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Abstract

Climate change and a rapidly increasing population boost the pressure on Ttirkiye’s cropping systems
to increase crop production in order to meet rising food demand. It is unknown whether and in which
direction trends and variability in harvested area and yield separately affect crop production in
Tirkiye. The objective of this study was to (1) quantify the long-term (2004—2020) trends of planting/
harvested areas, yield and crop production for the 16 vital annual crops in Tiirkiye, (2) quantify the
separate contribution of harvested area and yield on crop-specific production variability and (3) the
potential of water and temperature-based remote sensing variables on capturing the variability of
harvested areas and yield. The harvested area of the most grown crops (10 out of 16) such as wheat and
barley showed a declining trend. However, the yield trend was increased for all of the study crops,
which in some cases overcompensated for the decline in the harvested area on crop production. The
harvested area showed a more robust explanatory power for production variability than yield except
for the crops with higher breeding investments and subsidized by authorities such as wheat and sugar
beet. The water-related remote sensing variables and combination of water and temperature variables
largely explained the variability of the harvested area in Tiirkiye. In order to stabilize crop production
in Tirkiye, better and more efficient water management plans are crucial.

1. Introduction

Tiirkiye is the fourth largest country (0.78 M km?) in the Middle East, with the region’s most extensive
agricultural lands (48% of the country area) (MoAF 2021). The mean temperature range of the country is
between <5 °C and >18 °C with the east to the west spatial patterns (figure 1(a)). The highest temperature
variability (>1.2 °C) is recorded in the central parts of the country (figure 1(b)). There is a significant variation in
annual precipitation sum between central Anatolia and northern Tiirkiye with less than 260 mm year ' and over
860 mm year ', respectively (figure 1(c)). The variability in annual precipitation sum is also significantly slighter
in dry regions compared to others (figure 1(d)). Tiirkiye is located in a climate transition zone, so it experiences
spatially diverse climatic conditions (Turkes 2020). The population increased from 27 M to 85 M during the last
60 years. The population is projected to increase to 96 M by 2050 (World Population Review 2022).

The primary crop production (based on FAO definition) in Tiirkiye increased from 31 M tonsin 1961 to
126 M tons in 2020 (FAO 2022). The crop production remarkably increased during the last few decades in
Ttirkiye; nevertheless, the net trade of the cereals sharply declined from +0.61 (1990-2000) to —1.71
(2010-2020) billion US dollars (FAO 2022) means the increment in production did not meet food demand for
the growing population. The reduction in crop total factor productivity has been reported from the mid-1990s
to the mid-2000s (Armagan et al 2010). As 0f 2020, there are only 0.57 million active farmers, down from 1.1
million in 2010 (MoAF 2021). The combination of shrinking in cropping areas (FAO 2022), long-lasting
drought spells (Turkes 2020, Katipoglu et al 2022, Rolbiecki et al 2022) and climate change (Chandio et al 2020)
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Figure 1. Spatial pattern of the mean and standard deviation of temperature (a)—(b) and annual precipitation sum (c)-(d) in the period
2004-2020at0.25° x 0.25° spatial resolution in Tiirkiye. The background polygons units indicate the water basin units.

are the main challenges threatening food security in Ttirkiye. The drought intensity is projected to increase by
the reduction in precipitation (up to 40%) across western, southern and central regions of Tiirkiye under
climate change (Sen eral 2012). The climate change projections showed +1.2 °C to +3.9 °C increase in mean
temperature by 2100, depending on emission scenarios (Gorguner et al 2019). A significant increase in crop
water demand is projected for south, west and southeastern areas of Tiirkiye under climate change (Nistor et al
2019). The climate change would result in a 16% to 43% decline in Tiirkiye’s wheat yield without effective
adaptation strategies (Vanli et al 2019, Kaya 2021).

To deliver sustainable food production, crop yields need to increase significantly to counteract the
remarkable decline in cropping areas during recent years (Giirsoy 2020). However, the investment in modern
agricultural technologies and infrastructure in Tiirkiye is challenging due to recent economic crises (Onig and
Kutlay 2021), field sizes (Kiropoulos et al 2021), and the lack of funding programs for farmers. The farm size in
Tirkiye is around 6 hectares which are relatively small (Giirsoy 2020). Importing more agricultural products and
restoration of arable lands would be other possible options. However, those options are deeply limited by ever-
growing food prices on the global scale, primarily driven by drought impacting pivotal crop producers (Santini
etal 2022) and a drastic upsurge in inputs prices (Ben Hassen and El Bilali 2022). The increment in current
irrigation intensity (45%) would also be challenging. Since it would lead to depletion of water resources (low
irrigation water use efficiency (43%)) (Arslan et al 2020) and soil salinity (Akga et al 2020) in Ttirkiye.

These challenges increase the pressure on food security in Ttirkiye, which has already been under pressure in
the recent decade (Giirsoy 2020). Thus, it is prime to understand what controls crop production (trend and
variability) to formulate effective adaptation strategies and improve food security. Harvested area and yield are
the main pillars of crop production. Most studies that explored the production response to environmental
variables focused on yield but not harvested areas (lizumi and Ramankutty 2015, Lesk eral 2016, Yu et al 2018).
However, performing large-scale assessments using point base observations is challenging. Remote sensing can
provide a comprehensive overview for capturing the signal of such drivers on harvested area and yield at regional
scale (Kern etal 2018, Joglekar et al 2019, Wolanin et al 2020, Abbasi et al 2021). It is unknown whether
contribution of harvested area and yield fluctuations in crop production variability is crop specific and whether
remote sensing is effective in monitoring these fluctuations in Tiirkiye. The study therefore aimed to (1) Analyze
the long-term trend and the contribution of harvest area and yield variability to the production of Tiirkiye’s 16
most cultivated crops and (2) evaluating the explanatory power of water and temperature-driven remotely
sensed variables in capturing the variability of the crop harvested area and yield in Tiirkiye.

2. Materials and methods

2.1. Data preparation and processing

The 16 most grown annual crops, as measured by planting area, harvested area, yield, and production including,
wheat (Triticum aestivum L.), Sunflower (Helianthus annuus L.), sugar beet (Beta vulgaris L.), Soybean (Glycine
max L.), Rice (Oryza sativa L.), Potato (Solanum tuberosum L.), Peas (Pisum sativum L.), Peanut (Arachis
hypogaea L.), silage maize (Zea mays L.), lentil (Lens culinars Medic.), faba bean (Vicia faba L.), cotton (Gossypium
hirsutum L.), chickpea (Cicer arietinum L.), canola (Brassica napus L.), bean (Phaseolus vulgaris L.), barley
(Hordeum vulgare L.) were extracted from agricultural statistics portal of Tiirkiye (MoAF 2021). Data from 2004
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Figure 2. The schematic overview of workflow regarding data extraction, processing the remote sensing data, and data analysis to
address the objectives in Tiirkiye. AET: actual evapotranspiration, PET: potential evapotranspiration, LST: land surface temperature,
NDWI: normalized difference water index.

to 2020 was available at the city level (81 cities). To better represent (noise removal) relationships among
variability of the yield /harvested areas and precipitation sum/remote sensing variables, the city scale data were
aggregated into 26 water basin units. The rainfed and irrigated data were only available separately for thelast9
years of the study period. Therefore, the rainfed and irrigated systems were not discretely analyzed (figure 2).

Using 2004 as a starting point, the planting area, harvested area, yield, and production trend were computed
for all crops. Each study variable in a specific year was multiplied by 100 and divided by the reported values in the
year 2004. Comparing diverse crops with a wide range of yield, harvested areas, and production was possible
through this calculation. The yearly harvested area of each crop was calculated relative to the total harvested area
to determine the change in the growing area of each crop during the study period. The ‘Rattle’ package in R was
used to describe the linear relationship between harvested area and crop yield (as independent variables) and
specific crop production (as dependent variable) (Williams 2011). The Lindeman, Merenda and Gold (Img)
metric (R” divided by averaging over orders) implemented in the R package ‘relaimpo’ was used to quantify the
percentage of response variance of independent variables on crop production (Gromping 2006). The statistical
method is widely used to quantify the importance of correlated predictors in the multiple linear regression
models (Carvalhais et al 2014, Musavi et al 2017, Yao et al 2018) as (Gromping 2006):

p—1 2
0| sctw oxiiimy (=D
n(S)=j !

where LMG (xy) is the average contribution to R* while adding regressor x to a model of size i without xy,
seqR?({x}1S) is the additional R* while adding x; to a model with the regressors in S (Siddiqui et al 2020) The
bootstrap resampling function provided in ‘relaimpo’ package was employed to examine the significance of a
difference between the study variables (Gromping 2006).

Standard and de-trended data were used for the statistical test. Using linear de-trending, the datasets were
de-trended for each crop (Rezaei et al 2015). Using de-trended data can indicate whether non-biophysical
variables (e.g. change in cultivars, agro-techniques and etc.), may affect the importance of study variables. The
climate data was attained from the ERA5 atmospheric re-analysis (0.25° x 0.25°) in the period 2004-2020
(Hersbach et al 2020).
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Figure 3. Linear trends of planting/harvested areas, yield and production of 16 annual crops during 2004—2020 in Tiirkiye (a). The
values indicate the change in percentage per year, with the year 2004 assumed as a reference year. The percentage of harvested area for
specific crops during the study period (b). HA: harvesting area, PA: planting area, P: production and Y: yield.

2.2.Processing of remote sensing data

Several remote sensing variables were derived to assess the variability of crop production. For this Moderate
Resolution Imaging Spectroradiometer (MODIS) based land surface temperature (LST) (8 day, 1 km) (Wan et al
2015), ratio between actual and potential evapotranspiration (8 day, 500 m) (Running et al2017) and
Normalized Difference Water Index (NDWI) (Gao, 1996) were extracted for the study area over the period of
2004-2020. The latter was derived using the Near-Infrared and Short Wave Infrared bands of MODIS
MODO09AL1 product (8 day, 500 m) (Vermote 2015) which makes it sensitive to water content variability of plants
(Gaoetal 2015).

The data was accessed and processed using Google Earth Engine (Gorelick e al 2017). For each of the
variables, the corresponding quality masks were used to exclude the pixles with reduced quality. Afterwards the
time series were aggregated to monthly time-step using the sum for AET and PET, and mean for NDWIand LST.
Finally, the data were aggregated to 0.25° x 0.25° degree to correspond with the resolution of ERA5 data.

2.3. Drivers of variability in yield and harvested area

The remote sensing variables, precipitation sum (from grid-scale data), yield, and harvested areas (from city
scale data) were aggregated to the water basin scale assessing the explanatory power of precipitation and remote
sensing for yield and harvested area variability (figure 2). The aggregation procedure to water basin scale was
performed as the city level units are not representative for distinct agro-climatic zones of the country. The
variability of the harvested area was computed as the relative deviation between the trend line and the sum of all
harvested areas for all study crops in specific years and water basin units. The parallel procedure was employed
for the calculation of yield variability. The yield variability for all crops was calculated based on harvested area-
weighted mean to add more weight to the crops with higher growing area each year and water basin units. The
coefficient of determination for linear regression was computed to quantify the explanatory power of
precipitation sum, AET/PET, LST, and NDWT in estimating the harvested area and yield variability during the
study period on water basin scale. Multiple linear regression was also used for testing the improvement of the
explanatory power of combined remote sensing variables on study variables. The relationships among
precipitation sum and difference between planting areas and harvested areas were calculated for wheat and
barley as the most grown areas in Tiirkiye, indicating the effects of drought on farmers’ avoiding harvest.

3. Results

The trend analysis results indicated that planting and harvested area decreased between —1% and <—4% per
year for 10 out of 16 crops since 2004 (figure 3(a)). Canola, maize, soybean, rice, peanut, and Sunflower showed
anincreasing trend (1% to >15% per year) for planting and harvested area during the study period (figure 3(a)).
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Figure 4. The relative contribution harvested area and yield on crop production for 16 vital annual crops using standard (a) and de-
trended (b) data in the period 2004—2020 in Tiirkiye. The higher the value, the greater the impact on crop production. The significance
means either harvested area or yield has a significant impact on crop production. NS = non-significant. The level of significance for all
non-significant crops was at 5% probability level.

However, the harvested areas of those crops ranged between <1% and 8% of total growing areas (figure 3(b)).
The yield trend was positive (up to 5% per year) for all crops during the study period (figure 3(a)). Production
and harvested areas were similar in trend signs (positive or negative) for 12 out of 16 crops. Despite this, only 10
of the 16 crops showed a similar trend between production and yield (figure 3(a)).

Using standard and de-trended data, the impact of harvested area on crop production and production
variability was substantially greater than yield for 12 and 14 crops out of 16 study crops, respectively
(figure 4). However, the yield effect on production variability was more robust compared to the harvested
area for wheat and barley as most grown crops in Ttrkiye. The difference between harvested area and yield
on production variability was insignificant for barley, potato, bean, and Sunflower (figure 4(a)). The
contribution of the harvested area to production variability was highest for canola, soybean, maize, and peas
(0.62—0.95) (figure 4). On the other hand, yield importance on production variability was topmost for sugar
beet, wheat, and barley among standard and de-trended datasets (0.33—0.77) (figure 4). De-trending data
showed arelatively similar pattern as standard data in the importance of harvested area and yield variability
on production variability for most (12 out of 16 crops) of the study crops (figure 4(b)). The variable
importance was switched by de-trending of standard data from yield to harvested areas for bean, potato, and
sugar beet. However, the driving factor of production variability was switched to yield for barley by de-
trending data (figure 4).

The explanatory power of precipitation sum, agricultural drought (AET/PET ratio), land surface
temperature (LST), Normalized difference water index (NDWTI), and a combination of them showed a
remarkably different performance in capturing the harvested area and yield variability during the study
period. In general, the harvested area (R = 0.14-0.50) variability was better explained than yield
(R?=0.10-0.41) using precipitation and remote sensing indexes (figure 5). NDWI and precipitation sum
indicated the best (R? = 0.16-0.30) and worst (R? = 0.13-0.14) explanatory power among the single
variables for both harvested area and yield variation (figure 5). The combination of RS variables showed a
substantial improvement compared to single variables. Multiple regression of AET/PET, LST and NDWI
explained half of the variation (R? = 0.50) in harvested areas over the study period (figure 5). The harvested
areas in marginal water basin units were better (R?> = >0.60) explained by RS compared to central parts of
Tirkiye (figure 5). Those units showed a high precipitation variability compared to central parts (figure 1).

There was a negative relationship between precipitation sum and area difference (planting - harvested areas)
for wheat and barley which are the most grown crops in Tiirkiye (figure 6). However, the relationship was only
significant for wheat. The wheat harvest failure reached almost 0.5 M ha in an extremely dry growing season in
2007-2008 (figure 6). Such a negative relation also confirms that the lack of water availability particularly during
anthesis and grain filling phases (terminal drought) would result in harvest failure at large scales (Nelson et al
2022).
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Figure 5. Coefficient of determination (R?) between variability of harvested areas,/yield and precipitation sum (a), AET/PET (b), LST
(), NDWI(d), AET/PET + LST (e) and AET/PET + LST 4+ NDWI (f) was obtained from single (a)—(d) and multiple (e)—(f) linear
regressions across Tiirkiye. AET: actual evapotranspiration, PET: potential evapotranspiration, LST: land surface temperature,
NDWI: normalized difference water index.

4. Discussion

Based on the findings of the current study, the overall increasing trend in yield on crop production in Tiirkiye is
crop-specific. For instance, in wheat, yield increments outweighed harvested area reductions, so production
increased. However, the reduction in the harvested area dominated the effects of yield increment on production
in barley. A similar discrepancy in various crop’s production responses to changes in yield and harvested area
trend had been captured for Iran, which is also located in the Middle East as a neighboring country (Rezaei et al
2021). Over the period 1985-2005, global crop production increased by 28%), of which 8% were the result of
expanded harvesting areas and 20% from improved yields (Foley et al 2011). However, the yield of major cereals
showed stagnation recently (Wiesmeier et al 2015, Xiong et al 2022) for different environments may affect the
balance of yield and harvested area on crop production.

It was shown in the present study that harvested area in Tiirkiye had a substantial impact on most of the
study crops’ production variability compared to yield. De-trending of data has not changed the importance of
harvested area on production variability, indicating the impact of technological changes on yield increment did
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Figure 6. The relationships among annual precipitation sum and difference between planting (PA) and harvested (HA) areas for barley
and wheat as most grown crops during 2004—2020 in Tiirkiye.

not influence the dependency of production variability on harvested area fluctuations. Closing the yield gap is a
research focus for meeting food demand and stabilizing food security under climate extremes (van Ittersum et al
2013, Weietal 2015, Liu et al 2022) since there is little room to extend cropland areas because of adverse
environmental consequences such as soil erosion, biodiversity loss, and soil salinization (Eitelberg et al 2015).
However, in order to have a comprehensive overview of crop production, it is necessary to conduct regional
assessments of harvested area gaps (Yu et al 2017).

A few studies have investigated the influences of harvesting areas on crop production, which revealed that
the harvested area had a surprisingly considerable impact on crop production principally under extreme
weather events (Marston and Konar 2017, Rezaei et al 2021). The intensity of drought stress significantly
increased in the period 1925-2016 (Topgu 2022) could lead to the decline in the extent of harvested area.
Drought can force farmers to concentrate the limited available water on smaller areas or abandon planting areas
because of meager yield (Iizumi and Ramankutty 2016). As this study captured sharp declines in harvested areas
of the most important crops in Tiirkiye, crop production would be more susceptible to extreme weather events
such as severe droughts under climate change.

The yield effect on sugar beet and wheat production was substantially more significant than on other crops.
However, the dominance of yield compared to the harvested area was eliminated after de-trending (figure 4). It
indicates the extended breeding efforts for sugar beet and wheat, particularly to improve yield under drought
stress (Keser et al 2017). Farmers are encouraged to cultivate wheat continuously through a variety of subsidiary
programs in Tiirkiye, reducing wheat imports and decreasing wheat harvest changes (Bishaw et al 2021).

Current results indicated the promising potential of remote sensing variables in cropping systems of Tiirkiye
on capturing the variability of the harvested area but relatively less capability for yield. They performed better
than the precipitation sum in explaining the variability of both study variables. It would be related better to the
spatial coverage of remote sensing data compared to reanalysis precipitation (Hersbach et al 2020) which is an
interpolated product from a limited number of climate stations. Water-related variables in remote sensing
products performed significantly better than a temperature-related index. It indicates the importance of water
availability as the primary driver governing the fluctuation of harvested area and yield at the country scale, which
is in line with the other studies in the Middle East (Rezaei et al 2021). On the other hand, combining water and
temperature-related variables boost their explanatory power by capturing variability of harvested area and yield.
As drought stress was projected to increase by up to 40% in summers under climate change, crop production’s
dependency on water availability will increase in Tiirkiye in the coming decades (Baggaci et al 2021).

Drought impacts on variability in planting and harvesting areas had been reported in a few studies. For
instance, severe droughtled to a 12% reduction in crop-harvested areas in California (Marston and Konar 2017).
Or asignificant reduction in the harvested area was reported in an extremely dry year compared to normal years
in India (Gumma, Yamano (2019)). However, the possible difference between planting and harvesting areas in
extremely dry years (particularly under terminal drought) needs to be carefully considered when remote sensing
variables are employed for detecting drought signals on crop production.

Itis important to note that this study has two major limitations. Firstly, no separate data were available for
irrigation and rainfed crops. The availability of such data would lead to exploring the trends of change in study
variables, system specific. It also aids in better understanding the effects of drought and compensatory impacts of
irrigation on harvested area and yield. However, a robust association between RS-driven indices and harvested
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area indicates either the size of rainfed areas is remarkably higher than irrigated areas or there is insufficient
water to meet the crop demand (Feitelson and Tubi 2017, Meza et al 2020). The second limitation is the
unavailability of detailed crop type maps. By constraining the indicators to the crop-specific growing seasons,
such information may significantly increase the relationships between harvested area and remotely sensed
water/temperature variables. To our knowledge for the study these types of maps are not available with a
sufficient frequency (ideally yearly) and detail (Rufin et al 2019). Crop specific maps powered by recent satellite
based time series, such as Sentinel-2 (Blickensdorfer ef al 2022) would improve the understanding of the impacts
on crops in a spatially explicit manner and can be an addition for further studies.

5. Conclusions

This study concludes the following based on its main findings: (a) growing areas of the most important crops in
Tirkiye were shrinking, but the yield improvement avoided the decline of production for a few of them, such as
wheat and sugar beet. (b) Crop production variability was primarily affected by harvested area than yield in most
of the study crops, regardless of technological advancements. (c) The water-related remote sensing variables and
the particular combination of water and temperature variables better explained the variability of harvested areas
and yield compared to precipitation sum. (d) Extreme dry years significantly increase the difference between
planting and harvesting areas of wheat as the most grown crop in Ttirkiye.
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