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Microplastic fibers affect dynamics and
intensity of CO2 and N2O fluxes from soil
differently
Matthias C. Rillig1,2* , Mathias Hoffmann3, Anika Lehmann1,2, Yun Liang1,2, Matthias Lück3 and Jürgen Augustin3

Abstract

Microplastics may affect soil ecosystem functioning in critical ways, with previously documented effects including
changes in soil structure and water dynamics; this suggests that microbial populations and the processes they
mediate could also be affected. Given the importance for global carbon and nitrogen cycle and greenhouse
warming potential, we here experimentally examined potential effects of plastic microfiber additions on CO2 and
N2O greenhouse gas fluxes. We carried out a fully factorial laboratory experiment with the factors presence of
microplastic fibers (0.4% w/w) and addition of urea fertilizer (100 mg N kg− 1) using one target soil. The conditions in
an intensively N-fertilized arable soil were simulated by adding biogas digestate at the beginning of the incubation
to all samples. We continuously monitored CO2 and N2O emissions from soil before and after urea application
using a custom-built flow-through steady-state system, and we assessed soil properties, including soil structure.
Microplastics affected soil properties, notably increasing soil aggregate water-stability and pneumatic conductivity,
and caused changes in the dynamics and overall level of emission of both gases, but in opposite directions: overall
fluxes of CO2 were increased by microplastic presence, whereas N2O emission were decreased, a pattern that was
intensified following urea addition. This divergent response is explained by effects of microplastic on soil structure,
with the increased air permeability likely improving O2 supply: this will have stimulated CO2 production, since
mineralization benefits from better aeration. Increased O2 would at the same time have inhibited denitrification, a
process contributing to N2O emissions, thus likely explaining the decrease in the latter. Our results clearly suggest
that microplastic consequences for greenhouse gas emissions should become an integral part of future impact
assessments, and that to understand such responses, soil structure should be assessed.
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Introduction
As a result of human activities, the load of reactive
nitrogen compounds (NH3/NH4, NO3

−, NOx, N2O) on
the earth has more than doubled in recent decades [1, 2].
This was accompanied by a doubling of the intensity of the
global nitrogen cycle. A main driver of this development
are intensified agricultural practices entailing increased

application of synthetic nitrogen fertilizers since the end of
the Second World War [3–5]. While ensuring food security
for an ever-growing world population [6], agriculture has
developed globally into a major source of climate-relevant
trace gases. This applies in particular to nitrous oxide. Agri-
culture accounts for 60% of the total man-made nitrous
oxide release [7]. The continuing increase in N fertilization
or N surplus in production also appears to be the main rea-
son for the unexpectedly strong acceleration in atmospheric
N2O concentration in recent times [8, 9]. Consequences for
the role of soils as sources and sinks of the important
greenhouse gas CO2 can also be expected, since the carbon
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and nitrogen budgets of soils are closely linked. This is es-
pecially true for the mineralization of soil organic matter as
a source of CO2 release from soils [10]. A prerequisite for
the reduction of land-use-related greenhouse gas emissions
is comprehensive knowledge of the relevant processes and
their regulation by internal and external drivers [11–13].
An important process that has been under-researched in
microplastic-affected soils is the emission of greenhouse
gases [14]. Despite its potential importance, compared to
other factors of global change, we have so far only
scratched the surface in terms of assessing microplastic im-
pacts on soil properties and processes in general [15–18].
Microplastic pollution is becoming increasingly

recognized as a factor of global change, affecting not
only aquatic but also terrestrial ecosystems and the soil
[17, 19]. Microplastics occur as primary microplastic or
secondary microplastic and in a wide variety of sizes,
shapes, chemistries and with a huge diversity of
additives. Microplastic particles are expected to arrive in
most ecosystems via aerial deposition [20, 21], but in
agroecosystems there are also other input pathways
including addition of sewage sludge or compost, which
have been estimated to represent rather large input
fluxes [16]. Once they have arrived in agroecosystems,
there are a range of plausible pathways (including plow-
ing) that lead to a transport of such particles into the
soil [22], where effects upon soil properties, processes
and biodiversity can then unfold. Previous studies on the
effects of microplastics have shown effects on soil organ-
isms, especially microorganisms, and chemical conver-
sion processes in soils [23–25]. Initial evidence also
pointed to soil physical properties being altered by
microplastics [26]. We have evidence that microplastic
can affect basic parameters including soil structure and
bulk density [15], and that the performance of biota can
be altered, which has been shown, for example for
earthworms [27], microbes [28], and for plant growth
[29–32]. However, the only study to date on the effect of
microplastics on the emission of climate-relevant trace
gases from soils does not address the impact of soil
physical properties on the greenhouse gas emission [28].
However, the fact that the intensity of N2O and CO2

release is very strongly determined by soil physical prop-
erties, irrespective of the amount of N fertilization, has
been shown in numerous studies. In a given soil with a
certain soil texture, parameters of the soil structure such
as air permeability, aggregate size distribution, and size
and design of pore space seem to play an important role.
On the one hand, they have a direct influence on the
movement of the gases via mass flow and diffusion in
the soil in a variety of ways and thus also the emission
of greenhouse gases [33–41]. On the other hand, they
act indirectly by controlling the availability of oxygen in
the soil, which in turn influences the processes of CO2

and N2O formation and N2O consumption in many
ways [42–45].
In view of this, it is quite possible that the changes in

soil structure caused by microplastics could indeed have
an impact on the release of climate-relevant trace gases.
The aim of our investigations here was thus to contrib-
ute to the clarification of the effect of microplastic
addition on the emission of the greenhouse gases CO2

and N2O in interaction with N fertilization. We wished
to test two main hypotheses: (i) addition of microplastics
leads to changes in soil physical properties including soil
aggregation (especially macro-aggregation) in our hier-
archically structured soil; and (ii) effect of N fertilization
on the release of N2O and CO2 are therefore altered by
the addition of microplastics.

Materials and methods
Soil material
The soil material investigated was taken from the Ap
horizon of a non-eroded Albic Luvisol (Cutanic, soil
classification according to IUSS Working Group WRB,
2015), consisting of 59% sand, 32% silt, and 9% clay. This
site is located on the flat summit within the CarboZALF
experimental field, where studies on the influence of
erosion on the C-dynamics were conducted. The CAR-
BOZALF field belongs to the hummocky landscape
within the Uckermark region (northeastern Germany,
53°23′N, 13°47’O, ~ 50–60 m a.s.l.) [46]. Winter wheat
was grown there in the year of sampling. The soil material
was dried and stored in this form for several weeks prior
to the start of the experiment.

Sample preparation and treatments
The investigations were carried out using soil samples
filled into steel cores with a volume of 250 cm3 and a
bulk density of 1.4 g dry soil cm− 3. In preparation for
incubations, the dry soil was sieved to 2 mm and then
moistened to a water-filled pore volume of 48% (calcula-
tion of this parameter was done according to Linn and
Doran (1984). To stimulate the activity of soil microor-
ganisms similar to the conditions in an intensively N
fertilized soil, diluted biogas digestate (dry matter 2.5%,
44% total C and 2.5% total N in dry matter, pH 8.3) was
used for soil moistening. In this way, the substrate was
provided with 290 mg total N respectively 170 mg
ammonium N per kg dry soil for all treatments at day
zero of incubation (Table 1).
To investigate the effect of N fertilization and soil

contamination with microplastics alone and in their
interaction, four variants were established, each com-
prising four of these soil cylinders (Table 1). To test
the N effect, 35 mg urea-N per core (100 mg N per kg
dry soil) was added at day 22 of the incubation.
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For contamination of the soil with microplastics we
used microplastic fibers, since fibers have repeatedly
been shown to affect soil structure [26, 47–49], possibly
due to their linear shape [50]. We used polyester fibers
(Paraloc rope, 8 mm diameter, Mamutec, Switzerland,
product number: 0025–00080–01-0), cut by hand (for
the size distributions of fiber length and diameter see SI
Fig. S1). Fibers were briefly microwaved to minimize
microbial loads, following a previous protocol [30]. The
amount of microplastic fibers mixed in was 1.4 g per
core (0.4% w/w) at day zero of the incubation, a concentra-
tion that showed clear effects in previous experiments [30].
The microplastic fibers were distributed homogeneously

on the surface of the soil substrate. The soil substrate, the
diluted biogas digestate and, depending on the variant,
also the microfibers were then carefully mixed together
and filled into the stainless steel cylinders in layers at day
zero of incubation. In each case one treatment without
urea fertilization and without microplastic contamination
served as control (Table 1). All samples received the same
amount of mixing disturbance.

Incubation experiments
First, the gas emission from the soil cores was monitored
over 18 days. On day 19 of incubation, 35 mg urea-N
was applied to four samples with or without microplastic
contamination. The amount of urea N was dissolved in

10ml water and injected into the soil using a syringe.
Four samples each with and without microplastic
contamination were used as controls, into each of which
10ml of water was injected using a syringe. As a result
of this measure the water-filled pore space in all samples
increased from 48 to 55%. Subsequently, the gas emis-
sions from the cores was investigated for another 22 days
(Table 1).
To determine the CO2 and N2O emissions, the soil

samples were transferred to an incubation facility
developed by us (Fig. 1). It works as a flow-through
steady-state system corresponding to Livingston and
Hutchinson [51]. The system contains 16 airtight, cylindrical
incubation vessels (diameter and height of 13 cm, made
from commercially available KG DN sewer pipes and acces-
sories, Marley, Germany), each filled with one soil core. A
temperature of 20 °C degrees was maintained in the incuba-
tion vessels by means of a climate box. Ambient air flows
(32mLmin− 1) continuously through the headspace of the
incubation vessels via channels connecting the pressure ves-
sel and the gas analyzer. In parallel, there is a control chan-
nel through which ambient air passes the incubation vessels
with the same flow rate directly from the pressure vessel to
the gas analyzer. To prevent the soil cores from drying out,
the air was saturated to 100% relative humidity before pass-
ing through the incubation vessels. Each channel is directly
connected to the gas analyzer via a multiplexer and a special

Table 1 Setup of the two-factorial incubation experiment. Treatment codes are no-addition control (MP-N-), microplastic only (MP +
N-), urea only (MP-N+), and addition of both microplastic and urea (MP+N+)

Incubation procedure Treatment

MP-N- MP + N- MP-N+ MP + N+

Stage one: 18 days

Day 0: application of digestate N 102mg N core− 1 102 mg N core− 1 102 mg N core− 1 102 mg N core− 1

Day 0: contamination with micro plastic – 1.4 g core− 1 – 1.4 g core− 1

Day 0: Adjusted water filled pore space 48% 48% 48% 48%

Stage two: 22 days

Day 19: Application of Urea N – 35 mg N core− 1 35 mg N core− 1

Day 19: Adjusted water filled pore space 55% 55% 55% 55%

Fig. 1 Schematic diagram of the incubation system used to measure CO2 and N2O flux rates from the soil cores
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circular channel for 7min each. Gas concentration measure-
ments were performed using cavity ring-down spectroscopy
technology in a Picarro G2508 gas concentration analyzer
(PICARRO, INC., Santa Clara, USA). Air was circulated be-
tween the incubation unit headspace and the CRDS analyzer
at 250mLmin− 1 using a low-leak diaphragm pump (A0702,
Picarro, Santa Clara, CA, USA). The air from each of the 17
measuring channels was fed into this circuit via a connecting
channel from the multiplexer. After that the air flowed out
into the environment.
The gas flux rates are calculated from the current gas

concentration in the channel, which is connected to the
outlet of a specific vessel, and the temporally corre-
sponding concentration in the control channel, which
represents the vessel inlet so to say, over time according
to this equation:

F ¼ M�ρ�V� Δcð Þð Þ
C�R�t�Tð Þ

where F is the flux rate (μg CO2-C or N2O-N core− 1

h− 1), M is the molar mass of CO2 or N2O, respectively
(μg mol− 1), ρ the atmospheric pressure (Pa), V is the air
flow rate into the headspace and the channels (m3 h− 1),
Δc is the difference of gas concentrations [mol] between
outlet of a specific vessel and the control channel, C is
the core, R the gas constant (m3 Pa K− 1 mol− 1), t is the
time over which the concentration change was observed,
and T the incubation temperature (K).
An adaptation of a modular R program script, de-

scribed in detail by Hoffmann et al. [52], was used for
the calculation of current gas flux rates and CO2-C and
N2O-N gas losses accumulated over time intervals.

Soil analysis after incubation
Immediately after the incubation, the air permeability
(AP) of the soil cores was measured using the PL-300
device [53] based on the Gätke method [54]. After that,
soil subsamples were extracted with 0.0125M CaCl2 so-
lution (ratio 1:4) and analyzed for NH4

+-N and NO3
−-N

concentrations using spectrophotometry according to
[55] with a continuous flow analyzer (Skalar Analytics,
CFA-SAN, Breda, Netherlands). Soil moisture content
was determined gravimetrically after drying a soil sub-
sample at 105 °C until constant weight. Bulk density and
water-filled pore space (WFPS) were calculated based on
sample volume, dry weight and gravimetric water con-
tent. Soil pH was determined in 0.01M CaCl2 solution
(ratio 1:5) according to DIN ISO 10390. Subsamples
were also analyzed for total soil carbon (TC), soil or-
ganic carbon (TOC) and total nitrogen (TN) according
to DIN ISO 10694 and DIN ISO 13878 using an elemen-
tal analyzer (Leco Instruments, TruSpec CNS, St. Joseph,
USA). The cold water soluble carbon and nitrogen in

the soil was determined by extraction with cold water at
the ZALF central laboratory using a Shimadzu TOC-
VCPH Carbon Analyzer (Shimadzu Deutschland GmbH,
Berlin, Germany).
The measurement of the size class distribution of soil

aggregates followed a modified protocol by Kemper and
Rosenau [56]. First, samples were passed carefully
through a 4 mm sieve. Second, samples were passed
through a stack of five sieves (2, 1, 0.25, 0.1 and 0.05
mm) to determine the mass of soil aggregates separating
across the resulting six fractions of decreasing particle
size. For this, the sieve stack was moved vertically. The
movement was kept to a minimum to avoid abrasion but
ensure particle separation over the different mesh sizes.
The measured mass for each fraction was integrated into
the following formula to calculate the mean weight
diameter (in mm): MWD =

Pn
i¼1xi wi , where xi is the

mean diameter of size fraction i and wi is the proportion
of total soil mass in size fraction i; i.e., soil aggregate size
classes are weighted by their mean diameter so that sam-
ples with overall larger soil aggregates result in higher
MWD values. In this method, microplastic particles are
included with the aggregate weight, since they are part
of the aggregates.
Samples were carefully reconstituted and mixed after

measuring the MWD before taking 4.0 g of soil. These
were placed on a small sieve with 250 μm mesh size,
allowed to capillarily re-wet with deionized water and
placed into a sieving machine (Agrisearch Equipment,
Eijkelkamp, Giesbeek, Netherlands). During the proced-
ure, the samples were moved vertically for 3 min in
metal bins filled with deionized water to experience a
disintegrating force. The resulting slaking of the treated
soil aggregates caused a separation into a water-stable
and water-unstable fraction with a size > 250 μm. From
the water-stable fraction, debris (sand particles and or-
ganic matter) were extracted to allow calculation of the
water-stable aggregate (WSA) fraction:

WSA ¼ water stable fraction − debrisð Þ= 4:0g − debrisð Þ:

In this method, microplastic particles are part of the
debris. For each sample two technical replicates were
tested which were later merged into one mean value for
the statistical analysis.

Statistics
For the statistical analysis, we used a generalized least
square model of the “nlme” package [57] with imple-
mented varIdent function to account for heterogeneity
in the applied treatment (i.e. control, microplastic, urea,
microplastic: urea dual application). Control samples
were set as reference level. We tested model residuals
for normality and heteroscedasticity.
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Results
Fluxes of CO2 and N2O
At the beginning of the first phase of incubation an in-
crease in flux rates can be seen for both CO2 and N2O,
followed by a slow decrease. Between the treatments
only small differences could be seen (Fig. 2). However, at
the time of the highest emissions, the variants with
microplastics showed slightly lower fluxes for N2O and
slightly higher fluxes for CO2 than the control variants
without microplastics. This was accompanied by a differ-
entiated effect of microplastics on the flux dynamics.
The presence of microplastics resulted in a faster
increase and decrease of flux rates in the case of N2O.
For CO2, the opposite effect was observed. The extreme
peak in CO2 release occurring in all variants during the
first incubation phase is due to system maintenance.
The addition of urea at the beginning of the second in-
cubation phase suddenly caused a strong short-term
stimulation of the CO2 release and a longer-term

stimulation of the N2O release, whereby the flux rates,
especially for N2O, were significantly higher than in the
first incubation phase (Fig. 2). Both gases reacted to the
presence of microplastics with the same reaction pattern
as in the first incubation phase with regard to the level
and dynamics of the emissions. However, the differences
between the no-MP addition treatments (MP-N- and
MP-N+) and the variants with microplastics (MP +N-
and MP +N+) are more pronounced than in the first
incubation phase, especially after the emission peak has
subsided. In the variants that received only water (MP-
N- and MP +N-), the addition of microplastics caused
similar behavior in gas emissions. However, the intensity
of the reactions was significantly lower than with urea
fertilization. Only in the control without microplastics
did N2O emission after the addition of water reach a
similar level as in the first phase of incubation (Table 2).
The effects of microplastics and urea fertilization

observed at current flux rates are also reflected in the

Fig. 2 Average (n = 4; a) CO2 and (b) N2O flux dynamics for the four treatments over the time course of the incubation experiment. Treatments
are no-addition control (MP-N-; red, solid line), microplastic only (MP + N-; red, dashed line), urea only (MP-N+; blue, solid line), and addition of
both microplastic and urea (MP + N+; blue, dashed line). Shaded areas represent ±1 SE
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cumulative CO2 and N2O emissions (Table 2). Related
to the total incubation period, the emitted CO2 was
slightly promoted by microplastics and strongly by urea
application. The strongest effect was caused by the
combination of microplastics and urea application.
These effects become more apparent when only the
second phase of incubation is considered. Looking at the
whole period of incubation for N2O emission, a clear
inhibition of the cumulative release in the presence of
microplastics and a weak promotion by urea fertilization
becomes apparent. In the second phase of incubation,
both the reducing effect of microplastics and the pro-
moting effect of urea fertilization become more evident.
Consequently, the same reaction pattern can be seen
with regard to the proportion of fertilizer N lost as a
result of N2O. This proportion was always increased by
urea application and reduced by microplastics (Table 1).

Physical and chemical soil properties
The two test factors microplastics and urea addition also
influenced the physical and chemical soil properties in
different ways. The presence of microplastics caused a
significant increase in the proportion of water-stable soil
aggregates (WSA) and in the mean weight diameter
(MWD), and a slight increase in air permeability (Table 2).
In contrast, the addition of urea caused a significant
increase in the content of cold water soluble carbon and
ammonium N in the soil (Table 3, 4). The content of cold
water soluble N and of nitrate N was promoted by urea as
well as by microplastics. Therefore, the highest values for
both parameters again occurred when combining micro-
plastics with urea. The addition of microplastics also re-
sulted in a slight increase in the total and organic carbon
content of the soil, likely because microplastic-carbon was
co-detected (Table 3, 4).

Table 2 Soil physical characteristics, cumulative CO2- and N2O emissions and fertilizer N losses by N2O. Different superscript letters
indicate significant differences (P < 0.05) within a response variable

Treatment MWD WSA AP Period CO2_mean N2O_mean Fertilizer N losses

mm % mm s−1 days mg CO2-C core−1 mg N2O-N core−1 % of applied N

MP-N- 1.7b ± 0.0 44.8b ± 1.7 2.3 ± 1.1 40 57.8cd ± 4.6 2.2bcd ± 1.0 2.2 ± 1.0

18 32.1 ± 2.6 0.5bd ± 0.1

22 25.6bd ± 3.7 1.7bcd ± 1.3

MP + N- 1.9a ± 0.0 59.7a ± 3.6 7.5+ ± 1.6 40 61.0cd ± 1.2 0.4acd ± 0.1 0.4 ± 0.1

18 30.5 ± 1.3 0.3ac ± 0.0

22 30.5a ± 1.2 0.2acd ± 0.1

MP-N+ 1.7b ± 0.1 44.1b ± 3.6 2.7+ ± 0.2 40 69.0ab ± 5.0 4.4abd ± 1.9 10.0 ± 0.4

18 30.6 ± 1.9 0.4bd ± 0.0

22 38.5d ± 3.7 4.0abd ± 0.5

MP + N+ 1.9a ± 0.1 58.3a ± 2.3 3.1 ± 0.5 40 87.3ab ± 10.4 3.5abc ± 1.6 8.6 ± 0.4

18 37.3 ± 6.7 0.2ac ± 0.0

22 50.0abc ± 10.0 3.2abc ± 0.6

+n < 4; WSA Water-stable macro-aggregates > 250 mm, MWD Aggregate mean weight diameter, AP Air permeability
p-value< 0.1, Fertilizer N losses are calculated based on 102 mg N fertilized through slurry application and 35 mg N through additionally applied urea, respectively

Table 3 Soil chemical characteristics as a function of treatments

Treatment – pH TC TOC Ccwc TN NH4-N NO3-N Ncwn

% soil DM % soil DM mg kg− 1 soil DM % soil DM mgN kg− 1 soil DM mg N kg− 1 soil DM mg kg− 1 soil DM

MP-N- mean 5.19 0.63 0.61 88.2 0.09 1.0 132.4 224.1

– SD 0.13 0.01 0.01 4.4 0.01 0.0 6.3 2.7

MP + N- mean 5.03 0.82 0.80 83.9 0.10 0.9 147.2 245.6

– SD 0.04 0.01 0.01 13.7 0.01 0.1 1.6 5.8

MP-N+ mean 5.31 0.63 0.62 142.3 0.10 20.0 144.7 249.5

– SD 0.16 0.01 0.01 12.9 0.00 9.1 3.8 7.5

MP + N+ mean 5.18 0.83 0.82 117.9 0.10 12.9 163.5 270.7

– SD 0.07 0.01 0.01 48.1 0.00 6.7 13.9 20.3

DM Dry matter, TC Total carbon, TOC Total organic carbon, Ccwc Cold water soluble carbon, TN Total N, Ncwn Cold water soluble nitrogen
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The analysis of the relationships between soil proper-
ties and the cumulative CO2 and N2O fluxes showed
that in the case of CO2 only closer relationships could
be detected to the ammonium N content of the soil and
in the case of N2O to the ammonium N and cold-water
soluble carbon content of the soil (Fig. 3).

Discussion
We here present clear evidence that microplastic fibers
affect the dynamics and intensity of trace gas fluxes, in
particular of CO2 and N2O, from a sandy, intensively
fertilized agricultural loam soil. It is interesting that
microplastics mitigate the promotion of N2O release
during intensive N fertilization. It is an important task to
test the degree to which these results are generalizable; in
particular, this finding would need to be verified using
different soil types (including soils with different textures
and that are not hierarchically structured).

Experimental approach allows clear determination of the
effect of the test factors
In the first phase of the experiment, a clear effect of
microplastic on gas flux dynamics was also observed, but
over a period of about 18 days these effects were largely
masked by the type of experimental approach, i.e. rewet-
ting of the dry soil. This was probably due to a temporarily
increased supply of microbially easily degradable C and N
compounds as a result of soil disturbance and the addition
of the diluted biogas digestate. By applying the urea only
after this phenomenon had subsided, it was possible in the
second phase of the experiment to clearly separate the ef-
fects of the test factors microplastics and N-fertilization.
The renewed increase in CO2 and N2O flux rates is
certainly due to the N fertilization and partially to the
slight increase in WFPS to the final value of 55% (Fig. 3).

Impact of N fertilization on CO2 and N2O fluxes
The applied N-fertilizers biogas digestate and urea both
contained microbially easily degradable nitrogen and
carbon. As expected, this led to a significant increase in
both CO2 and N2O emissions. The effect of fertilization

exceeded that of soil contamination with microplastics
in both phases of the experiment. The investigations of
Ren et al. [28] led to very similar results. Sources for the
CO2 and N2O formation could have been the fertilizers
themselves as well as an increased mineralization of soil
organic matter induced by them as a result of the prim-
ing effect [58, 59].
However, it should be emphasized that the presence of

microplastics in the simulated intensive N-fertilization
arable soil led to a significant reduction not only of N2O
emissions but also of fertilizer-derived N losses (Table 3).
In view of this, it would be useful to examine in subse-
quent studies whether practical measures for reducing
N2O emissions in agriculture can be derived from findings
on the underlying mechanisms connecting with the
impact of microplastics on soil structure.

Evidence that the effect of microplastics on greenhouse
gas fluxes is mainly due to changes in soil structure
The following facts indicate that the addition of micro-
plastics has influenced the emissions of CO2 and N2O
mainly through changes in soil structure. (i) The
simultaneous change in the proportion of water-soluble
aggregates and the gas flows in the variants with micro-
plastics. (ii) Preventing the increase in N2O emission
after increasing the water-filled pore space in the second
phase of incubation for the variants not fertilized with
urea (Fig. 2, treatment MP-N- vs. MP +N-).
However, these findings do not provide information

exactly which parameters of soil structure caused the chan-
ged CO2 and N2O fluxes. This requires further investiga-
tions in which parameters such as relative gas diffusivity, air
permeability, air connectivity, air distance, air tortuosity,
which allow a clear quantification of the gas movement in
the soil, are systematically determined [39, 60, 61].

Oxygen supply of the soil is probably the reason for the
different reaction of CO2 and N2O on microplastics
There is substantial evidence that the addition of micro-
plastics influenced the gas fluxes, mediated by the soil
structure, in fact mainly by a changed oxygen supply.

Table 4 Model outcomes (n = 16; with n = 13 for AP) for the last harvest day (day 40) for CO2 emissions (in mg CO2-C core−1), N2O
emissions (in mg N2O-N core− 1), fertilizer N loss (in % of applied N), water-stability of soil aggregates (WSA, in %), mean weight
diameter (MWD, in mm), and soil chemical characteristics (pH, AP, TC, TOC, Ccwc, TN, NH4-N, NO3-N and Ncwn)

– CO2 N2O N loss WSA MWD pH AP TC TOC Ccwc TN NH4-N NO3-N Ncwn

df

MP 1. 12 F 1.98 7.57 7.57 56.00 80.30 5.38 23.50 971.36 920.30 0.36 0.43 1.01 16.15 47.21

p 0.19 0.02 0.02 <.001 <.001 0.04 <.001 <.001 <.001 0.56 0.53 0.34 .002 <.001

Urea 1. 12 F 3.07 17.71 4.81 0.11 1.78 2.22 0.43 0.797 0.71 8.69 2.40 16.50 4.02 10.08

p 0.11 .001 0.05 0.75 0.21 0.16 0.53 0.39 0.42 0.01 0.15 .002 0.07 0.01

MP:Urea 1. 12 F 2.74 1.23 2.32 0.05 0.31 0.04 18.45 0.79 1.00 0.60 0.00 1.12 0.16 .002

p 0.12 0.29 0.15 0.83 0.59 0.84 .002 0.392 0.34 0.46 1.00 0.31 0.70 0.97
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This also offers a clear explanation of the diverging
effects for CO2 and N2O. Microplastic addition likely
improved soil aeration: we showed an increase in soil
aggregation and air permeability. Increased aggregate
formation is always accompanied by an increase in the
proportion of macropores and their connectivity in the
soil, which in turn provides improved oxygen supply or
increased gas flow in the soil. By contrast, the inside of
aggregates is often characterized by microanaerobic
zones, because the dominant micropores here strongly
limit gas exchange. The increased share of connected
macropores could also explain the increased formation
of CO2 because of mineralization proceeding more
effectively in the presence of increased oxygen supply
[34, 44, 45, 62].
The reduction of N2O emission after the addition of

microplastics should also be due to a changed O2 supply.

However, more complex processes are involved here than
in CO2 release. A wide range of pathways can be involved
in the formation and consumption of N2O. The most
important of these are autotrophic and heterotrophic
nitrification, nitrifier denitrification, heterotrophic denitrifi-
cation, anaerobic ammonium oxidation (anammox) and
dissimilatory nitrate reduction to ammonium (or nitrate
ammonification). In connection with our investigations, it
is particularly important that N2O formation and N2O con-
sumption can occur both in the presence and absence of
O2 [11, 63, 64]. In our study, nitrous oxide formation
appears to be due to both autotrophic nitrification and
heterotrophic denitrification. Some lines of evidence point
to this. Previous investigations show that the WFPS we set
up in the second phase of the investigation is almost opti-
mal for the nitrification process taking place under aerobic
conditions [33, 62, 65–67]. This is also indicated by the

Fig. 3 Relationship between (a,b) ammonium content of the soil and cumulative N2O emission; (c,d) content of cold water extractable soil C and
cumulative N2O emission; and (e,f) ammonium content of the soil and cumulative CO2 emission for the four different treatments for all treatment
repetitions (n = 16; a,c,d) and treatment averages (AVG; n = 4; b,d,f). Error bars and gray shaded area (b,d,f) denote ±SD and confidence interval
of the respective logarithmic (b,d) and linear function (f) fitted to the data (b: r2 = 0.70; d: r2 = 0.52; f: r2 = 0.55). Treatment combinations are
indicated by different colors (red = no N; blue with N added) and symbols
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above-mentioned increase in N2O release after raising the
WFPS from 48 to 55% in the second phase of incubation
(Fig. 2, treatment MP-N-). Moreover, the close correlation
between ammonium content of the soil and cumulative
N2O emission indicates that autotrophic nitrification plays
a significant role (Fig. 3). However, the occurrence of
microanaerobic zones, especially in highly aggregated soils,
means that even at average WFPF values, part of the N2O
can be produced in the course of denitrification and other
processes that only occur in the absence of O2 [37, 42, 43,
65, 66]. Therefore, the observed reduction in N2O release
in the presence of microplastic, presumably due to in-
creased O2 replenishment, can be regarded as an indication
of reduced denitrification (Table 2). To find out if this is
the case and to elucidate the real proportion of various
processes contributing to N2O release, further investi-
gations are required, especially on the basis of isotopic
approaches in combination with quantification of gas
movement into the soil [33, 65, 66].

Recommendations for a more comprehensive assessment
of the effect of microplastics on greenhouse gas fluxes
Our monitoring approach entailed high-frequency
measurements; this is necessary to obtain precise
results for trace gas emissions [28, 68–72]. Future
endeavors aimed at quantifying trace gas flux re-
sponses to microplastic addition should also rely on
such measurements.
We carried out this experiment to study effects of

microplastic fibers on soil under highly controlled
conditions, excluding the role of plant roots or larger
soil animals such as earthworms. In agricultural systems,
plants may modify dynamics and trace gas fluxes. It is
not clear which direction such modifications would take,
because plants can affect outcomes in complicated ways
in terms of their effects on rhizodeposition, competition
for N, or changes in soil moisture [73–77]. It is thus a
high priority to include plant responses in assessments
of trace gas fluxes when soils are exposed to microplastic.
Our study used microplastic fibers, which is a common

shape of microplastics in the environment, but microplas-
tics come in a wide variety of shapes [50], chemistries, and
with many different additives present in consumer products
[78]. The only other experiment to test greenhouse gas ef-
fects used PE particles with a much higher concentration
than in our investigations [28]. Other shapes to examine in-
clude films, which have been shown to affect formation of
cracks and water fluxes [79]; this is relevant in agricultural
systems owing to the prevalent use of mulching films.
Different chemistries, including non-intentional additives
and other compounds, may also affect different microbial
players in the nutrient cycles leading to greenhouse gas
emissions [28], possibly also leading to effects diverging
from the ones observed here. Clearly, examining a broader

parameter space of microplastic properties should be a
priority for future research.

Conclusions
Our laboratory study has clearly shown that microplastic
fibers can influence trace gas emissions, and that soil
structure effects are key to understanding such re-
sponses. Many studies of microplastic focus on a more
classical ecotoxicological perspective, but our results
suggest that microplastic should not be ignored in future
estimates of greenhouse gas emissions and in assessing
the actual risk to the environment from excessive N
fertilization. Given the widespread presence of micro-
plastic, especially in agricultural fields, such findings are
relevant for understanding potential Earth system feed-
backs of microplastic contamination [14]. It is clear that
ecosystem-level feedbacks should be included as well to
achieve a more complete assessment of impacts.
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