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Abstract: Hydrological modelling is the most common way to investigate the spatial and temporal
distribution of regional water resources. The reliability and uncertainty of a model depend on
the efficient calibration of hydrological parameters. However, in complex regions where several
subcatchments are defined, calibration of parameters is often difficult due to a lack of observed
data. The transposability of hydrological models is of critical importance for assessing hydrological
effects of land use and climatic changes in ungauged watersheds. Our study implemented a Proxy-
Catchment Differential Split-Sample (PBDSS) strategy to assess the transposability of the conceptual
hydrological model J2000 in three different subcatchments with similar physiographic conditions
in Western Turkey. For dry and wet scenarios, the model was calibrated and validated for five
years (2013–2017) in two selected catchments (Kayirli and Ulubey). Afterwards, it was validated
by predicting the streamflow in the Amasya catchment, which has similar physical and climatic
characteristics. The approach comprises transferring J2000 model parameters between different
catchments, adjusting parameters to reflect the prevailing catchment characteristics, and validating
without calibration. The objective functions showed a reliable model performance with Nash–Sutcliffe
Efficiency (E) ranging from 0.72 to 0.82 when predicting streamflow in the study subcatchments for
wet and dry conditions. An uncertainty analysis showed good agreement between the ensemble
mean and measured runoff, indicating that the sensitive parameters can be used to estimate discharge
in ungauged catchments. Therefore, the J2000 model can be considered adequate in its transposability
to physically similar subcatchments for simulating daily streamflow.

Keywords: proxy-catchment differential split-sample; hydrological modelling; transposability;
Buyuk Menderes Watershed; calibration

1. Introduction

Hydrological models are powerful tools to represent hydrological quantities and
their physical processes on micro and macro scales. They conceptualize and model a
hydrological system’s processes and characteristics to describe the system’s response to
environmental conditions [1]. Local or regional hydrological modelling is based on pa-
rameters that are controlling coefficients of the model performance. These parameters are
defined for primary units (usually grid cells) on physiographic factors, e.g., topography,
soil type, and vegetation classes. Their availability depends on observations for calibration
and validation in a subset of sites where the model is implemented. The calibration of the
model parameters is necessary for simulations to reduce the uncertainty in the parameter
ranges and for stability that may directly affect the model’ reliability. Hydrological models
are often calibrated using observed runoff from catchment outlets (e.g., [2,3]). However,
the availability of gauging data is often limited due to costs and management problems of
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gauging stations, topographical difficulties, ungauged sites, etc. [4]. Model transposability
between catchments based on their parameters could be an effective solution for hydrologi-
cal simulations of ungauged catchments, by taking advantage of catchments’ geographical
similarity [5,6].

Various studies have investigated model parameter transferability in ungauged catch-
ments [7–11]. Nepal et al. [12] investigated the transferability of the J2000 model in geo-
graphically proximate regions. Jin et al. [13] concluded that both proxy-catchment and
global mean methods could be used for parameter regionalization in ungauged and ge-
ographically similar catchments. Santos et al. [14] applied the SWAT model using the
hierarchical testing scheme suggested by Klemeš [15], and assessed the streamflow using
the paired t-test and linear regression. Klemeš [15] introduced a model testing scheme of
hydrological simulations that suggested the feasibility of the model parameters’ geographi-
cal transposability within two hydrologically homogeneous regions. As a suitable example,
the J2000 model [16] has been widely applied to assess climate and land management’s
impact on hydrological systems, including streamflow, sediment, and nutrient dynamics at
the catchment scale [16,17]. However, its application is challenging due to the controlling
parameters required for calibration and validation [18].

For performance evaluation and confirmation of hydrological models, there are four
major techniques/tests proposed by Klemeš [15], namely: (a) the split sample test, where
the hydrological model is calibrated for one period then tested for another period, (b) the
differential split-sample test in which long-term data are divided into two segments that
exhibit markedly different conditions. The model is calibrated for one segment and tested
for the other. (c) The proxy-catchment test where the model is calibrated in one catchment
and validated in another, (d) the proxy-basin differential split-sample test (PBDSS), which
is a combination of (b) and (c). In the PBDSS, the long-term data of two catchments is
divided into two segments (e.g., wet years and dry years). Then, the model is calibrated
two times. First, for one segment in the first catchment and then for the other segment
in the second catchment. Each calibration is then validated against the complementary
data set. For example, if the model has been calibrated for dry years in Catchment A, it is
validated for wet years in Catchment B. After that, the calibration conducted for wet years
in Catchment B is validated by modelling dry years in Catchment A [15]. The validation
results represent a model’s transferability to other geographic and climatic conditions.

The PBDSS examines a model’s transposability and its ability to assess the impact
of climatic or land use changes in ungauged watersheds. It is often applied to modelling
attempts where it is tested whether or not model parameters can be transposed geograph-
ically and climatically [3,12,14,15,19]. A broad transferability is a significant objective of
most models because it allows to model regions where there is a lack of available runoff
observation data. The PBDSS test aims to assess the ability of a hydrologic model to simu-
late streamflow under different climatic conditions (e.g., wet and dry), which is suitable for
use in cases where data are not available [20]. Even though all performance tests described
by Klemeš [15] are feasible options, the PBDSS is the most challenging evaluation for a
hydrological model that is applied to areas where calibration data are lacking since it
tests for non-stationary conditions (e.g., climate change) and can highlight problems [21].
Non-stationary conditions means that data variances and covariances may change due to
extreme events or related data inconsistencies over time. Therefore, non-stationary data
are difficult to account for in process-based modelling studies. Due to its complication, the
PBDSS’ validity to examine the transposability of a hydrological model remains poorly
quantified [3,20].

Models that can be applied to settings outside of their calibration range are highly
needed. In many catchments around the world, changes in land use, demographic changes
with changing water demands, and climate changes create novel settings. According to
He et al. [22], catchments undergoing significant changes can be considered the same
way as ungauged catchments because no past data are available to represent the changed
settings. Critical hydrological situations may arise to which farmers and policymakers
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need to respond, such as shortages of drinking water, irrigation water, or water levels
damaging natural ecosystems [23]. Ideally, catchment specific information about such
threats including extreme events (i.e., drought) should be available at an early stage to
provide decision-makers with the time necessary to adapt management, infrastructure and
policies [24–27].

While models need to be able to capture climatic and land use settings for which
they were not calibrated, they may also have to be applicable to catchments where no
runoff data exists. Due to the high costs of setting up and maintaining gauging stations,
it is unrealistic to assume that every subcatchment for which hydrological information is
desirable can be gauged. Still, information on streamflow characteristics may be needed in
these catchments to enable projects such as the buildings of irrigation infrastructure, dams
or hydropower stations [28]. Estimating flows in ungauged catchments can substantially
contribute to human welfare by facilitating improved water management that provides a
better water supply and safeguards against hydrological threats [29].

Obviously, models that have not been calibrated for the specific catchment and setting
to predict streamflow characteristics will perform less reliably than models calibrated
with full data availability (see Guo et al. [30] for a recent review of model regionalization).
However, such models can still provide invaluable information, e.g., screening for catch-
ments where severe hydrological problems are likely to arise. Further steps should then be
taken to improve the reliability and predictive power of the hydrological modelling for
these catchments. This could also include building new climate measurement stations and
hydrological gauging stations, even though several years of data are usually required for
model calibration.

This study implemented a PBDSS test to assess the transposability of the conceptual
hydrological model J2000 in three subcatchments of the Buyuk Menderes Watershed in
Western Turkey. All three subcatchments are characterized by similar physiographic and
climatic conditions. Estimating stream flow spatial and temporal variability is an urgent
task for water resource utilization across the river catchments in a water-scarce country
such as Turkey. Though estimating the hydrological quantities is an important research
question, a limited number of studies have been applied in Turkey to assess conceptual
hydrological models’ applicability for water resources research [31–33]. The main research
challenges were limited data, limited technical background, and complex topography, with
many rivers being poorly gauged. These difficulties negatively affect hydrological models’
applicability, limiting the regional management of water resources and decision-making.
The transposability of models between the catchments allows modellers to conduct model
simulations in catchments across the country where the data and parameter gaps are
limiting factors. Previous studies [18,31,34] often included detailed hydrological system
analyses and model applications at different spatial scales. However, they did not com-
prise a comprehensive model transposability framework through parameter sensitivities.
Therefore, our study is strongly innovative because it assesses the transferability of a
process-based hydrological model in a complex mountainous region.

Besides these difficulties, a significant challenge of transferring the hydrological model
between the catchments in such regions are the similar sensitivities ranges of the selected
parameters. It indicates the possibility of using the sensitive parameters to estimate a
discharge in ungauged catchments.

2. Materials and Methods
2.1. Study Area

The three neighbouring catchments Kayirli (964 km2), Ulubey (2285 km2), and Amasya
(2747 km2), were selected for the study (Figure 1). These catchments are located at the
Buyuk Menderes Watershed which covers approximately 26,000 km2 and is the biggest
watershed of Western Turkey. While all three catchments are gauged, for the purpose of this
study we treated the Amasya catchment as if it were ungauged, modelling its streamflow
with a model calibrated in the Kayirli and Ulubey catchments.
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Figure 1. Location of the study subcatchments Kayirli, Ulubey, and Amasya located at the Buyuk
Menderes Watershed.

The region contains the Buyuk Menderes river with a length of 584 km, which begins
in Afyon city and flows into the Aegean Ocean. The selected subcatchments are linked to
this river, directly affecting its flow. The sub-tropical climate influences land use and land
cover (LULC) pattern in the subcatchments. They are characterized by hills, plains, and
needle-leaf forest stands at low and mid-altitudes, mainly European Nut Pine (Pinus pinea)
and Black Pine (Pinus nigra), while Oak trees (Quercus cerris) are distributed as broadleaf
stands. The Mediterranean climate system dominates the precipitation dynamics, with
mild and mostly rainy winters. The selected subcatchments are characterized by steep relief
that controls the precipitation distribution and flow dynamics. The primary geological
formations include conglomerate recrystallized limestone, meta ultramafic schist, and
Jurassic sediments. The region is undergoing agricultural development with consequent
trade-offs between field irrigation and flow regimes, and the water supply is of critical
importance. The connected valleys and their relief result in both internal circulation of
water from evaporation to precipitation, and lateral flows such as runoff, streamflow, and
out of basin transfer. The physical properties of the selected subcatchments exhibit strong
similarities with regard to climate, relief, and flow conditions.

2.2. Hydrological Model

In our study, we used the process-based J2000 hydrological model [16], which is imple-
mented in the Jena Adaptable Modelling System (JAMS) [35,36]. Process-based models are
suitable tools for reliable estimates and prediction of the principal hydrological quantities,
namely the contained water amount and the resulting discharge. For the selection of
models, it has to be considered that the involved variables in modular structured models
which control the flow regimes can have a considerable spatial and temporal variability
which needs to be accounted for [37]. Modular approaches provide a better representation
of the spatial variability of the flow distribution and a better representation of its internal
processes. Due to the increasing explanation of the flow linkages and separate parameters
for each module, better transferability and applicability can be expected [35]. The J2000
has a modular structure that comprises modules for estimating hydrologic quantities such
as evapotranspiration, snow, soil-water, groundwater recharge, and lateral flow processes
in a river system. Figure 2 shows the J2000 model concept. Calibration parameters control



Sustainability 2021, 13, 11393 5 of 20

the hydrological processes based on parameters for soil, LULC, topography, and geology
at the Hydrological Response Units (HRU) level. The spatial resolution of the J2000 is
based on the sizes of the HRUs and the various landscape features. Spatially distributed
topography data, LULC, soil, and geology are generated into HRUs as primary model
entities [11]. Overland flow (RD1), Interflow 1 (RD2), Interflow 2 (RG1), and baseflow (RG2)
are the four runoff components produced by the model [18,38]. Process units including
infiltration, evapotranspiration, middle pore storage (MPS), large pore storage (LPS), and
depression storage structure the soil-water module. In runoff generation, the direct runoff
(RD1) has the highest temporal dynamics in a watershed system and comprises the surface
and snowmelt runoff. RD2 can be considered as slow direct runoff within the soil zone.
Fast (RG1) and slow (RG2) are two basic sub-surface runoff components. RD1 and RD2
are related to retention coefficients (soilConcRD1 and soilConcRD2) and derived from the
model entities [39].

Figure 2. J2000 model concept (adapted from [16,40]).

The groundwater module calculates the groundwater runoff of all geologic formations
in the catchment area, considering different storage and runoff behaviours. Upper- (RG1)
and lower groundwater runoff components (RG2) are generated, representing fast and slow
flow from the underground reservoirs. They are taken into account as storage retention
coefficients, i.e., as factors of the actual groundwater storage content [39]. Reach routing
is also an essential factor that transports water from one entity to another in the lower
zone until reaching the stream network. The kinematic water approach and Manning and
Strickler’s velocity were implemented to define reach routing flow processes in the river
network of the catchments [16].

2.3. Model Inputs

The J2000 model requires a wide range of data, including LULC, geology, soil type, and
topography. The model also utilizes a time-series set comprising meteorological variables
(min., max., and mean temperature, humidity, wind speed) and gauging data. The data set
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has been selected in an appropriate spatial resolution to reveal the physical characteristics
of the study sites in as much detail as possible. Thus, available satellite images (Sentinel-2A)
and ancillary data (i.e., DEM), including the best possible resolution, have been selected
and used in the study. These images were derived from the National Aeronautics and Space
Administration [41] and European Space Agency [42] data portals. A comprehensive set
of remote sensing and Geographical Information Systems (GIS) analyses were performed
to create the study’s required data set for model implementation. The flow observations
were obtained from the State Hydraulic Works of Turkey at daily timesteps and formatted
according to the model requirements. Both spatial and temporal data sets used in the study
are listed in Table 1.

Table 1. Spatial and temporal data set used in the study.

Data Data Type Source Resolution Data Description/Properties

Spatial Data

DEM ASTER GDEM 15 m Stream network, sub-basins

Satellite images
Sentinel-2A

(4 January 2018, 5 April 2018, 7
June 2018, 22 September 2018)

10 m LULC, pan sharpen

LULC Classified from Sentinel-2A 10 m 13 land cover/use classes.
92% (Kappa statistic)

Soils

Derived from Buyuk Menderes
Green Atlas Project (supported

by the Ministry of
Environment of Turkey)

1/250.000

17 soil series
Soil physical properties

including depth, saturated
hydraulic conductivity, texture

Stream networks Digitized using stream
burning method 15 m In five stream categories

HRU Derived using ArcInfo AML 30 m
Comprising spatial

information on heterogeneous
units

Hydro-
meteorological

time-series

Climate time-series Turkish State Meteorological
Service 13 stations

Daily temperature, relative
humidity, wind speed,

precipitation, solar radiation
(2013–2017)

Observed flow State Hydraulic Works of
Turkey

Three
gauging
stations

Flow rates were calculated
using this 15 min flow rates

(ft3 s-1) to derive mean daily
outflow rates (m3 s-1) and
daily total (mm) for each

sub-basin (Sari, 2018)

LULC classification was carried out using an object-oriented classification technique,
incorporating four Sentinel-2 images, each consisting of six spectral bands. These images
were atmospherically corrected and pan-sharpened from 20 to 10 m spatial resolution. The
main land cover classes in the subcatchments were categorized as agriculture, forest stands,
and bare ground and used in the model. Although numerous meteorological stations are
located in the study sites, availability of complete time-series data, including temperature,
precipitation, and wind speed, is limited. For model application, we selected a time period
with only minor data gaps in terms of meteorological information (2013–2017).

2.4. Calibration and Validation Using Proxy Basin Differential Split-Sample Test

Using the spatial and temporal data set prepared in the data pre-processing step,
the J2000 model calibration and validation were carried out daily by performing the
hierarchical approach PBDSS proposed by Klemeš [15]. Proxy-catchment tests are a method
that reflects a hydrological model’s fitness for predicting the impact of land-use and climatic
changes [43]. The model was calibrated and validated in two subcatchments in the first
step. It was run from 2013 to 2017 for a 5-yr data record for three catchments at the HRU
level. The available observed time-series (climate and gauging) data set for Kayirli and
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Ulubey subcatchments are divided into two sets based on precipitation conditions, namely
wet years (2015–2017) and dry years (2013–2014). Then, we calibrated the model against
one of the sets and validated it using a contrasting set. Accordingly, it was first calibrated
for wet conditions in the Kayirli subcatchment and then used to simulate streamflow for
dry conditions in the Ulubey basin with similar properties and vice versa. Wet and dry
periods for the PBDSS test, based on seasonal precipitation for the selected subcatchments
during 2013–2017, are shown in Figure 3.

Figure 3. Wet and dry periods of seasonal precipitation for the Kayirli and Ulubey subcatchments
during 2013–2017 for the differential split-sample test.

After comprehensive calibration and validation, the model parameters were trans-
ferred to the Amasya subcatchment (2013–2017). The model performance statistics were
used to select the best range of the calibrated parameters of Kayirli and Ulubey for using
in the Amasya subcatchment. The runoff generation and evapotranspiration (ET) were
assessed to evaluate and confirm the reliability of model simulations.

2.5. Model Performance Evaluation

For the PBDSS test, the J2000 was calibrated manually to find the parameters that
determined the best global water balance results in the subcatchments. The hydrographs
were evaluated. The sensitive parameters that affected the flow were selected and revised
to reveal the best fit between model simulations and observed flow. Three common perfor-
mance indicators (goodness of fit) were utilized to assess the model performance, namely
the coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE) [44,45], and percent
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bias (PBIAS). NSE is commonly used for the performance evaluation of the hydrological
models in which PBIAS and R2 are representative of the consistency of the trends between
simulated and observed values.

NSE varies from negative to 1, where 1 indicates a perfect fit observed and modelled
runoff [46]. R2 indicates the trend and correlation between the observed and simulated val-
ues. It is varied between 0 and 1, and >0.50 is regarded as reasonable for model simulation.
The simulated values’ tendency to be more or less than their observed counterparts is mea-
sured using PBIAS. The reliability of PBIAS values are assessed in three categories as very
good (<10%), good (10% < PBIAS < 15%); satisfactory (15% < PBIAS < 25%), unsatisfactory
(>25%) [47].

Moreover, we employed a Kolmogorov–Smirnov (p < 0.05) normality test to the
streamflow data for defining its consistency. Several goodness-of-fit tests, such as the
Anderson–Darling test [48], are used in the literature. The Kolmogorov–Smirnov test
is feasible since it compares the overall distributions rather than specific locations or
dispersions in the output set. Since it is only applied to continuous distributions, we have
selected to apply it to our process-based continuous flow data. The parametric T-paired
test was used to assess the correlation between the observed and modelled daily flow,
representing the model transposability between the subcatchments [49]. The regression
analysis consisted of evaluating simulated and observed streamflow values within four
quartiles. Commonly, the first quartile (the least 25% of streamflow) is suggested for use
in assessing local water availability for multiple sectoral uses by local authorities and
institutions [14].

3. Results and Discussion
3.1. Similarities of the Subcatchment Characteristics

The spatially distributed data sets of Kayirli, Amasya, and Ulubey subcatchments are
shown in Figure 4, and their physical characteristics are summarised in Table 2. Transferring
the J2000 model parameters was possible due to the physical similarities of the catchments
regarding soils, LULC, geology, and topographical characteristics.

Based on the spatial data set, the subcatchments are characterized by a varied to-
pography, ranging from altitudes of 15 m to 2390 m. The mean elevation of Kayirli is
slightly higher than that of the Amasya subcatchment, while Kayirli has lower altitude
ranges. This is one of the major factors affecting precipitation and runoff direction in the
Buyuk Menderes region. Topographical variations were utilized to parameterize the model
entities and derive topological linkages for runoff generation and direction.

The time-series data show that the mean annual precipitation of Kayirli (967 mm) is
higher than in Ulubey (915 mm) and Amasya (703 mm). The precipitation was measured
from the 13 meteorological stations around the subcatchments, providing daily temperature,
relative humidity, wind speed, and solar radiation data. The total annual runoff is higher
in Kayirli (406 mm) than in Ulubey (262 mm) and Amasya (363 mm). Model simulations
show a similar conversion performance from precipitation to runoff for all subcatchments.

LULC characteristics comprise needle-leaf and broadleaf forest formations, and mead-
ows. Agricultural lands covered 13% of Kayirli, 22% of Amasya, and 29% of Ulubey.
Soils are clayey and include red-brown soils and brown-forest soils, corresponding to the
elevation zones based on the soil taxonomy of the Food and Agricultural Organization
(FAO) [50] (Figure 4).

Based on the physical similarity, the catchments are ideal testbeds to examine and
evaluate the performance of a process-based model in terms of its parameter-based trans-
posability in neighboring subcatchments [18,34].
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Figure 4. Soils, LULC, and geology maps of the Kayirli, Ulubey, and Amasya subcatchments.

Table 2. Ecophysical characteristics of the subcatchments.

Ecophysical Characteristics
Catchments

Kayırlı Amasya Ulubey

Area (km2) 964 2747 2285
LULC (km2)

Needleleaf forest 567 1615 1094
Broadleaf forest 22 111 247

Meadows 191 347 127
Bare ground 31 39 104
Agriculture 134 624 678

Soils (km2)
Red-brown 373 1081 1700

Brown forest 269 650 100
Red Maroon - - 223

Geology
Mainly conglomerate

recrystallized limestone,
meta-ultramafic schist, and

Jurassic sediments

Mainly conglomerate quartzite,
recrystallized limestone,
meta-ultramafic schist

Mainly conglomerate quartzite,
recrystallized limestone,
meta-ultramafic schist

Climate and flow conditions
Precipitation (mm) 967 915 703
Temperature (◦C) 15.0 15.0 15.5
Obs. runoff (mm) 406 363 262

Elevation (m)
Mean 730 1000 1087

Maximum 1886 2390 2240
Minimum 272 152 552
Slope (%) 21 20 12
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3.2. Transferring Model Parameters

Each module of the model contains several module parameters. A total of 30 cali-
brated parameters were utilized in J2000 simulations of the Kayirli, Ulubey, and Amasya
subcatchments. Table 3 shows calibration parameters that were optimized to improve
model performance. Five parameters, namely soilConcRD2, soilConcRD1, soilMaxInfWinter,
soilMaxInfSummer, baseTemp were found to be more influential for the model outputs. The
rationale for selecting the parameters set was based on manual analysis (trial and error)
and Monte-Carlo simulations as described in Nepal et al. [36]. Moreover, the model entities
comprise the ecophysical complexity of the subcatchment landscape (slope, elevation,
and aspect), vegetation (e.g., leaf area index and rooting depth), soil (field capacity and
LPS), and geology (water storage capacity of aquifers and retention period) [51]. These are
connected and compiled in the HRU parameter file in which calibration parameters control
the hydrological processes on a topological basis.

Table 3. Calibration parameters in J2000 simulations.

Parameter Description Global Range Calibrated
(Kayirli)

Calibrated
(Ulubey)

Soil-Water module
soilMaxDPS (mm) maximum depression storage 0 to 10 5.10 7.78
soilLinRed linear reduction co-efficient for AET −5 to 5 4.91 3.47
soilMaxInfSummer (mm) maximum infiltration in summer 0 to 200 100 26.53
soilMaxInfWinter (mm) maximum infiltration in winter 0 to 200 96 55.85
soilMaxInfSnow (mm) maximum infiltration in snow-covered areas 0 to 200 104 124
soilImpGT80 infiltration for areas greater than 80% sealing 0 to 1 0.54 0.62
soilImpLT80 infiltration for areas lesser than 80% sealing 0 to 1 0.53 0.86
soilDistMPSLPS MPS-LPS distribution coefficient 0 to 10 3.1 4.83
soilDiffMPSLPS MPS-LPS diffusion coefficient 0 to 10 5.7 7.60
soilOutLPS outflow coefficient for LPS 0 to 10 5.0 6.31
soilLatVertLPS the lateral vertical distribution coefficient 0 to 10 4.5 3.15
soilMaxPerc (mm) maximum percolation rate to groundwater 0 to 100 50 33.16
soilConcRD1Flood recession coefficient for a flood event 0 to 10 7.0 4.15
soilConcRD1Floodthreshold the threshold value for soilConcRD1Flood 0 to 500 500 430
soilConcRD1 recession coefficient for overland flow 0 to 10 2.9 8.04
soilConcRD2 recession coefficient for Interflow 0 to 10 3.4 5.09
Precipitation distribution
module
Trans threshold temperature 0 to −5 1.1 1.5
Trs base temperature for snow and rain −5 to +5 0.0 0.0
Interception module

α_rain (mm) storage capacity (m2) of particular land cover
for rain in mm

0 to +5 1.3 2.3

α_snow (mm) storage capacity (m2) of specific land cover
for snow in mm

0 to +5 1.7 2.0

Snow module
snowCritDens (%) critical density of the snowpack 0 to 1 0.381 0.451
snowColdContent cold content of the snowpack 0 to 1 0.0012 0.01
baseTemp (oC) the threshold temperature for snowmelt −5 to 5 0 0
t_factor melt factor by sensible heat 0 to 5 2.84 3.10
r_factor melt factor by liquid precipitation 0 to 5 0.21 0.34
g_factor melt factor by soil heat flow 0 to 5 3.73 2.75
Groundwater module
gwRG2Fact factor for runoff dynamics of RG2 1 to 5 0.84 2.69

RG1RG2dist calibration coefficient for distribution of
percolation water 1 to 5 1.0 3.44

gwRG1Fact factor for runoff dynamics of RG1 1 to 5 1.0 2.50
gwCapRise factor for the setting of capillary rise 1 to 5 1.0 1.98
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Figure 5 shows the comparison of the selected parameters in the study subcatchments.
The parameter ranges were weighted to define their sensitivity to the model accuracy. The
weights ranged between 0.01 to 0.23, with highly sensitive parameters having a weight
closer to 0.23. The average weight was 0.058, and the parameters with weights smaller
than the average were defined as “less sensitive”. The J2000 model was susceptible to
soil-water module parameters (soilConcRD1, soilConcRD2, soilMaxPerc) in line with Donmez
et al. [18] for streamflow. Remarkably, the J2000 model was very sensitive to soilConcRD2,
which had a weight of 0.23 for Kayirli and of 0.14 for Ulubey. SoilConcRD2 is the retention
coefficient for interflow and controls the amount of water moving to interflow. Furthermore,
soilMaxInfSummer was also sensitive in Kayirli and Ulubey subcatchments, with weights of
0.09 and 0.16, respectively. This parameter is essential in the soil-water module and limits
the maximum infiltration during the summer period.

Figure 5. Comparison of the sensitivity of the selected parameters in three subcatchments for NSE.

The storage capacity (m3) of a particular land cover for rain (g_rain) showed consid-
erable sensitivity. There was a remarkable difference in maximum infiltration in summer
(soilMaxInfSummer) and maximum infiltration in winter (soilMaxInfWinter) parameters
between Kayırli and Ulubey subcatchments due to the saturation levels based on soil
characteristics. The maximum percolation rate to groundwater (soilMaxPerc), which has
a default value range of 0–100, was calibrated to 50 and 33.16, respectively. The most
remarkable differences were found in soil parameters soilConcRD1 and soilConcRD2, which
control overland and interflows based on the varied spatial variability and soil depth in
both subcatchments. The calibration of groundwater was controlled by the factor for runoff
dynamics, namely RG1 (gwRG1Fact) and RG2 (gwRG2Fact). These parameters influenced
the amount of water moving from the shallow to deeper aquifer zones, directly affecting the
total runoff generation of the subcatchments. Notably, the parameters used in the soil-water
module were recognized as sensitive and can strongly affect the model hydrograph. The
sensitivity range of the parameters is given in Table 4. It represents the efficiency of the
parameters in model simulations.
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Table 4. Sensitivity ranges of the selected parameters.

Parameters Low Range High Range

gwRG1Fact 0.03 4
gwRG1RG2dist 0.04 4

gwRG2Fact 0.01 5
soilConcRD1 5 10

soilConcRD1flood 0.01 7
soilConcRD2 5 10

soilLatVertLPS 0.03 6
soilLinRed 0.07 5

soilMaxInfSummer 0.08 3
soilMaxInfWinter 0.08 3

soilMaxPerc 0.04 4
flowRouteTA 10 50

baseTemp 0.1 8
t_factor 1 50

snow_trs 0.03 8

Addressing the parameter sensitivity intervals, six out of fifteen parameters were
above the average sensitivity range for NSE analysis in three regions overall. Snow
parameters, including t_factor and snowtrs were the least sensitive parameters for the
study subcatchments. This was due to sub-tropical climatic conditions of the study site
and, therefore, a low amount of snow patterns so that the temperature factor for calculating
snowmelt runoff would only have a small effect on model simulations.

3.3. Proxy Basin Differential Split-Sample Test

After defining the parameter ranges, we implemented the PBDSS test to assess the
transposability of the conceptual hydrological model J2000 in Kayırlı, Ulubey, and Amasya
subcatchments. The J2000 hydrological model was calibrated and validated for five years
(2013–2017) in Kayirli and Ulubey for dry and wet scenarios and validated in Amasya.
The calibrated and validated parameters of the Kayirli and Ulubey subcatchments were
transferred to the Amasya to enable the model transposability.

First, dry and wet periods of calibration subcatchments were separated for carrying
out the PBDSS test. For daily scales, the wet and dry years for Kayirli and Ulubey were
split based on climate data for calibration (2013–2014) and validation (2015–2017). After
calibration and validation, the model parameters were transferred to the nearby Amasya
subcatchment for validation (2013–2017). The model showed a good fit (Figure 6) and
agreement between simulated and observed flows (Table 5), although it was observed that
peaks were underestimated during both calibration and validation periods.

Kayirli, Ulubey, and Amasya subcatchments show strong similarities in terms of
their ecophysical characteristics. For the Kayirli subcatchment, the model’s performance
was successful, although the streamflow was underestimated in the calibration period.
The first year of the calibration period in 2013 exhibited a remarkable underestimation
of the streamflow, associated with rainfall distribution and elevation inconsistencies in
mountainous regions due to their spatial and temporal representation in the model [52].
Validation for Kayirli showed a great fit between observed and modelled flow values in
the three years from 2015 to 2017. The J2000 model also showed a good performance for
the Ulubey subcatchment, although there were slight overestimations of streamflow in the
calibration and early in the validation period. Overall, the model results provided useful
daily flow simulations and had a satisfactory hydrograph for calibration data and an even
better performance for the validation data.



Sustainability 2021, 13, 11393 13 of 20

Figure 6. Simulated and observed streamflow hydrograph of the (A): Kayirli, (B): Ulubey (calibration: 2013–2014), and (C):
Amasya (validation: 2013–2017).

The objective functions showed that the J2000 represented the observed flow behaviour
during calibration and validation periods reasonably well, albeit slightly under- and
overestimating peaks. The E values were computed from daily results as 0.72 and 0.82
for dry and wet periods of the Kayirli subcatchment. The R2 of the same subcatchment
was 0.75 and 0.81, while the streamflow trends were captured reasonably well. The PBIAS
indicated that the model had a 2–5% deviation between the simulated and observed flow in
the calibration and validation periods. The model achieved similar results for the Ulubey
subcatchment, where the E values of the simulated flows were 0.74 and 0.73 for dry and
wet periods. Some studies showed that the model efficiency was consistently lower in the
dry periods than in the wet periods [53]. The model’s daily flow trends were also captured,
as indicated by R2 values higher than 0.73.
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Table 5. PBDSS test model performance indicators for simulated and observed streamflow in the
Kayirli, Ulubey, and Amasya subcatchments (E: Nash–Sutcliffe efficiency, PBIAS: percent bias, R2

determination coefficient).

Periods

Discharge Average
(m3/s) Performance Indicators (Daily)

Observed Simulated NSE PBIAS R2

Kayırlı—Dry (2013–2014) 6.623 3.740 0.72 3.53 0.75
Kayırlı—Wet (2015–2017) 10.764 12.102 0.82 −2.45 0.81
Ulubey—Wet (2013–2014) 7.227 6.742 0.74 3.71 0.73
Ulubey—Dry (2015–2017) 4.030 4.510 0.73 −1.91 0.77

Amasya (2013–2017) 15.504 20.085 0.76 −2.86 0.82

Although the efficiency results indicated a good relationship between observed and
simulated flow, there are short under and overestimation periods in the Amasya sub-
catchment. These slight differences in simulation peaks can be due to several reasons,
including, e.g., the conceptualization of the model’s modules for hydrological extremes,
rainfall anomalies, and missing meteorological stations in high-elevated regions [51,54].

The results of the PBDSS test show that the model simulated the streamflow in the
Amasya considerably well, using the calibrated and validated parameters from the Kayirli
and Ulubey subcatchments. The dotty plot between observed and simulated daily flow
for the Amasya indicates a good correlation for four quartiles ranging from 0.79 to 0.85 in
456 sample days. In Amasya, the highest agreement was captured between 15 and 90 m3/s
in the fourth quartile. Overall, R2 for Amasya was 0.78, indicating an even better fit than in
Kayirli (0.75).

The PBDSS test applied in the study allowed us to evaluate the hydrological model’s
ability to predict the flow generation in data-scarce regions for validation. Accordingly,
the performance of the J2000 was assessed in the Amasya subcatchment for validation.
The model seemed to represent a good correlation between simulated and observed flows.
after transferring the parameters from the multiple calibration phase in Kayirli and Ulubey
catchments. The E value of 0.76 for daily simulations during the validation period indicated
this correlation clearly. With regard to PBIAS, the model overestimated streamflow by 2–3%
during wetter years in the calibration period and underestimated streamflow by approx.
3% overall. However, this performance can be considered appropriate for simulating
streamflow in a mountainous sub-tropical subcatchment. Overall, the model provided
satisfactory results in Kayirli, Ulubey, and Amasya subcatchments during calibration and
validation, and excellent performance with regard to capturing daily trends of temporal
streamflow distribution.

3.4. Assessing the Streamflow Estimations and Model Transposability

After model calibration and validation processes, the runoff generation and evapotran-
spiration (ET) were assessed to evaluate and confirm the reliability of model simulations
(Table 6). Runoff generation was the primary output consisting of three different flow
contributions, including surface flow (RD1), sub-surface flow (RD2), and base flow (RG1)
in the three subcatchments.

Table 6. Water balance in Kayirli, Ulubey, and Amasya subcatchments based on the simulation
outputs (2013–2017).

Subcatchments
Hydrological Variables (mm)

PrecipitationRunoff RD1 RD2 RG1 ET

Kayirli 967.3 433.9 173.5 108.4 86.8 601.6
Ulubey 703.8 294.0 123.5 67.6 58.8 528.2
Amasya 915.2 398.9 139.6 99.7 95.7 569.4
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The precipitation and runoff ratio ranged between 28–40%, compatible with other semi-
arid regions in Turkey [55]. Runoff estimations varied between 294 and 433 mm. In all
subcatchments, the highest amount of the simulated runoff occurred as surface flow. The
highest ET was estimated as 601 mm for the Kayirli subcatchment, though the difference
between the subcatchments was small. Baseflow and sub-surface flow reached 9 to 12% of
the total annual precipitation amount, vital for contributing to river flow throughout the year.

To confirm the model’s transposability between the subcatchments, the simulation
results for each subcatchment were compared using regression analysis. Daily simulated and
observed runoff values were separated by quartiles and correlated for 2013–2017 (Figure 7).

Figure 7. The correlation between simulated and observed streamflow in 2013–2017 by regression analysis (A): first quartile
(0–24%), (B): second quartile (25–49%), (C): third quartile (50–74%), (D): fourth quartile (75–100%).

The observed hydrological data in Turkey’s watersheds is quite limited, making
modelling studies difficult. The outcomes of our research indicate a valuable alternative
in data-scarce regions with incomplete or non-existent gauging data. Regarding model
transposability evaluation, the correlation levels with R2 indicated a good agreement
between the simulated and observed runoff of the subcatchments for all four quartiles.
The J2000 slightly overestimated the minimum flow for the first quartile in the Amasya
subcatchment (A3); however, the R2 of 0.82. is quite satisfying. It underestimated the
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second quartile of the simulated flow of Kayirli (B1). Table 7 shows the results of the paired
t-test and regression analysis for observed and simulated daily runoff, divided by quartiles.

Table 7. Outputs of the regression analysis and paired t-test on observed and simulated flows
n—number of sample value; tcalculated = paired t-test, calculated value; difference; the difference
between observed and simulated flow in respective quartile.

Gauge Quartile n tcalculated R2 Difference p-Value

Kayırlı

1◦ 456 −0.94 0.896 −0.0403 0.348
2◦ 456 −0.15 0.698 −0.0047 0.878
3◦ 456 −0.91 0.682 −0.153 0.365
4◦ 458 2.44 0.694 1.619 0.015

Ulubey

1◦ 456 0.12 0.919 0.0021 0.908
2◦ 456 −1.07 0.834 −0.0258 0.286
3◦ 456 −1.14 0.846 −0.0618 0.256
4◦ 458 1.44 0.853 0.395 0.150

Amasya

1◦ 456 0.12 0.795 0.0021 0.908
2◦ 456 −1.07 0.766 −0.0258 0.286
3◦ 456 −1.14 0.776 −0.0618 0.256
4◦ 458 1.44 0.855 0.395 0.15

The simulation results suggested that the calibrated and validated J2000 parameters
are transferable to other catchments with similar physiographic conditions, corroborating
the findings of Nepal et al. [51]. We conclude that (a) the catchments with high physical
similarity in terms of its landscape variability and functioning, have similar hydrological
responses, in line with Nepal et al. [12]; and (b) the J2000 is suitable for modelling the three
similar catchments investigated in this study and for transferring parameters to reproduce
their similar hydrological response. The J2000 model can thus be calibrated in one or
more catchments, and its calibrated parameters can be transferred to model an ungauged
catchment with similar conditions. Bárdossy [28] and Blöschl [56] found similar results,
indicated that the physically similar catchments are likely to apply a hydrological model
using transferred parameters from proxy catchments.

The model simulations had reasonable objective function outputs (>0.70). Therefore,
this statement indicated that the structure of the model is suitable enough to capture
the catchment response in similar regions. We have applied an uncertainty analysis
that showed a good agreement between the ensemble mean (multiple model runs) and
measured runoff that is the range of the parameter uncertainty band. Thus, the results
show the transferability of the parameters of the J2000 hydrological model to physically
similar catchments are doable. Moreover, the results are expected to enable improved
water resources management on a catchment scale. The evaluation (calibration) technique
is transposable to other semi-arid regions in Turkey and the world.

Donnelly [57] found that the model performed significantly better when modelling
multiple catchments if the PBDSS approach is used in the calibration process. This is due
to its capability to enhance the calibration performance of the model that contributes to the
selection process of various calibrated parameter sets for best use in the ungauged watershed.

4. Conclusions

Employing the J2000 model, we performed a PBDSS test using a set of parameters of
the Kayirli and Ulubey subcatchments for five years (2013–2017). Parameters were cali-
brated and validated in these two subcatchments in the simulation period. Then, the J2000
was validated in the Amasya subcatchment to confirm its transposability to reproduce the
daily streamflow. The J2000 results for improving management and streamflow planning
are carried out by analyzing runoff generation based on its observed and simulated values.
The main findings of the study can be summarised as follows:
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• In the Amasya subcatchment that had been treated as if it were ungauged, the perfor-
mance indicators resulted in E values higher than 0.76 for daily streamflow, indicating
a good performance at the daily scale and confirming the model transposability be-
tween the subcatchments. Hence, the PBDSS showed that the calibrated parameters
were transposable to other subcatchments with a similar landscape. Likewise, the
paired t-test and the regression analysis between the observed and simulated flow indi-
cated that the J2000 is suitable to estimate daily streamflow in different subcatchments
that showed its viability to implement even in non-stationary conditions. Moreover,
the simulation hydrographs reflected that the model could also be a valuable tool to
provide dynamics stream flow outputs for regional water management processes.

• The transferred parameters of the model from Kayirli and Ulubey were directly used
in the validation process in the Amasya subcatchment without any further adjustment.
In the case of a manual adjustment attempt (e.g., percolation ratios, soil saturation),
the simulated results might be improved further.

• The study showed the model’s capability to transfer to proximate subcatchment in
the proximity basins. This argument was also pointed out in Beven [58] and Van der
Linden [3] a parameter set could be used for similar defined conditions.

• The model showed a good performance after transferring the model parameters from
Kayirli to the Amasya subcatchment. Since the sizes of both subcatchments showed
a remarkable difference, the effect of catchment size on the parameter values can be
ignored in parameter transferability between subcatchments. In other words, the
parameters derived for a smaller area represent the averaged physical conditions of
the greater subcatchment in its modelling process.

• Parameter variation, therefore the model performance could change in different study
regions with different physical characteristics. We did not assess model transpos-
ability through the calibrated parameters in physically different regions. Follow up
research should focus on determining the controlling capacity of model parameters in
physically different areas, and therefore, the potential transferability of the model to
different regions.

• Since the parameters might differ due to the physical structure (e.g., geology, soils,
land cover), future studies should also focus on exploring the model’s capability to
estimate streamflow in physically different catchments. Therefore, the model could be
applied to different subcatchments with different climatic and physical conditions to
examine its suitability in various conditions.

• Some of the hydrological models’ parameters are affected by the incomplete repre-
sentation of the topography in the catchments. Since the topographical variations
directly affect the water movement, routing parameters (e.g., flow routing) might
influence the model performance. Thus, a focus could be given to applying the model
in topographically varied catchments, and a reliable comparison could be made in
model performance between flat and mountainous regions.
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