP degradation was above average, while the
SOC content in croplands improved marginally. A possible explanation could be that
restoration attempts using SLM practices had not yet shown effects, because it takes several
years for the change to be monitored remotely [52,53]. Moreover, it takes decades for
SOC to change [49,54]. Hence, it is of paramount importance to prioritize the detected LD
hotspots for rehabilitation and SLM practices to reverse LD processes.

There are currently no sub-national studies for KK districts. With around 27% of the
area in KK being degraded, it is less affected by LD compared to national assessments
found in [2,3] or [11]. However, the comparison with these studies is difficult, as they
used different monitoring periods (ending in the 2000s and 2016) and only a subset of
the methodology (LP trend) and coarse resolution imagery (i.e., 8 km AVHRR data). This
suggests that our study brought LD assessment in Tanzania one step further by assessing
three components of LD according to the SDG 15.3.1 indicator. Further, using significantly
higher spatial resolution, spatial datasets allowed us to reveal spatial patterns of LD beyond
pixel sizes of 8 km [2,3,11] or 1 km [24].

Our study compared the results of the LD assessments based on default UNCCD-
suggested datasets (250 m MODIS data used for LP sub-indicator and 300 m ESA CCI
LC maps) and customized relatively high-resolution datasets (30 m Landsat data used for
the LP sub-indicator and 30 m RCMRD LC maps). The resulting differences between LD
estimates based on DM and AM were striking and could be primarily attributed to the
difference in the pixel size of 6.25 ha (MODIS) versus 0.09 ha (Landsat), which could be
critical in specific areas where fine LD patterns prevailed. This finding is confirmed by
several studies highlighting the importance of using high-resolution imagery to detect LD,
especially on heterogeneous landscapes, such as KK districts, dominated by heterogenous
small-scale farms [50,55,56]. Recent studies that used ground-truth data for validation
showed that using Landsat data for the LC sub-indicator captured LD better than using
ESA-based 300 m datasets [50]. Nevertheless, certain factors could have impacted the
AM, such as the scan-line failure in Landsat ETM+ data. To reduce the potential negative
influence of this on our analysis, we applied several preprocessing steps confirmed to be
effective in similar studies [56].

NDVI was applied in this study, although it was affected by soil brightness in areas
with low vegetation cover. Other vegetation indices, such as MSAVI or MSAVI2, are less
sensitive to soil optical properties in less vegetated areas and, therefore, can be used to
detect a decline in vegetation productivity [57]. However, the alternative indices have
significantly better results than NDVI only in areas where bare soils prevail. Further,
Tüshaus et al. [58] compared NDVI with the Soil-Adjusted Vegetation Index (SAVI) and
MERIS-based Terrestrial Chlorophyll Index (MTCI). The results indicated only little dif-
ferences between the different vegetation indices. Nevertheless, the impact of different
vegetation indices on the estimated LDN sub-indicators can be further tested.

Furthermore, our results pointed out that the ESA CCI LC did not reflect significant
LC changes during the BP in KK districts. Other local estimates, such as the National Forest
Resources Monitoring and Assessment of Tanzania Mainland [21] or Tanzanian Forest
Reference Emission Level [59], suggest a change rate that is three to twenty times higher,
respectively, for a similar period analyzed. Our result is in line with the study of Kimaro
et al. [60], who investigated the LC change for the study area from 1987 to 2010. Their
study indicated that the LC change was already in progress over 30 years ago with heavy
declines in (semi)-natural landscapes. This suggests that our research offers advancement
of sub-national assessment of LD in heterogeneous landscapes.

Our study revealed that the LP sub-indicator impacted LD in the study area the most
(by 50%) using the AM. The remaining half is affected by SOC, LC, or by the combination
of more than one sub-indicator. On the other hand, the LD indicator using the DM is
nearly solely affected by the LP sub-indicator, which is primarily driven by the state
component. This suggests two things: First, our AM is better suited to reflect the ongoing
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multidimensional degradation in KK districts. Second, even if the ongoing LULC change
stops, the degradation will not halt because of the decline in LP.

This is well reflected in croplands, which were the worst affected land cover class, not
only in LP decline but also in SOC loss. Due to the continuous cultivation of the agricultural
lands combined with overgrazing and little fertilizer inputs, the crop yields in the study
area are reportedly low, caused by the limited availability of soil nutrients and organic
matter content [18]. Another study that assessed LD in Kenya in similar environmental and
land use settings found that croplands experienced the highest decline in LP, indicating that
unsustainable farming practices are widespread throughout Eastern Africa [26]. This has
serious consequences, as already 30% of the Tanzanian population are undernourished [16],
and the yield gap for the main crops needs to be closed for the population to sustain itself
in the coming decades [61].

The soils in KK districts lost 1.6 million t of SOC due to LULC change from 2000–2018,
according to our study. This is especially dire, as SOC is vital for soil quality and is a
key ecosystem indicator [62]. The study by van der Esch et al. [63] suggests that due to
LULC change, 27 Gt of SOC will be further lost globally by 2050, mainly in sub-Saharan
Africa. Studies conducted in Tanzania found that higher SOC values on the farm level
resulted in financial benefits for the farmers [64]. Thus, increasing SOC via SLM practices
would not only improve farmers’ living conditions but also allow slowing down ongoing
SOC degradation.

In contrast to the LP and LC sub-indicators, which have a continuous basis with
Landsat and Sentinel missions [65] and for which there are also further high-resolution
maps available [66], the SOC sub-indicator still lacks good spatial and temporal coverage.
Further, there are currently no sufficient datasets available to provide information about the
management or the input for the SOC indicator. Thus, the SOC change is only approximated
by the LC change sub-indicator, leading to a misbalance towards the LULC change in the
overall SDG 15.3.1 indicator. At the moment of the analysis, the high spatial resolution
SOC data by Innovative Solutions for Decision Agriculture (iSDA) based on [67] were not
available. Further work should thus address this limitation and incorporate per availability
high-resolution SOC data in the analysis, as well as conducting field validation of both
approaches. At the beginning of 2021, the UNCCD updated the first version of the SDG
15.3.1 good practice guidance and innovated the methodology [68]. Future studies should
therefore adopt this new approach in conjunction with newly available datasets.

The improvement of the subnational analysis with freely available data, the use of
cloud computing platforms, and the source code’s availability to perform LD assessment
present an opportunity to upscale the analysis further and transfer the methods to other
study areas.

5. Conclusions

The presented study demonstrates the potential of earth observation for LD monitor-
ing with high spatial resolution data and uses cloud computing approaches with Google
Earth Engine, and it improves the measurement of the SDG 15.3.1 indicator in the study
area in Tanzania up until 2015 and 2019 at two different levels of spatial detail. Our study
thus offers advancement of sub-national assessments of land degradation (LD) in hetero-
geneous landscapes. The improvement of the sub-national analysis with high-resolution
data, the use of cloud computing platforms and the provision of the source code used here
to perform LD assessment should encourage a transfer of the here presented approach to
other study areas and/or the upscaling of the results of this study to the national level.

For this, we compared two approaches of assessing the SDG indicator 15.3.1 in Kiteto
and Kongwa districts of Tanzania. The first method applied the global default (DM)
medium resolution datasets proposed by the UNCCD for monitoring LD for the baseline
period (BP, 2000–2015). The second method, the adapted method (AM), applied local land
cover 30 m maps and 30 m Landsat to monitor LD for the baseline and the first monitoring
period (MP, 2015–2019). The LD assessment for the BP reveals large differences between
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the DM and AM. Using the DM, nearly all degraded area stems from the LP sub-indicator
based on 250 m MODIS imagery. In contrast, the degradation was less than 1% for the LC
and SOC change sub-indicators, calculated based on ESA CCI LC (300 m) maps. The LD
captured by the AM based on Landsat time series and 30 m LC data was evenly distributed
between the three sub-indicators and revealed LD on 27.7% of the area. We, therefore,
concluded that the results derived from medium-resolution datasets are likely to over- and
underestimate the LD for different sub-indicators and, thus, might misinform policy- and
decision-makers and land managers if used operationally. Further, our study concluded
that the local datasets and high-resolution imagery are essential to capture subtle changes
within the heterogeneous landscape in semiarid central Tanzania.

Our results confirmed that LD is currently ongoing in the study area. The LD did
not halt after 2015 but spread further across the districts and formed several severe LD
clusters. Therefore, to achieve the national LDN targets, it is crucial to address the most
important LD causes, such as overgrazing and unsustainable farming in the study area.
The application of SLM practices would enhance the low LP in croplands and prevent
LULC change in KK districts.

Further work should incorporate high-resolution SOC data in the analysis and conduct
field validation of LD assessments resulting from both approaches.
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Appendix A

Table A1. Land cover transition matrix (2000–2015) based on the default methods (DM). Green, beige and brown colors
indicate improving, stable and declining conditions of land cover categories, respectively. The area in km2 and the possible
cause of the land cover transition are indicated in the matrix. The change is based on the moderate-resolution land
cover dataset.
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Table A2. Land cover transition matrix in km2 (2015–2018) based on the adapted methods (AM). Green, beige and brown
colors indicate improvement, stable and decline of land cover category, respectively. The area and the possible cause of the
land cover transition are indicated in the matrix. The change is based on the high-resolution land cover dataset.
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Figure A1. The land productivity component trend generated using (A) the default approach with MODIS imagery, (B) the
adapted approach with Landsat imagery for the baseline period, and (C) the adopted approach with Landsat imagery for
the monitoring period 2015–2019.

Figure A2. The land productivity component state generated using (A) the default approach with MODIS imagery, (B) the
adapted approach with Landsat imagery for the baseline period, and (C) the adopted approach with Landsat imagery for
the monitoring period 2015–2019.
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Figure A3. The land productivity component performance generated using (A) the default approach with MODIS imagery,
(B) the adapted approach with Landsat imagery for the baseline period, and (C) the adopted approach with Landsat imagery
for the monitoring period 2015–2019.
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