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Abstract: Land-use and land-cover changes have important effects on ecology, human systems,
the environment, and policy at both global and regional scales. Thus, they are closely related to
human activities. The extraction of more details about land-use change and grassland degradation is
necessary to achieve future sustainable development in Inner Mongolia. The current study presents
the patterns and processes of land-use changes over space and time, while also analyzing grassland
degradation that is based on an analysis of land-use changes using a transition matrix, the Markov
chain model and Moran’s I index, and a combination of long-time-scale remote sensing data as the
data source. The major results indicate the following. (1) In 1990–2015, 13% (123,445 km2) of the total
study area, including eight land-use types, changed. Woodland increased the most and moderate
grassland decreased the most. (2) Grassland degradation, which occupied 2.8% of the total area of
Inner Mongolia, was the major land-use conversion process before 2000, while, after 2000, 8.7% of the
total area was restored; however, grassland degradation may still be the major ecological issue in Inner
Mongolia. (3) Environmental protection policies show a close relationship with land-use conversion.
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1. Introduction

Global land-use and land-cover change (LUCC) has been reported to exert important effects on
the environment at both global and regional scales [1–3]. LUCC refers to changes in the biophysical
attributes of the Earth’s surface and the application of these attributes for human purposes [4,5].
It exerts significant effects on regional environments and ecosystems, even on climate change [6].
Many previous studies have shown that LUCC has close relationships with land degradation [4],
biodiversity losses [7], climate change [8], natural hazards [9], and soil erosion [10], as well as
threatening food security [11]. Worldwide, it is caused by human activities which are linked with
different land-use conversion processes, such as deforestation, agricultural land expansion, built-up
land expansion, and vegetation degradation [11]. It is necessary to evaluate the history of LUCC to
provide significant information for future decision-making and sustainable development [12,13].

China, as an important part of the global environment, has attracted a good deal of attention with
regards to LUCC. Grassland covers about four-million km2 in China, the largest territorial ecosystem
(more than 40% of the total area of the land) and the world’s third largest area of this type (13% of
the world’s grassland), and it is mainly concentrated in six provinces: Inner Mongolia, Gansu, Tibet,
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Xinjiang, Qinghai, and Sichuan [14]. This land is predominantly used for livestock farming and
environmental conversion [14–16]. However, grassland changes have been widely reported in the
northern region of China [17–20], with 10% of total grassland being degraded in the 1970s, increasing
to 30% in 1980 and 50% in the 1990s. In 2000, about 90% of grassland in China was degraded [21].
From 2000 to 2010, 61.5% of grassland underwent degradation due to economic development, policy
changes, climate change, and increasing human activities [22–26].

Grassland degradation is generally defined as an adverse reduction in biodiversity, vegetation
coverage, plant height, and biomass production [4,18,27]. Recently, it also includes mean deterioration
in ecosystem services and functions [28]. Grassland degradation causes a range of ecological
problems—e.g., loss of biodiversity, carbon sink, and water loss—as well as increases in dust storms
and soil degradation [16,27]. Zhou et al. [25] reported that human activities were responsible for
66% and climate factors accounted for 20% of grassland degradation. Policy has been reported
widely by many previous studies as being the most influential indirect factor [29,30]. In Inner
Mongolia, particularly, which has an arid and semiarid climate and is an ecologically vulnerable area,
grassland degradation threatens not only economic development but also household livelihoods [31],
at the same time, Inner Mongolia have subject to a set of important ecological policies that combat
degradation. Furthermore, according to Cao et al. [27], the direct economic loss from sandstorms
is about USD 7.9 billion per year. Specifically, overgrazing, policies, and land-use conversion have
been reported as the major drivers of grassland degradation in Inner Mongolia [27,32]. In sum,
Inner Mongolia is a typical area to explore the grassland degradation process and associations with
ecological policies.

Policy is an important factor that closely relates to land-use and land-cover change throughout
the world [11,33]. Many ill-defined institutions (global, regional, or local) lead to undesired land-use
changes (e.g., land degradation). At the same time, restoration is possibly also closely related to
appropriate land-use policies [33]. Take deforestation in Indonesia as an example. The forest loss
caused by illegal logging is closely related to the improper execution of protected principles, which is
due to corruption and the conveyance of forest management responsibilities from central to local
government [34]. In the Brazilian Amazon area, after the implementation of PPCDAm (Plano de
Ação para Prevenção e Controle do Desmatamento na Amazônia Legal), there has been control of the
deforestation rate [35]. In Germany, the policy “30-hectares goal” aimed to reduce land changed into
urbanized areas until 2020. The achievement of this was predicted to be prevented by demographic
factors, local government, and different financial systems [36,37].

Since 1998, a set of grassland conservation policies has been enforced in China to combat
degradation. Du et al. [31] stated that there have five major related measures from overall policies,
which can be summarized into two aspects: (1) livestock management (i.e., seasonal grazing,
rotational grazing, grazing prohibition, and livestock determination according to grassland capacity)
and (2) a reduction in users who depend on local grassland. These policies mainly focus on reducing
livestock, improving the livelihood of herders, combating degradation, and developing China’s
economy [38]. Despite the fact that ecological protection policies have improved, the condition of
grasslands in China, degradation is still severe [4,39]. The causes of land-use change cannot be
understood without a better understanding of the patterns and processes of land-use conversion [40].
Thus, it is necessary to obtain historic land-use changes, monitor grassland degradation, and obtain
more details on grassland processes that are based on large-scale land-use changes for future policy
development and grassland management.

Many previous studies have evaluated and monitored grassland degradation and restoration
based on a long-time-scale vegetation index [39,41]. The merits of this method include the accessibility
of assessing and monitoring data sources and the flexibility for processes within a specified time
scale [42]. However, this method cannot provide details on grassland degradation and restoration
during a specified range; for example, it does not show how degraded or restored grassland is
converted or transformed. Few studies have analyzed grassland degradation based on land-use
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conversion. Based on this, the current study uses remote sensing data as a data source, while combining
this with the transition matrix, Markov chain model, and Moran’s I index to analyze the transition
patterns and process of LUCC at a large scale and analyze grassland degradation and restoration
based on land-use conversion processes. In addition, we have explored the relationship between
land-use conversion and related policies, providing important information for decision makers and
householders. Since 1998, various of environmental policies were implemented to combat land
degradation and improve ecological conditions in a bid to explore whether these policies are in
accordance with land-use conversion processes. In this study, we have presented land-use conversion
processes in two periods: 1990–2000 and 2000–2015.

The main goals of this study are (1) to analyze LUCC processes and patterns over space and time
in Inner Mongolia between 1990 and 2015, (2) to evaluate grassland degradation that is based on an
analysis of land-use changes, and (3) to discuss the possible relationship between land-use processes
and ecological policies.

2. Materials and Methods

2.1. Study Area

China’s Inner Mongolia Autonomous Region (Inner Mongolia, IM, USA), located in the north
of China, spans from 126◦04′ to 97◦12′ and from 37◦24′ to 53◦23′, across a longitude of 28◦52′, with a
straight-line distance of 2400 km from east to west and across a latitude of 15◦59′. IM, covering an area
of 118.3 × 104 km2, is the third largest province in China (Figure 1), with average elevation of 1000 m.
The topography is characterized by vast plains, the elevation decreasing gradually from south to north
and from west to east (ranging between 1400 and 700 m above sea level) [43]. IM includes six plateaus:
Hulunbeir, Xilingol, Wulandchabu, Bayannaoer, Alashan, and Eerduosi [43]. The climate varies from
arid and semiarid to humid from west to east [44,45]. The annual total precipitation is between 50 and
450 mm, with a declining pattern from the east to the west, while the annual average temperature from
−2 to 6 ◦C. IM has abundant sunshine and a rich luminous energy resource. Most of this region has an
average sunshine duration over 2700 h annually, and this is even greater than 3400 h in the Eastern
Alashan region.

Corresponding to the vegetation types, IM includes chernozem (meadow steppe), chestnut (typical
steppe), and calcic brown (desert steppe and steppe desert) soils. The dominant sandy lands (27.2% of
total area in 2015) include Maowusu and Kubuqin in the west, Hunshandak in the center, and Horqin
and Hulunbuir in the east [43]. The land-use types from northeast to west are dominated by forest,
grassland, and desert. The area of these three land-use types together was over 87.9% of the total
area until 2015. Grassland, including meadow, typical, and desert steppe vegetation, was the major
land-use type (44.7% of total area in 2015) and the most widespread vegetation type in IM, accounting
for about half of the whole vegetation area [46]. Consequently, IM is an important base for animal
husbandry and an important ecological barrier that conserves water and soil, combats wind erosion,
and guards biodiversity [47]. However, since 1980, grassland sources in IM have experienced serious
degradation. From 1980 to 2000, the number of livestock increased from 18.76 × 106 to 23.72 × 106,
and the available area of grassland per sheep unit decreased from 6.80 to 1.27 ha between 1950 and
2000 [47]. Thus, it is vital to analyze the grassland degradation processes and patterns, as well as to
indicate the relationships between land-use conversion and possible policies.
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2.2. Data Collection

The present study employed a land-use and land-cover database (LCCD) that was created
by Chinese Academic Science (CAS). It uses long-time-series (e.g., 1990, 2000, and 2015) Landsat
MSS/TM/ETM+/OLI remote sensing images as data sources, based on a computer-assisted visual
interpolation method to generate land-use data for the whole of China. The time period of this database
covers the 1990s to 2015 and, for each period, there are more than 500 pieces of remote sensing data,
which cover the entire country [48]. Most of the images were required to be taken from consistent
seasons (between July–October). The spatial resolution of the remote sensing data is 30 m for the 1990
and 2000 data and 15 m for the 2015 data, which is sufficient for land-use analysis [49–51]. The LUCC
data are at a spatial scale of 1:100,000 [6,52].

The accuracy of the LUCC data has been validated via field surveys, with an overall accuracy
of 94.0% for the first-level land-use types and 91.2% for the 25 subclasses [52]. These data have
been used widely by many previous studies to evaluate land degradation [4], to identify the major
drivers of LUCC change [50,52], make predictions for future land-use changes [53], explore optimal
land-use strategies [54], present land-use change patterns in China [49,55,56], and explore the process
of grassland degradation over space and time [57]. A hierarchical classification system, including 25
subclasses of land-use types, was used in this LCCD [6]. In the present study, to evaluate the grassland
change process, eight land-use types were identified: cropland, woodland, water body, built-up land,
dense grassland, moderately dense grassland, and sparse grassland (see Table 1). All land-used data
went through a preliminary process, in which it was assumed that built-up land could not be changed
into other land-use types, and the interpolation errors according to all authors’ experience and Landsat
OIL remote sensing data were checked. For example, after 2000, it was impossible for large areas of
grassland to change to cropland (i.e., patch areas larger than 6000 km2).
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Table 1. Land-use classification description.

Land-Use Type Code Description

Cropland 1 Cultivated land for crops
Woodland 2 Land for growing trees, including arbors, shrub arbors, shrubs, bamboo, and forests

Water body 4 Natural surface water bodies or constructed reservoirs for irrigation and water reserves
Built-up land 5 Land used for urban and rural settlements, factories, and transportation facilities
Unused land 6 Land that has not been put into practical use or is difficult to use
Dense grass 31 Grassland with canopy coverage greater than 50%
Moderately
dense grass 32 Grassland with canopy coverage between 20% and 50%

Sparse grass 33 Grassland with canopy cover between 5% and 20%

2.3. Methods

Transition matrix was a traditional method generally used to explore the conversion process of
different land-use types [58]. The Markov chain model was generally used to present the stabilities
of land-use types and make predictions on LUCC for future development [59–61]. Moran’s I was
used to explore the spatial autocorrelation of different land-use types to present spatial pattern
dependence [62].

2.3.1. Land-Use Matrix and Markov Chain Model

The Markov model was used to evaluate land-use change processes and patterns.
This mathematical method describes land-use type based on a particular period in a particular
region [59]. Based on this, a land-use transition matrix was required. We present the net land-use
change in two time periods: 1990–2000 and 2000–2015 [50]. In addition, further calculation of gains
(increases) and losses (decreases) was done based on a transition matrix table. A gain in a land-use type
refers to an increase between study periods, while a loss means that the land-use type has reduced [63].

Markov chain analysis is a stable mathematical method that was used to predict future change
for a system [59]. The Markov model can present all possible directions of land-use change among all
land-use types and predict the state of the future [64]. This is a random process without after-effect
characteristics, which means that the state of one land-use type at a future time point (t + 1) only
depends on the current time (t) and does not include time before t [60]. The applicability and feasibility
of Markov chains have been validated in different regions and at different scales by many previous
studies [64–69]. During this present study, a Markov chains model was used understand and quantify
the land-use conversion processes in IM. The transition probability (TP) matrix can be expressed,
as follows.

P = Pij =


P11 P12 · · · P1n

P21 P22 · · · P2n

· · · · · · · · · · · ·
Pn1 Pn2 · · · Pnn

 (1)

where P refers to the probability of moving from state i to state j.
Equation (1) must satisfy the following two conditions.

n

∑
j = 1

Pij = 1 , (2)

0 ≤ Pij ≤ 1. (3)
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2.3.2. Spatial Autocorrelation Analysis

Spatial autocorrelation is generally used to describe a quantitative measure of spatial correlation
of a geographical phenomenon [70]. This study used Moran’s I to analyze the spatial autocorrelation
of all land types in IM. The basic principle of Moran’s I is as follows [71].

I =
n
S0

∑n
i ∑n

j Wij(xi − x)

∑n
i (xi − x )(xi − x)2 (4)

where, for i 6= j, n was the total amount of the space unit, Xi is the observation value of the geographic
attribute in the space unit (i), x is the average value of regional values, and Wij is the spatial weight
matrix which represents the neighborhood relationship between area i and area j, as measured by the
spatial distance of the adjacency criterion. The adjacency is expressed by

Wij =

{
1, area i and area j are adjacent
0, area i and area j are adjacent

. (5)

Generally, the value of Moran’s I is between −1 and 1. When the value is less than 0, there is a
negative relationship between observations. If it is the reverse, the relationship is positive. When the
value is 0, there is no autocorrelation between the data [72]. In this study, Geoda was used to calculate
global spatial autocorrelation [73].

2.3.3. Evaluation of Grassland Degradation and Restoration

Generally, grassland degradation refers to the struggle to grow grassland structure,
grassland species, and grassland products that are caused by overgrazing, cultivated land reclamation,
climate change, policy change, rapid conversion of land-use types and fuel and herbs for medicine,
and destruction by rodents, etc. [15,74–76]. Grassland restoration refers to grassland renewal or
regrowth, mainly including vegetation coverage change, soil conservation and remediation, and carbon
sequestration [4,77]. In the present study, we redefined grassland degradation and restoration,
as follows.

Grassland degradation (GD) is the decrease in grassland coverage or change of grassland into
other land-use types (i.e., cropland, woodland, water body, and unused land).

Grassland restoration (GR) is the improvement of grassland coverage (grassland revegetation)
or change of grassland from other land-use types (i.e., cropland, woodland, water body, and unused
land) (Figure 2).
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3. Results

3.1. Land-Use Conversion Since 1990

3.1.1. General Trend of LUCC between 1990 and 2015

Grassland was the dominant land-use type (44.7% of total area) in 2015, followed by unused
land and woodland (27.2% and 16.0% of the total area, respectively). In 1990–2015, 13% of the
total area (123,445 km2), including eight land-use types, changed. Woodland increased the most
(15,564.2 km2), followed by built-up land (7682.9 km2) and dense grassland (7338.5 km2). In the same
period, moderately dense grassland decreased the most (31,123.4 km2), followed by sparse grassland
(2184.5 km2), and changes of water bodies and unused land were less than 300 km2 (Figure 3). In this
period, the most obvious changes occurred in the eastern and northeastern regions (i.e., Hulunbuir,
Xinganmeng, Chifeng, and Tongliao), followed by the central region (i.e., the grassland region). In the
west (i.e., the sandy land region), no strong land-use change happened (Figure 4). These results agree
with previous studies.Sustainability 2018, 10, x FOR PEER REVIEW  7 of 21 
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3.1.2. Land-Use Conversion Since 1990

The land-use change patterns and processes are presented by a transition matrix and TPs
(Tables 2–4), and the spatial characteristics of the LUCC conversion process are shown in Figure 5.
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Table 2. Transition matrix of land-use change in 1975–2000 and 2000–2015 (Unit: km2).

2000

1990

Cropland Woodland Water
Body

Built-Up
Land

Unused
Land

Dense
Grassland

Moderately
Dense Grassland

Sparse
Grassland Losses

Cropland 95,496.32 741.58 198.22 410.20 564.48 1665.22 3426.22 712.85 7718.77
Woodland 2907.97 159,705.27 39.54 31.59 191.31 1910.63 2562.58 169.34 7812.97

Water body 287.65 51.64 13,158.00 18.78 422.93 128.42 142.78 68.93 1121.14
Built-up land 11,006.44 0.00
Unused land 981.96 218.55 773.86 46.82 304,590.35 1020.93 1765.78 1688.78 6496.68

Dense grassland 8419.44 2081.35 229.88 128.74 1166.42 229,546.53 3946.00 2069.50 18,041.34
Moderately dense grassland 4303.50 705.31 146.97 121.48 1647.44 2190.88 173,222.75 2357.13 11472.71

Sparse grassland 808.55 173.68 89.52 60.18 3374.67 770.78 1129.47 99,560.79 6406.86
Gains 17,709.06 3972.11 1477.99 817.80 7367.26 7686.87 12,972.84 7066.54 59,070.47

2015

2000

Cropland Woodland Water
Body

Built-Up
Land

Unused
Land

Dense
Grassland

Moderately
Dense Grassland

Sparse
Grassland Losses

Cropland 90,544.80 4796.28 866.43 2021.68 2970.22 6090.65 4711.29 1204.06 22,660.61
Woodland 4333.03 144,673.39 395.75 257.45 2188.45 8949.26 2274.99 605.08 19,004.00

Water body 816.60 238.52 10,179.30 92.80 2386.71 276.39 296.90 348.76 4456.69
Built-up land 11,824.24 0.00
Unused land 3012.76 1626.55 1212.83 1017.73 287,103.48 3103.94 7395.08 7485.23 24,854.12

Dense grassland 3489.41 24,853.22 692.81 1255.66 1673.05 190,147.87 6790.74 8330.65 47,085.53
Moderately dense grassland 3066.20 5836.07 441.81 1347.74 4963.25 40,804.36 121,292.73 8443.42 64,902.85

Sparse grassland 698.79 1058.41 273.77 872.09 9994.02 5553.89 10,810.35 77,365.99 29,261.33
Gains 15,416.79 38,409.06 3883.41 6865.14 24,175.70 64,778.48 32,279.35 26,417.20 212,225.13
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Table 3. Transition probabilities in 1975–2000 (%).

Cropland Wood Land Water Body Built-Up Land Unused Land Dense
Grassland

Moderately
Dense

Grassland

Sparse
Grassland

Cropland 92.52 0.72 0.19 0.40 0.55 1.61 3.32 0.69
Woodland 1.74 95.34 0.02 0.02 0.11 1.14 1.53 0.10

Water body 2.01 0.36 92.15 0.13 2.96 0.90 1.00 0.48
Built-up land 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
Unused land 0.32 0.07 0.25 0.02 97.91 0.33 0.57 0.54

Dense grassland 3.40 0.84 0.09 0.05 0.47 92.71 1.59 0.84
Moderately dense grassland 2.33 0.38 0.08 0.07 0.89 1.19 93.79 1.28

Sparse grassland 0.76 0.16 0.08 0.06 3.18 0.73 1.07 93.95

Table 4. Transition probabilities in 2000–2015 (%).

Cropland Woodland Water Body Built-Up Land Unused Land Dense
Grassland

Moderately
Dense

Grassland

Sparse
Grassland

Cropland 79.98 4.24 0.77 1.79 2.62 5.38 4.16 1.06
Woodland 2.65 88.39 0.24 0.16 1.34 5.47 1.39 0.37

Water body 5.58 1.63 69.55 0.63 16.31 1.89 2.03 2.38
Built-up land 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
Unused land 0.97 0.52 0.39 0.33 92.03 0.99 2.37 2.40

Dense grassland 1.47 10.48 0.29 0.53 0.71 80.15 2.86 3.51
Moderately dense grassland 1.65 3.13 0.24 0.72 2.67 21.91 65.14 4.53

Sparse grassland 0.66 0.99 0.26 0.82 9.37 5.21 10.14 72.56
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In 1990–2000, unused land was the most stable land-use type, with a TP of 97.91%, followed by
woodland, with 95.34%. The most dynamic land-use type was water bodies, followed by cropland and
dense grassland, with TPs of 92.2, 92.5, and 92.7%, respectively (Table 3).

Four land-use conversions in this period were identified, as follows. (1) 5804.3 km2 of grassland
was converted into cropland (Table 2), with the biggest increases in cropland occurring in the central
and eastern areas (Figure 5a,b). (2) Woodland areas decreased by 3840.9 km2, most commonly into
cropland and grassland, and mostly in the eastern region. (3) Grassland areas decreased, with the
conversion from dense grassland into cropland, moderately dense grassland, and sparse grassland
being the most common transitions. In addition, moderately dense and sparse grasslands were
converted into unused land. Most grassland loss occurred in the central and eastern areas of
IM. (4) Finally, increases in built-up land predominantly occurred through changes from cropland
and grassland.

When compared with the previous period, in 2000–2015, the TPs for all land-use types decreased,
and human activity became stronger. Table 4 indicates that, in this period, water body and woodland
were still the most stable land-use classes, with TPs of 92.0 and 88.4%, respectively. The most
dynamic land-use types were moderately dense grassland and water body, with TPs of 65.1 and
69.6%, followed by sparse grassland and cropland, with TPs of 72.6 and 80%, respectively.

During this period, four obvious land-use conversion processes were identified. (1) Cropland
decreased, mostly due to changes into woodland and grassland, especially dense and moderate
grassland. This occurred predominantly in the central, northeastern, and eastern regions (Figure 5c,d).
(2) Woodland increased, mostly through the conversion from cropland and grassland (especially
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dense grassland) and predominantly in the northeast and east of IM. (3) The total area of grassland
increased. This mainly involved dense grassland and was generally through conversion from cropland,
woodland, and moderately dense grassland. Moderately dense grassland and sparse grassland
decreased, mostly due to changes into dense grassland, or from sparse to moderately dense grassland.
(4) Built-up land increased by 6865.1 km2, mostly through changes from cropland and grassland
throughout all cities in IM.

3.2. Grassland Degradation and Restoration since 1990

The spatiotemporal characteristics of grassland degradation and restoration are presented in
Figures 6 and 7. Before 2000, grassland exhibited an obvious degradation trend. 31,829.8 km2 (2.8%
of the total area of IM) of grassland degraded in this period and 19,353.6 km2 was restored, of which
23,457.1 km2 changed to other land-use types. There was an 8273.6 km2 decrease in grassland coverage.
The most obvious degradation occurred in the central, northeastern, and eastern areas of IM (Figure 7).
While 15,262.5 and 4091.1 km2 of grassland and grassland coverage increased, respectively, the most
obvious grassland restoration occurred in the northeastern and eastern regions. After 2000, the major
grassland conversion process has been grassland restoration, with 99,910.2 km2 (8.7% of total area)
of grassland restored and 84,081.1 km2 of grassland degraded. When compared with the previous
period, the area of grassland degradation increased more drastically in this period. However, the area
of grassland restoration also increased dramatically, mainly in the northeastern region (Figure 7).
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3.3. Spatial Autocorrelation of LUCC in Inner Mongolia

The Moran’s I values of all land-use types projecting spatial autocorrelation is presented in
Figure 8. Figure 8a indicates that, before 2000, the Moran’s I values of cropland, woodland,
and moderately dense grassland decreased slightly, while that of water bodies, unused land, and sparse
grassland remained unchanged. Generally, during this period, the activities of these land-use types
were relatively stable, with higher TPs (the lowest being 0.92). The Moran’s I of built-up land increased
significantly, and that of dense grassland decreased significantly. This was mainly due to the increased
built-up land in this period, while lots of dense grassland changed into cropland and moderately
dense and sparse grassland. After 2000, the Moran’s I values showed opposite trends for cropland,
water bodies, unused land, woodland, dense grassland, and sparse grassland, being mainly caused by
land-use change activities becoming much stronger, while environmental protection policies were put
in place. The Moran’s I values of built-up and dense grassland decreased, mainly due to economic
development, such as urbanization and the mining industry [78]. Dense grassland suffered more
consumption after 2000.
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4. Discussion

Many previous researchers have shown that these policies have effectively curbed the grassland
degradation trend to some extent [79,80]. Based on remote sensing data, Mu et al. [39] reported that,
from 2001 to 2010, grassland increased by a total of 77,993 km2. Meanwhile, the total net primary
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productivity (NPP) of grassland increased by 29,432.71 Gg C year−1 during this period, for which
human activities were responsible for about 80%. Shao et al. [41] indicated that vegetation restoration
through environmental protection projects normally lags implementation by 1–2 years. Since 2002,
about 72% of studies have reported that vegetation has been restored since the launch of environmental
protection policies [76].

Climate change and overgrazing are believed to be the major drivers of grassland degradation in
IM [27]. However, recent work has shown that policies that have led to the privatization of use rights
and households have been the drivers of grassland degradation [26,76], and environmental protection
policies have been the root cause of grassland degradation since 2000 [38,81]. In addition, institutional
settings play a key role in shaping land-cover and land-use [47]. Based on this, we give a short review
of the most important policies that are related to land-use changes and grassland conversion processes
in IM.

4.1. Relationships between Land-Use Policy and Land Conversion before 2000

Our research shows that, during 1990 and 2000, the major land-use process was grassland
degradation, mostly through changes to cropland and unused land resulting from cultivation and
overgrazing. Specifically, 18.2% of the current cropland has been converted from grasslands in
China [28].

Economic reform began at the end of the 1970s, when cropland demand in China increased
dramatically to feed the large population and support the agricultural industry. At the same time,
there was immigration of the Han people to IM. Jiang et al. [32] indicated that the total population of IM
increased almost five-fold from 1940 to 2000. During this period, a large amount of grassland (especially
high-quality, dense grassland) changed into cropland. Since 1949, a set of property arrangements
for livestock and grassland, of which the Household Production Responsibility System (HPRS) was
the most important, has been carried out (see Figure 9). The HPRS has totally changed the lifestyle
of herders from nomadic to settled, as well the property rights of grassland and livestock from
collective to privatized [38]. The objective of the HPRS is to promote animal husbandry and protect
the environment. However, due to the livestock being owned privately, overgrazing has caused wide
land degradation in IM [76]. As Zhangqian et al. [38] noted, the HPRS has not achieved its goal
(i.e., economic development and protected grassland), as the area of grassland increased degradation
from 48.6% (of all available grassland) in 1984 to 64% in 1999. The vegetation coverage decreased from
35 to 27.2%, and the average biomass decreased from 509 to 320 kg per hectare. Taking Xilingol League
as an example, the number of livestock increased from 12.6 million in 1980 to 22.7 million in 1997,
while the grazing capacity (per sheep unit) of grasslands decreased from 1.42 ha in 1980 to 1.05 ha in
1990 [82]. Li et al. [82] indicated that, without property rights, environmental problems will remain.
Obviously, the HPRS has led to further land degradation in IM. Fortunately, previous researchers
indicated a new mechanism of stock breed: small-scale co-management, which should be encouraged
in the future [82].

4.2. Relationship between Land-Use Policy and Land Conversion after 2000

This present study indicates that, after 2000, grassland restoration was the major land-use
conversion process (99,910 km2). Most of the increased grassland was converted from cropland
and unused land, and the area of high-coverage grassland increased during this period.

Before 2000, there were some grassland protection policies. For example, the first grassland
law, the Rangeland Law, was created in 1986 and was amended in 2003, and this was the first
step in improving and protecting the condition of grasslands (see Table 5) [28,83]. Following a
serious drought in 1997 and a massive flood in 1998, additional protection policies were launched
in China. These policies include two general measurement categories for grassland protection:
(1) conversion from other land-use types (for example, cropland and desert to grassland) and (2)
livestock management and the reduction of users (see Table 5 and Figure 9).
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Table 5. Policies launched by the central government related to grassland protection in China.

Years Policies and Programs

1985 Rangeland Law (RL) [28]
1999–2010 Grain to Green Program (GGP) [84]

2003 Rangeland Law (amended) [28]
2002–2010 Return Grazing to Grassland Program (RGGP) [20]
2001–2010 Beijing–Tianjin Sand Source Control Engineering Project (BTSSC) [85]
2001–2008 Fencing Grassland and Moving Users (FGMU) [38]
2001–2020 Payments for Environmental Services (PES) [86,87]

The protection policies regarding the conversion of grassland from other land-use types are
the Grain to Green Program (GGP) and the Beijing–Tianjin Sand Source Control Engineering Project
(BTSSC). GGP (also known as the Conversion of Cropland to Forest and Grassland Program) was
implemented between 1999 and 2010. It is the largest environmental policy in western and central
China (covering 82% of the total area of China) and is closely related to land-use and land-cover
change [84,88]. The objectives of this policy were to plant trees and sow grass on steep slopes to
increase vegetation coverage [89]. The current study indicates that a total of 12,006 km2 of cropland
has been converted into grassland since 2000 (see Table 2). Statistical data in the Inner Mongolia Year
Book also indicate that the planted grassland area increased by 132.5 hma from 1999 to 2010 [39].
On the whole, the speed of grassland reclamation has decreased since GGP was launched in IM [39].
BTSSC has been implemented since 2001. The aim of this project is to control the desertification
of Beijing and its surroundings [90]. Our study indicates that 17,984 km2 of unused land has been
changed into grassland (see Table 2). Based on remote sensing data, Wu et al. [91] showed that, in the
BRSSC area, vegetation has experienced the most human-induced improvement, and environmental
programs (such as enclosing grassland) are the main human activity. These were therefore implicated
in the conversion of grassland and woodland from cropland in IM after 2000.

Policies covering livestock management include the Return Grazing to Grassland Program
(RGGP), Fencing Grassland and Moving Users (FGMU), and Payments for Environmental Services
(PES) (see Figure 9). RGGP, which was carried out between 2002 and 2010 in China, aimed to mitigate
grazing pressure in northern China through the implementation of various measures. For seriously
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degraded areas, free grazing and fencing are necessary. For moderately and slightly degraded
areas, livestock management measures (grazing rotation, seasonal enclosures) are necessary [39,92].
The present study shows that grassland coverage increased by 57,169 km2 since 2000 (see Table 2).
FGMU was implemented between 2001 and 2008, and the objective of this policy was to restore
degraded grassland by forbidding grazing in the short term or annually. Han et al. [91] reported that
most of the grassland improvement since 2000 has been due to fencing. Jiang et al. [32] also indicated
that degraded grassland after fencing can be restored naturally. PES has been implemented in China
since 2001, with the major aim of achieving a win-win situation in terms of ecological restoration and
poverty alleviation [86]. The major measure of PES is the engagement of millions of households as
core agents of the project [47]. Taking the largest PES policies—the Sloping Land Conversion Program
(SLCP) and Fencing Grassland and Moving Users (FGMU)—as examples, many studies have noted
that these policies have improved environmental conditions [47,93]. PES was developed as a primary
policy for environmental protection [94].

Indeed, grassland has experienced obvious restoration in IM, and these ecological policies and
programs have also contributed significantly to land-use change activities (with lower TPs in this
study). This is in accordance with many previous studies [22,42,92,95]. However, land degradation is
still the major ecological issue in IM [4]. Mu et al. [39] indicated that the number of livestock increased
from 73.35 million heads in 2001 to 107.99 million heads in 2010. During the same period, the amount of
available grassland decreased due to fencing and grazing bans. Livestock intensity increased, and the
grazing pressure was not alleviated. Liu et al. [21] reported that grassland coverage has increased by
3% since 2000, with 0.4% of that between 2014 and 2015. Moreover, more than one-third of grassland is
still degraded. Batunacun et al. [4] indicated that a long-term environmental protection policy should
be implemented in pastoral areas. At the same time as removing users of grassland and offering job
opportunities in cities, the development of an intensive livestock industry should also be encouraged.
A more flexible protection policy, combined with various grassland conditions, should be considered
in future grassland development in IM [20].

In the present study, we have redefined the definition of grassland and analyzed grassland
degradation processes based on land-use conversion. We have also analyzed the relationship between
different land-use conversion processes and possible land-use management policy. Policy as a indirect
driver can showed significant effect on other direct drivers, for example, policy showed important
influence on demographic factors, technique factor, economic et al. [11], as well land management
method, take Brazilian Amazon area as an example, PPCDAm have control over the deforestation
rate via expanded protected area, improved morning and enforced laws, implemented soy and
cattle moratorium agreed [35]. PPCDAm have control the soy expansion and cattle ranching and
decreased the deforestation rate in Amazon area. Analyzing the association between policy and land
use conversion patterns has provided a quantitative view to evaluate policy effects, at the same time,
this evaluation also provide more information about combat degradation for decision makers. In the
future, combining this method of analysis with land-use modeling, making predictions of land-use
change based on ideal policy scenarios, or using policy free scenarios to make a quantitative evaluation
of policy effects can be done in other scenarios and not just in China.

5. Conclusions

This study identified the patterns and processes of land-use and land-cover change in Inner
Mongolia from 1990 to 2015 using long-term remote sensing data from a combination of a transition
matrix, Markov chain, and Moran’s I methods. Grassland degradation and restoration was also
investigated with an LUCC analysis. The major results were as follows.

(1) In 1990–2015, land-use changed dramatically in IM (i.e., in 13% or 123,445 km2 of the total area,
including eight land-use types). Woodland increased the most, followed by built-up land and
dense grassland. Moderately dense grassland decreased the most, followed by sparse grassland.
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The changes in water bodies and unused land covered less than 300 km2. The most obvious
changes occurred in the eastern and northeastern regions.

(2) During the first period (1990–2000), all land-use change activities were relatively stable, with TPs
of at least 0.92. Before 2000, most of the increased cropland was converted from grassland,
and the grassland coverage decreased. In contrast, in 2000–2015, land-use change activities
became stronger as compared to before 2000 due to decreased TPs of all land-use types. The major
land-use processes in this period were increased grassland area and improved coverage.

(3) The trend of grassland degradation was prevented after 2000. Before 2000, grassland degradation
(in 31,829.8 km2 or 2.8% of the total area of Inner Mongolia) was the major grassland change
process. After 2000, the major grassland conversion process was restoration, and 99,910.2 km2

(8.7% of the total area) of grassland was restored.
(4) The Moran’s I values of most land-use types in IM increased after 2000, and the land-use change

activities became much stronger. The spatial autocorrelations of land-use type and land-use
change modes were highly related to the environmental protection policies, especially after 2000.

In this study, the results have indicated that important policies have a significant effect on
land-use change, especially grassland degradation and restoration. Before 2000, under the stimulation
of economic development policies (i.e., economic reform and HPRS; see Table 5 and Figure 9),
population and livestock have increased. This led to cropland expansion at expense of grassland
shrinkage and grassland degradation. For example, the grazing capacity and the average biomass
decreased, and the grassland coverage decreased significantly in this period. After 2000, grassland was
obviously restored. The central and local government have launched a set of ecological policies to
combat degradation. The important measures in IM generally are summarized as reducing users,
controlling livestock pressure, etc. Corresponding to these environmental policies, the grassland was
also restored after 2000. The grassland restoration process can be grouped into the grassland coverage
increased and the grassland area increased (i.e., other land-use types changed into grassland) in this
study. Ecological conditions have improved in IM to some extent; however, degradation is still an
important issue. Even with a set of policies with different measures to control livestock, overgrazing
still occurred after 2000 in IM. Many previous studies also showed that not all the ecological policies
worked effectively in IM. For example, previous studies [96,97] indicated that fencing policies limit
animal mobility, leading livestock to be unable to temporarily move to better grassland resources
and water. Hence, fencing led to further grassland degradation and poverty. For other ecological
policies, more stable and long-term continued policies should be enforced to encourage the sustainable
development of grasslands in the future.
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