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A B S T R A C T   

Most of the experimental and modeling studies that evaluate the impacts of climate change and variability on 
barley have been focused on grain yield. However, little is known on the effects of combined change in tem-
perature, CO2 concentration, and extreme events on barley grain quality and how capable are the current 
process-based crop models capture the signal of climate change on quality traits. Here in this review, we initially 
explored the response of quality traits of barley to heat, drought, and CO2 concentration from experiential 
studies. Next, we reviewed the state of the art of some of the current modeling approaches to capture grain 
quality. Lastly, we suggested possible opportunities to improve current models for tracking the detailed quality 
traits of barley. Heat and drought stress increase the protein concentration which has a negative effect on malting 
quality. The rise of CO2 concentration significantly reduces the grain protein, again resulting in a decline of the 
malting and brewing quality since the nitrogen concentration of grains needs to be kept at a specific level. The 
current crop models that simulate barley grain quality are limited to simulation of grain nitrogen concentration, 
size, and number in response to climate extremes and CO2. Nevertheless, crop models fail to account for the 
complex interactions between the conflicting effects of rising temperatures and droughts as well as increasing 
CO2 concentrations on grain protein. They have mainly adapted wheat models that cannot capture barley’s 
protein composition and whole grain malting quality. Implementation of experiments from gene to canopy scales 
which are explicitly designed to detect the interactions among environmental variables on detailed quality traits 
and couple the remote sensing plus data-driven approaches to crop models are possible opportunities to improve 
modeling of barley grain quality. The development of modeling routines can capture the detailed grain quality 
provide valuable tools for forming climate adaptive strategies. Equally important, they can guide breeding 
programs to develop climate-resilient but high-quality barley genotypes.   

1. Introduction 

Barley (Hordeum vulgare L.) is among the oldest cultivated global 
crops and, respect to other cereals, it is adapted to grow in many 
different environments spanning from the equator to the arctic circle 
and at many different latitudes (Newton et al., 2011; Dawson et al., 
2015). Despite such potentially wide growing habitat barley is only the 
fourth most cultivated cereal (beyond wheat, maize and rice) and 
eleventh among the main cultivated crops (Newton et al., 2011; FAO-
STAT, 2021). It is a crop that, depending of the socio-economic context, 
is used as animal feed and/or forage, food, and drink for humans 
(Newton et al., 2011). In general, barley grain yield is more stable 

against seasonal variation and heat than wheat and most other small 
grains, so it is preferred by resource-poor farmers in order to reduce the 
risk of very low yield or crop failure (Akar et al., 1999). From 
1961–2019 the mean harvested area was 64 million ha, ranging between 
47 and 84 million ha (Fig. 1a). Since the 80 s the area harvested declined 
from 84 million ha to the actual 50 million ha recorded recently 
(Fig. 1a). The overall unit yield has increased, for the same period of 
about 2 t ha-1 globally (Fig. 1b). For the period 2009–2019 the top 20 
producers of barley, which produced about 84 % of the total world’s 
barley, were reported in Fig. 1c, with Russia being the country that 
produced an average 17 million tons ( ± 3.4 million tons for the 
2009–2019 period) of barley followed by France with 11.4 tons ( ± 1.4 
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million tons for the 2009–2019 period; Fig. 1c). 
Due to rising demands for crop production and a climate change 

threat, providing food for the ever-growing population to maintain food 
security has been a significant concern (Wheeler and Braun, 2013). 
Using process-based crop models, a wide set of studies have investigated 
the potential impacts of climate change (increased temperature, CO2 
concentrations, and weather extremes) on crop growth and productivity 
from local to global levels (Asseng et al., 2015; Liu et al., 2016; 
Jägermeyr et al., 2021). The yield stability of barley under climatic 
variabilities is frequently overestimated compared to wheat or maize, 
primarily due to their higher yield potential (Dawson et al., 2015). 
Future projections of climate trends indicate that most of the harvested 
barley areas will get warmer and drier, resulting in a global decline in 
barley yield and production (3–17 % depending on the environment) 
could lead to a more than 100 % increase in beer price (Xie et al., 2018; 
Cheng et al., 2019). However, that study only included barley yield 
ignoring the role of grain N % limits for brewing which is far more 
critical than yield (e.g., if grain N % is not in a given range, then a 
higher/lower yield is pointless). In addition, not all the countries will 
export/use the spring barley for beer production. A set of regional 
impact assessment studies in the Mediterranean basin (− 25 % to − 8 % 
depending on climate scenarios), Kazakhstan (− 4.8 %), Czech Republic 
(− 19 % to +5 %), Iran (− 50 %) showed a relatively similar decline in 
barley yield under climate change conditions (Trnka et al., 2004; 
Cammarano et al., 2019; Mirgol et al., 2020; Schierhorn et al., 2020). 
The potential of rainfed farming of spring barley is languishing due to a 

growing risk of severe droughts across western and central Europe due 
to climate change (Trnka et al., 2010). On the other hand, impact 
assessment studies in higher latitudes (e.g., Finland) demonstrated 
positive effects of temperature increase and elevated CO2 on barley yield 
under optimistic climate scenarios (Rötter et al., 2012). 

Beer and whisky production bring the highest added value of barley 
commercially. However, malting barley requires special qualitative 
features depending on malting, distilling or brewing industries. Quality 
traits of grains can be defined by physical and compositional properties, 
with thresholds based on end-use essentials (Nuttall et al., 2017). The 
crude protein content is the most crucial element specifying barley’s 
quality for such industries as a function of grain nitrogen content 
(Prystupa et al., 2021). The high protein level in barley reduces the 
starch content leading to a lower alcohol level; nevertheless, yeast ac-
tivity is restricted by nitrogen shortage under lower grain protein levels 
(Pettersson and Eckersten, 2007). Therefore, it is critical to keep the 
protein level of the barley grains in a particular range to ensure the 
malting quality (Luo et al., 2019). Such quality trait is controlled by the 
genotype, environmental characteristics and the processing (Slafer 
et al., 2002). Numerous studies have documented climate change’s ef-
fects on crop yield, while the quality traits of crops is an essential aspect 
of food production, it has received considerably less attention (Asseng 
et al., 2019). An elevated CO2 level under climate change would increase 
grain starch concentration, declining grain protein content, despite a 
higher magnitude of heat/drought stress reduced grain starch content 
(Erbs et al., 2010; Högy et al., 2013). The level of β-Glucan as an 

Fig. 1. Information of (a) the global harvested areas and (b) grain yield for barley (solid line), maize (dashed-dotted line), rice (dashed line), wheat (dotted line); and 
(c) barley production in million t for the 20 main producing countries in the world where the dots represent the mean of 10 years of data (2009–2019) and the error 
bars its standard deviation; Data for Fig. 1a-c are from FAOSTAT, 2021. The inlet Table represents the statistical information for the 2009–2019 of area harvested, 
production and unit yield for each of the contents (FAOSTAT, 2021); (d) geographical distribution of the barley harvested area (from http://mapspam.info/). 
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essential indicator of digestibility and brewing quality in barley is 
significantly increased under high temperatures (Anker-Nilssen et al., 
2008). 

Wheat-specific crop models are commonly used to simulate barley 
yield and grain quality by changing crop parameters due to the simi-
larities of physiological and morphological features (Rötter et al., 2012). 
A rare number of crop models simulate quality traits aside from grain 
nitrogen. Testing the performance of 18 crop models indicated that 
capturing the variability of wheat grain protein concentration is a major 
challenge under extreme temperatures (Asseng et al., 2019). Sir-
iusQuality (Martre et al., 2006) and STICS (Brisson et al., 2003) are the 
crop models that simulate other grain quality (other than protein) as-
pects specifically for wheat. However, researchers and other stake-
holders need to crop models addressing the grain nitrogen response to 
changing climate and management with remarkably higher accuracy 
and consider other barley specific quality traits. Two primary sources of 
uncertainty exist within the crop modelling process, including structure 
and parameter uncertainties (Wallach and Thorburn, 2017). Structure 
uncertainty is driven by the incompatibility of various equations that 
simulate different processes and values of the fixed model parameters in 
crop models (Wallach et al., 2017). The impacts of those sources of 
uncertainties need to be quantified on the results of quality traits sim-
ulations in a systemic approach. 

This review aims to compile state of the art on (i) response of quality 
traits of barley to climate change (extreme temperature, drought, and 
CO2 concentration), (ii) the capability and approaches of available 
process-based crop modeling platforms to simulate barley quality traits 
disentangling genotype, environment and management interactions, 
and (iii) potential opportunities to improve crop models grain quality 
estimations by coupling them into modern data-driven approaches (e.g. 
machine learning) and sensing technologies as future perspectives. 

2. Impact of change in climatic variables and grain quality 

There is little known regarding the impacts of climate change on 
brewing quality and supply of barley in the future since nearly all 
climate change impact assessments assess barley’s yield and production 
response but not grain quality. The changes in climatic variables on 
quality traits of barley may be as equally significant as yield (Wardlaw 
et al., 2002). High temperature and lack of water availability can 
considerably change the grain quality throughout alteration in compo-
sition and concentration of starch and protein (Högy et al., 2013). Hence 
in this section, we focus on the effects of high temperature, heat epi-
sodes, water availability, and CO2 on the grain quality of barley which is 
summarized in Fig. 2. 

2.1. Increase in temperature and heat episodes 

Most of the studies that evaluated the effects of high temperature 
stress on grain quality focused on changing the protein content as one of 
the most critical quality traits (Soares et al., 2019). The direct rela-
tionship between protein concentration and other grain quality mea-
sures of barley is well documented (Chen et al., 2012; Balyan et al., 
2013). There is a robust negative correlation between high protein 
concentration due to high temperatures and malt extract in barley 
(Eagles et al., 1995). The starch accumulation in barley grains is nega-
tively affected by heat stress (Savin and Nicolas, 1996). The protein 
content is a complex trait governed by interactions among genotype, soil 
conditions, agronomic management, and CO2 concentration (Peña et al., 
2002; Triboi et al., 2006; Wieser et al., 2008). 

The increase in temperature and heat intensity leads to a significant 
increase in grain protein concentration as those stresses influence starch 
accumulation, and change the protein/starch balance (Spiertz et al., 
2006; Triboi et al., 2006). Analysis of 160 barley malting genotypes in 
Australia showed that amplified rainfall between July and September 
was associated with declined grain protein. On the other hand, the 

number of days above 35 ◦C during grain filling was related to increased 
grain protein (Correll et al., 1994). Experimental evidence showed that 
the increase in protein concentration of spring barley under elevated 
temperatures is mainly driven by starch synthesis suppression instead of 
an increase in protein concentration per grain (Wallwork et al., 1998). 
The heating treatments significantly reduced the starch concentration 
by 5.0 % resulted in a remarkable decline in barley’s malting quality 
(Barnabás et al., 2008). 

2.2. Change in water availability 

The malting quality and protein concentration of barley showed a 
relatively similar response to drought as high temperature (Mahalingam 
and Bregitzer, 2019). Drought stress generally occurred during the 
anthesis and grain filling period of barley; therefore, most of the studies 
targeted those stages as the most sensitive growth stages to abiotic 
stresses (Kalladan et al., 2013). Drought stress significantly reduced the 
starch assimilation and increased the grain nitrogen percentage (Savin 
and Nicolas, 1996). In addition, beta-glucan content is one of the critical 
malting quality factors of barley significantly reduced under drought 
stress (Macnicol et al., 1993). Heat and drought stress combined to 
reduce barley yields more severely than individual stress, but malting 
quality traits were unaffected compared to heat or drought stress alone 
(Mahalingam and Bregitzer, 2019). 

Testing different barley genotypes indicated a remarkable decline in 
barley yield and malt extract by hampering the starch accumulation 
under drought stress (Wu et al., 2015). However, there was a significant 
variation in response of grain quality to drought stress among different 
genotypes (Wu et al., 2015). The drought-tolerant barley genotypes 
showed a larger re-mobilization capacity of the metabolites stored in the 
vegetative organs into the developing grains compared to sensitive ge-
notypes (Hong et al., 2020). 

2.3. Elevation in CO2 concentration 

One of the most significant consequences of climate change is the 
rapid rise in atmospheric CO2 (Thrasher et al., 2013). The CO2 con-
centration is projected to increase from 379 ppm to 538 ppm by 2100 
(Meinshausen et al., 2011). The experimental evidence showed the 

Fig. 2. Schematic illustration of crop yield and quality response to climate 
change including drought, heat intensity and CO2 concentration. Light shades 
indicate less intense, and dark shades show more intense stress impacts. 
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direct effects of CO2 increase in enhancing photosynthesis and biomass 
accumulation, particularly for C3 crops such as barley (Torralbo et al., 
2019). Significant changes in grain quality often accompany increases in 
biomass production under elevated CO2 (Hampton et al., 2013). With an 
increase in CO2 concentration, the chemical composition of crops will 
shift, resulting in a reduction in most elements, including nitrogen 
(Loladze, 2002). Doubling of CO2 concentration can reduce barley grain 
protein concentration between 10 % and 15 % (Tabu et al., 2008). An 
excessive nitrogen application cannot fully compensate for such a 
reduction in protein concertation in cereals (Kimball et al., 2001). 

The mechanisms involved in reducing nitrogen and protein con-
centration under elevated CO2 are not well understood (Taub and Wang, 
2008). CO2 enrichment caused a significant increase in globulin and 
B-hordein proteins (Wroblewitz et al., 2014), which showed the most 
negative correlation with malt extract (Howard et al., 1996). The pos-
sibility of reducing nitrogen and protein concentration by increasing 
non-structural carbohydrates is one theory (Gifford et al., 2000). Other 
studies suggest that the decline in Rubisco levels in leaves and stems 
could explain the reduction in grain protein concentration (Ainsworth 
et al., 2002). A few studies have investigated how elevated CO2 affects 
barley quality in field conditions using Free-Air Carbon dioxide 
Enrichment (FACE) systems. The CO2 enrichment to 550 ppm declined 
the activity, and total and soluble β-amylase, single grain harness, and 
the water extract’s viscosity in barley (Erbs et al., 2010). The higher 
temperatures during the growth period were slightly compensated for 
reducing grain protein concentration under elevated CO2 in wheat 
(Wang et al., 2019b). Another study on spring wheat showed that the 
total protein concentration increased under CO2 and heat stress com-
bined. Still, it resulted in a significant imbalance between structural and 
storage protein, leading to a remarkable decline in bread-making quality 
(Zhang et al., 2019). However, the quality of other crops such as rice 
declined further under a combined increase in heat stress and CO2 
concentration compared to sole elevation in CO2 level (Chaturvedi et al., 
2017). Therefore, we cannot generalize the quality response of different 
crops to combined heat and CO2 elevation. 

3. State of the art of current modeling approaches to capture 
grain quality 

The available crop models simulating grain quality generally esti-
mate grain N and protein content as the most representative quality 
measure interacting with water availability, temperature, and nutrients 
(Nuttall et al., 2017). Currently, models used for barley grain quality 
simulation can be divided into three types: (a) process-based models 
mainly developed based on wheat (Table 1) (b) empirical statistical 
regression models derived from experimental data and/or remote 
sensing, and (c) hybrid approach that integrates remote sensing data and 
process-based crop models via data assimilation. Process-based models 
simulate cropping systems’ critical growth processes, capturing the 
complex interactions across genotype, management, and environment. 
However, those models are not suitable to employ when the specific 
processes not implemented in the model drive the variability of crop 
yield and quality traits (Rötter et al., 2018). 

Statistical crop models are the second type that developed in a wide 
range of complexity (Yang et al., 2014). They are developed based on 
regression-based relationships that relate variation in observed crop 
yields and quality to changes in climate or other variables (Lobell and 
Asseng, 2017). Statistical models can partly capture the signal of pest 
and disease pressure (year and location-specific) which are not reflected 
in process-based models (Roberts et al., 2017b). However, the under-
lying mechanisms of the growth processes cannot be captured by them 
(Webber et al., 2020). 

The process-based crop models commonly provide an abstraction of 
detailed crop processes. In addition, they poorly consider some of the 
fundamental factors such as pests and disease, which can significantly 
influence grain quality (Pirgozliev et al., 2003). Hybrid approach 

integrates remote sensing/ground measured data and derived products 
with process models, which has been demonstrated to have an excellent 
potential for large-scale crop monitoring (Li et al., 2015b) to address 
processes ignored or poorly considered in crop models (Jin et al., 2018). 
Such hybrid approaches would also be employed to quantify individual 
physiological traits’ contribution to grain yield and quality across the 
environments and range of management practices (Cammarano et al., 
2021a; He et al., 2017a). Currently, data assimilation is commonly used 
to couple remote sensing information into crop models. Different types 
of state variables derived or retrieved from remote sensing and ground 
measurement can be merged into process models, including leaf area 
index, soil moisture content, canopy coverage, above-ground biomass, 
the fraction of absorbed photosynthetically active radiation, and 
evapotranspiration (de Wit and van Diepen, 2007). Data assimilation 
recalibrates and optimizes the simulation process of models, which is a 
practical approach to mitigate the controversy of observation and 
simulation errors to improve simulation accuracy (Jin et al., 2018). 
Remote sensing can also provide targeted phenotyping information to 
estimate crop model parameters which can be linked to loci or alleles 
embedded in pan-genomes to disentangle the complex interactions 
among environment, genotype, and management (Wang et al., 2019a). 
The coupling of crop models and machine learning would also improve 
the yield forecasts (Shahhosseini et al., 2021). In such coupling pipelines 
machine learning algorithms employ as external modifier of crop model 
results when the targeted outputs of the model used as predictors (Feng 
et al., 2019). They showed satisfactory performance in detecting 
long-term yield variability and extreme climate effects on yield, which 
the sole implementation of crop models cannot capture (Everingham 
et al., 2016; Feng et al., 2019). Under climate change, such potentials 
should be used to address the shortcomings of crop models for simu-
lating barley-specific quality traits. 

3.1. Modeling of grain nitrogen and protein content 

Process based crop models simulate the N uptake and its transfer to 
grain by two approaches; the simple one is the harvest index approach, 
in which N harvest index increases linearly with thermal time from zero 
at the start of grain growth to maximum N rate (e.g., 80 %) considering 
thermal accumulation (Jamieson et al., 1998). Another more complex 
approach is source-sink models (Jamieson and Semenov, 2000). The 
grain protein content is directly proportional to grain N content in the 
process-based modeling routines. Grain proteins are synthesized from 
the amino acids remobilized from the vegetative organs or the current N 
uptake. The growing conditions during the grain filling phase and the 
amount of N stored before anthesis determine the amount of N remo-
bilized into the grain when the mechanism implemented (Barbottin 
et al., 2008). 

Some process based models, see section below, consider the inde-
pendent temperature function on N accumulation which can directly 
represent the impacts of temperature rise on grain quality (Ibrahim 
et al., 2019). The temperature rise indirectly resulted in a linear increase 
of grain N content in most crop modeling platforms which is limited by 
grain size and N concentration threshold (Alderman et al., 2014). 
However, there is no explicit routine in modeling platforms used for 
impact assessment studies to simulate the effects of extreme heat epi-
sodes on grain N accumulation (Osman et al., 2020). The models 
generally separate the dry matter and N accumulation for grains, and 
this can lead to failure in a simulation of grain protein under extreme 
drought and low N fertilizer application (Asseng et al., 2002). Linking of 
those two processes can significantly improve the simulation of grain 
nitrogen (Asseng et al., 2002). In general, the CO2 fertilization effects on 
grain protein can be captured by crop models since dry matter accu-
mulation increase by adjustment of radiation use efficiency or photo-
synthesis; however, the nitrogen concentration remains constant 
(Asseng et al., 2019). 

The performance of a modeling routine in the simulation of specific 
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growth processes (e.g. accumulation of grain nitrogen) depends on the 
balance of data availability, model complexity, spatial scale, and the 
environmental-management conditions that the model developed in the 
first place. For instance, the availability of the full spectrum of soil 
characteristics resulted in the best yield simulation for CERES-Wheat 
and CropSyst under semi-arid conditions. However, WOFOST indi-
cated the best performance under the limitation of soil data (Casta-
ñeda-Vera et al., 2015). On the other hand, the availability of model 
parameters does not necessarily result in high accuracy of model out-
comes (for spring barley) when implemented under low input cropping 
systems since study models (PSIM, CERES, CROPSYST, COUP, DAISY, 
EPIC, FASSET, HERMES, MONICA, STICS, and WOFOST) are developed 
under optimum management conditions (Salo et al., 2016). The complex 
crop models are generally developed for field conditions. Still, their 
application at a large scale may result in lower accuracy than simpler 
models due to a large number of parameters required for complex 
modeling routines, which are not generally available at large scales 
(Pasquel et al., 2022). Therefore, it is challenging to generalize which 
modeling approach provides the most satisfactory outcome for all 
conditions. 

Statistical methods for grain N and protein content estimation can be 
performed by solely remote sensing indicator, remote sensing combined 
with crop physiological variables, and multiple measurement integra-
tion. Remote sensing captures reflectance of crops at leaf and canopy 
scales; as leaf N content is highly correlated to grain N/protein content 
(Hunt et al., 2005). Developing regression relationships between grain 
N/protein content and remote sensing spectral indices becomes a direct 
and rapid way for quantifying grain N and protein content (Liang et al., 
2018). These spectral indices (e.g., GNDVI, NDRE) are mainly calculated 
using the green, red, red edge, and near-infrared bands. Other sources of 
remote sensing indicators such as thermal and narrow hyperspectral 
indices can be incorporated in the regression relationships for consid-
ering the effects of temperature, irrigation and fertilization management 
on grain features (Zhao et al., 2005). The second approach treated crop 
physiological variables that are more easily retrieved/estimated via 
remote sensing technology and highly related to protein and N content 
as a bridge to link remote sensing data and grain N/protein content. 
These physiological variables include canopy chlorophyll content, leaf 
carbon accumulation, leaf N content, and leaf N accumulation (Wang 
et al., 2021). The last approach is integrating remote sensing, soil con-
ditions, sowing date, fertilization rate, climate conditions, and 
phenology in a complex empirical approach for estimation of grain N 
and protein content (Pettersson and Eckersten, 2007). Besides, coupling 
crop process model and remote sensing data is another effective way to 
assess grain N and protein content. For instance, a combination of 
DSSAT-CERES model and NDRE spectral indices resulted in better per-
formance than the single spectral indices-based approach (Li et al., 
2015b). 

3.2. An overview on simulation functions of grain nitrogen, nitrogen 
stress, and other quality measures in current process-based models 

APSIM: The grain N demand (ND,grain) begins at anthesis and is 
calculated using grain number (Ng), thermal time, and potential grain N 
filling rate (hN,pot : g grain-1 ◦Cd-1) which is a model parameter and 
currently set at 0.000055 g grain-1 ◦Cd-1 (Keating et al., 1999; Wang 
et al., 2002; Holzworth et al., 2018): 

ND,grain = NghN,pot fN,grainhgrain(T)

The hgrain(T) is a function of daily mean air temperature to impact 
grain filling ranging from 0 to 1, with 0 currently at 0 ◦C and 1 at 25 ◦C. 
While fN,grain is the N factor for grain filling and calculated as follows: 

fN,grain =
hN,pot

hN,min
hN, grain

∑

stem,leaf

CN − CN,min

CN, crit × fc,N− CN,min

(
0 ≤ fN,fill ≤ 1

)

where hN,min is the minimum rate of grain filling and is a model’s 
parameter set currently at 0.000015 g grain-1 ◦Cd-1; hN,grain is a multi-
plier for N deficit impact on grain, it is a model parameter and currently 
has a default value of 1; CN is the N concentration of stem and/or leaves; 
the minimum N concentration (CN,min) is defined as the structural N 
required by the plant and cannot be re-translocated, the critical N con-
centration (CN,crit) is the minimum N concentration that plants will 
maintain and therefore drive the demand of N, and in this case they refer 
to stem and/or leaves; the fc,N is a factor with value of 1 for stem 
meaning no impacts and if function of CO2 concentration for leaves. 

CERES-Wheat and NWheat: The CERES-Wheat model (Ritchie and 
Otter, 1984) simulates grain N using a simplified approach in which only 
the main processes are considered. Grain N is the direct result of dry 
matter and N accumulation in the grain. Both are accumulated inde-
pendently and driven by potential accumulation per kernel (expressed as 
demand function) and actual supply. N accumulation in the grain is 
function of temperature. 

The potential kernel N accumulation (ΔKNpot expressed in µg N 
kernel-1 day-1) for a given kernel is calculated as: 

ΔKNpot

{
0.49 × Tmean Tmax ≤ 10℃

4.83 + 1.06 × Tmean + 0.25 × (Tmax − Tmin) Tmax > 10℃

}

Where Tmean is the mean air temperature, Tmax and Tmin are the 
maximum and minimum air temperature, respectively. The CERES- 
Wheat did not consider genetics for N accumulation and also 4-fold in-
crease of potential kernel N accumulation at 10℃. 

Grain N accumulation demand per unit area (ΔNpot ; g N m-2 day-1) is 
the product of ΔKNpot and number of kernels per unit area: 

ΔNpot = ΔKNpot × K × 10− 6  

Where K is the number of kernels per unit area. The grain N supply is 
obtained from different organs (such as stem, leaves, and roots) up to a 
point where the tissue N concentration is reduced to a minimum con-
centration that is function of the phenological stage. The tissue N crop is 

Table 1 
A series of barley crop growth models, demonstrating their ability to simulate grain quality traits.  

Model ST scale GN GP Other quality traits Drivers of GN Other drivers GN Grain number Grain size      

Temperature Water CO2    

APSIM Daily/Point Y Y N Y N Y – Y Y 
CERES-Wheat Daily/Point Y Y N Y N N Development stage Y Y 
CropSyst Daily/Point Y N N N N N Harvest index N N 
DSSAT-CROPSIM Daily/Point Y Y N Y N N Development stage Y Y 
FASSET Daily/Point Y N N N N N – N N 
LINTUL3 Daily/Point Y N N N N N – N N 
MONICA Daily/Point Y Y N N N N Development stage Y Y 
SiriusQuality Daily/Point Y Y Y Y N N Development stage Y Y 
STICS Daily/Point Y Y Y Y N N Harvest index Y Y 

ST: spatiotemporal, GN: grain nitrogen, GP: grain protein, Y: yes, N: no 
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the resultant of uptake before and during the grain filling period. 
Nwheat (Asseng et al., 2002) changes: There have been three main 

changes to the CERES-Wheat routine:  

i. Upper boundary to limit N transfer to a maximum of 4 % of the 
daily dry matter transfer. The upper boundary considers that N 
transfer to grain requires some carbon;  

ii. The transfer of dry matter is limited so that accumulation is at 
least at 1.23 % N this daily transfer to ensures minimum grain N 
concentration observed in the field;  

iii. Initialization process at the beginning of grain filling period for 
kernel N with 3 %N. The N is received from the simulated 
aboveground tissue and below-ground if needed. This process 
reduces the above-ground tissue N to a level whose minimum 
limit is dependent on crop phenology; while the below ground 
tissue to a minimum limit of 0.45 % N. If the supply of N is not 
enough then the initial kernel N is reduced. 

CropSyst: In the model (Kemanian et al., 2007) the actual grain N 
concentration (Ng) is dependent on the amount of N available for allo-
cation (Na), and on the Harvest Index (HI) and calculated as follows: 

Ng = Ngn +Na × Pg
/

HI  

Na = Nt −
[
HI × Ngn +(1 − HI) × Nsn

]

Where Ngn is the minimum Ng that must be satisfied for growth to take 
place, Nt is the N concentration in the aboveground biomass at physi-
ological maturity, Nsn is the minimum N concentration in straw that is 
needed for growth to take place. Pg is the grain partitioning factor and 
indicate the partitioning of Na to the grain if both grain and straw have 
reached their maximum concentration, but it is modulated through the R 
parameter for accounting actual availability of N as explained below. 
The two parameters are calculated as follows: 

Pg =
[
1 + (1 − HI) × Nsd

/
(HI × Ngd)

]− R  

R =
{

Na
/[

HI × Ngd + (1 − HI) × Nsd
] }C  

Where Ngd and Nsd are the grain N demand above the minimum con-
centration and are computed as: 

Ngd = Ngx − Ngn  

Nsd = Nsx − Nsn 

The Ngx and Nsx are the maximum N concentration in grain (g) and 
straw (s) that cannot be exceeded. When Na is multiplied by the 
aboveground biomass it expresses the N content (mass) that is available 
for grain and straw. The terms of the R factor represent the degree of 
saturation on N of the aboveground biomass. That means that it repre-
sents the fraction of N required to attain the maximum concentration in 
aboveground biomass as satisfied by Na. For example, if the N in the 
aboveground biomass can only satisfy the minimum N concentration 
(Ngn, Nsn) R will be 0 because there is no amount of N available for 
allocation (Na = 0). But, if there is enough N to satisfy the maximum 
concentration (Ngx, Nsx) then R = 1. The parameter C is dimensionless 
and is an empiric factor allowing adjustment of Pg for genotype effects. 
Higher C values indicate higher priority to the grain as sink in terms of 
Na. Ngx, Nsx, Ngn, and Nsn are constants and vary among species. 

DSSAT-CERES and DSSAT-CROPSIM: The CERES-Wheat/Barley 
model in the DSSAT software package is a derivative of the original 
CERES-Wheat (Ritchie and Otter, 1984) and CROPSIM-Wheat (Hunt and 
Pararajasingham, 1995) models. The original CERES was changed both 
to allow it to fit within the structure of the overall CSM model (Hoo-
genboom et al., 2019), and to facilitate the removal of all parameters 
from that were in the code and placing them in external files. Grain N 

concentration is the direct result of dry matter and N accumulation in 
the grain. Both are accumulated independently and driven by potential 
accumulations per kernel and actual supply; both are functions of tem-
perature. The model considers the genetics of the particular cultivar 
being simulated, and calculates potential kernel N accumulation from an 
input parameter for the standard grain N concentration of the cultivar. 

The N that needs to meet the potential demand is obtained from a 
reserve N pool, uptake from the soil, and withdrawal from the various 
vegetative organs, with the amount withdrawn each day from leaves, 
stems and roots being limited by input parameters. If the N supply is 
insufficient to meet the demand then the grain N concentration falls 
below the standard, but it is not allowed to fall below a lower threshold 
value that is set as an input parameter for the particular cultivar. 
Similarly, if the carbohydrates available for translocation to the grains 
are inadequate but N availability is good, the N concentration in the 
grain will increase, but only to a maximum value provided as an input 
parameter for the species. In DSSAT-CERES the grain N demand 
(GNDEM) is calculated as follow: 

GNDEM = min
[

GROGRPA ×

(
GRNMX

100

)

, LAGSTAGE × TFGN

× GRNUM × G2 × DU × 0.001 ×

(
GRNS

100

)]

where GROGRPA is the grain growth possible assimilation and is func-
tion of the potential grain growth (GROGRPT), the potential reserve 
growth and weight, and the grain growth from assimilates from stem; 
GRNMX is the grain N maximum concentration; LAGSTAGE is the lag 
phase of grain filling; TFGN is the temperature factor for N during grain 
filling; GRNUM is the grain per plant; G2 is an user-defined coefficient 
and is the standard kernel size under optimum conditions (mg); DU is the 
developmental units; and GRNS is the grain N standard concentration. 

The DSSAT-CROPSIM wheat (and barley) model in the DSSAT soft-
ware package is a derivative of the standalone CROPSIM wheat model 
(Hunt and Pararajasingham, 1995). It was changed to allow it to fit 
within the structure of the overall CSM model (Hoogenboom et al., 
2019), and so to make use of the soil and other modules standard to all 
models in the CSM package. The grain N was simulated in the same 
manner as described earlier for the DSSAT-CERES model. The grain N 
demand (GRAINNDEM) is then calculated from the grain growth rate a 
cultivar-specific grain N maximum concentration (GNPCMX) and 
impacted by temperature: 

GRAINNDEM = min
[

GROGRPA ×

(
GNPCMX

100

)

, TFGN × GROGRP

× (
GNPCS

100
)

]

Where GROGRPA is the possible grain growth assimilation and is func-
tion of the potential grain growth (GROGRP), carbohydrates available in 
the aboveground biomass, current grain growth assimilation, and 
reserve weight; TFGN is the temperature factor for grain N (varies be-
tween 0 and 1); GNPCS is a cultivar coefficient for the grain standard N 
concentration. 

FASSET: The N amount of grains in FASSET (Olesen et al., 2002) is 
simulated at maturity stage by assuming a linear relationships among N 
contents in the grains dry matter (Ng), aboveground (Nv) and below-
ground (Nr) biomass: 

Ng = 0.74+ 1.86Nv  

Nr = 0.75+ 1.00Nv 

The sum of the N content in different organs used as total N content 
(U) which is required for calculation of N nutrition index (NNI): 

NNI =
U
Ux 
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Ux =

⎧
⎪⎨

⎪⎩

0.069
(
Wv + Wg

)
+ 0.0175Wr, Wv + Wg < 150

0.083(
Wv + Wg

100
)

0.56
+ 0.0175Wr, Wv + Wg ≥ 150

⎫
⎪⎬

⎪⎭

Where Ux is maximum crop N content. Wv, Wg and Wr are dry matter 
of aboveground, belowground and grains, respectively. 

LINTUL3: The absorbed N is distributed proportionally among the 
plant organs according to their share in the total N demand at each day. 
The N demand of plant organs (except grains) calculated based on 
desirable maximum concentration in specific organ and current amount 
of N in organ. The N uptake from soil is ceased at anthesis and the N 
demand of grains in LINTUL3 (Shibu et al., 2010) meet by N trans-
location from leaves, stems and roots. The grains N demand is calculated 
by maximum and actual N content which is limited by amount of 
translocatble N from other organs. The N nutrition index (NNI) defined 
as condition that actual N content drops below the critical threshold: 

NNI =
actual crop [N] − residual [N]

critical [N] − residual [N]

Residual N referred to non-transferable N content which store in cell 
structure. 

MONICA: The crude protein content (PFM) of grains in MONICA 
(Nendel et al., 2011) is calculated from the ratio between N concen-
tration in aboveground dry matter (NA) and a series of crop-specific 
parameter: 

PFM =
NA

WS + (pN × WR)
×

1
0.16  

Where WS and WR are grain and aboveground dry matter, respectively. 
pN is N distribution coefficient which determine as ratio between mean 
N concentration in biomass and mean N concentration in grain yield. 
The N stress factor (δN) is calculated based on minimal (Nm), critical 
(Ncrit) and actual (Nact) concentration of the N in biomass: 

δN = 1 − e
Nm −

(

5×Nact − Nm
Ncrit − Nm

)

Ncrit = a × (1+ b × e− 5.26×Drel )

Where a and b are plant specific parameters. Drel is the ratio between 
current temperature sum and the temperature sum of the development 
stage. 

SiriusQuality: A sink priority rule in SiriusQuality (Martre et al., 
2006) determines how N is allocated and mobilized among different 
organs. All non-structural aboveground N (Nsupply) transfer to grains (as 
daily N flux) during the grain filling period as function of mean tem-
perature (ΔT) and duration of the grain filling period: 

Nsupply(T) =
(
Nstem

ns (T)+Nleaf
ns (T)

)
×

ΔT
Dgf − Dcd

, T > Dcd  

Where Nstem
ns and Nleaf

ns are non-structural N concentration of stems and 
leaves, respectively. Dgf and Dcd are duration of grain filling and cell 
division phase, respectively. The structural or metabolic grain N (Ngrain

stru ) 
is a function of N/carbon ratio and structural carbon of the grains. 
Finally, the daily N storage of the grains (Ngrain

sto ) is calculated based on 
the difference between the daily potential rate of supply and the daily 
rate of accumulation of structural N, by implementing the grain number 
(Gnum) into the equation: 

Ngrain
sto (T) =

Nsupply(T)
Gnum

− ΔNgrain
stru (T), T > Dcd 

The grain protein composition (mainly developed for wheat) is 
simulated by dividing the structural N into albumin-globulin (Nalb− glo) 
and amphiphilic (Namp). The storage N is also divide into gliadin (Ngli) 

and glutenin (Nglu) proteins: 
{

Nalb− glo(T) = αalb− glo×
(
Ngrain

stru (T)
)βalb− glo

Namp(T) = Ngrain
stru (T) − Nalb− glo(T)

}

and  

{
Nglu(T) = αglu×

(
Ngrain

sto (T)
)βglu

Ngli(T) = Ngrain
sto (T) − Nglu(T)

}

Where αalb− glo and αglu are dimensionless adjusting parameters. βalb− glo 

and βglu indicate the concentration of defined portions in mg N of the 
grains. The N stress (FN) calculated based on the minimum ([N]min), 
maximum ([N]max) and actual ([N]) N concentration: 

FACN =
2([N] − [N]min)

[N]max − [N]min 

Factor 2 allows the N concentration to pass the N amount required 
for unrestricted growth under luxury N application. 

STICS: The crop N content simulated in STICS (Brisson et al., 2003) 
depends on carbon accumulation and available N in the rootable zone. 
In grains, N quantities increase as a fraction of the N stored in the 
biomass. The daily increase in grain N concentration (DLTAGN) calcu-
lates based on N harvest index (IRAZO) and amount of the N in biomass 
(QNPLANTE) which is adjusted by a temperature-dependent factor 
(FTEMPREMP): 

DLTAGN(I+1) = [IRAZO(I+1). QNPLANTE(I+1) − IRAZO(I).
QNPLANTE(I) ].FTEMPREMP(I)

The N harvest index calculates by an increasing rate which is 
modified by the carbon harvest index. To simulate the concentration of 
N in each organ, the model used dilution curves. The crop is at risk of N 
deficiency if the N concentration falls below the critical point. Using the 
curve, N nutrition index (INN) can be defined as the ratio of actual N 
concentrations (CNPLANTE) to critical concentrations (NC) corre-
sponding to total biomass which determined N stress index (INNS): 

INN =
CNPLANTE

NC
and INNS = min(1, INN)

STICS simulates separately the moisture content of grains 
(TEAUGRAIN), which is an important variable that determines barley 
malting quality. That is a function of difference between canopy 
(TCULT) and air temperature (TAIR). Prior to the onset of grain filling, 
the water content of harvested organs is constant: 

TEAUGRAIN(I) = H2OFRVERTP − DESHYDBASEP(I − IDEBDES 
+1) −

∑I
J=IDEBDESTEMPDESHYDP(TCULT(J) − TAIR(J))

Where H2OFRVERTP is water content of grains at start of grain 
filling, DESHYDBASEP is dehydration parameter, IDEBDES is onset of 
water dynamics of grains, and TEMPDESHYDP is Proportionality coef-
ficient based on the difference between canopy and air temperature. 

4. Shortcomings of current crop models and future perspectives 

In order to better understand how changes in climate affect the 
functional properties and end-use value of barley, it is crucial to improve 
crop models’ predictive capability for grain quality. Nearly all of the 
crop models used for simulation of grain yield and quality of barley were 
initially developed for wheat. Users of the crop models change the 
specific growth parameters of those wheat models to simulate barley 
growth. However, there is a substantial difference between fundamental 
quality measures of wheat and barley. Current crop models generally fail 
to predict detailed whole-grain characteristics, grain protein composi-
tions, or functional properties by simulating only average grain size and 
N concentration or protein content (Fig. 3). The temperature is the only 
variable that directly affects grain nitrogen accumulation in most crop 
models (Table 1). However, experimental results indicated that drought 
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and CO2 could also significantly change the grain nitrogen concentra-
tion. The interactions among temperature, water, and CO2 on grain ni-
trogen accumulation need to be thoroughly explored for mechanism 
understanding and implemented in new crop modeling routines. 

A few crop models such as SiriusQuality (Martre et al., 2006) partly 
account for protein composition using empirical functions but do not 
particularly simulate the quality measures of barley for malting, brew-
ing, and distilling. On the other hand, a set of statistical models were also 
developed to simulate specific quality measures of barley in response to 
the environment, management, and genotype (Fox et al., 2006; Matthies 
et al., 2014; Nielsen et al., 2016). However, those empirical functions 
can only capture the variation in quality measures (within the envi-
ronments that the models developed). Despite this, they cannot provide 
any information regarding the underlying mechanisms explaining 
observed responses (Roberts et al., 2017a). Coupling the statistical 
models to available process-based crop modeling platforms would be an 
immediate option to partly cover the mechanistic overview of barley 
grain quality driving variables required in impact assessment studies. 
Coupled models can also reflect the grain quality response to in-
teractions between management and genotype which are not included in 
statistical models across the environments. 

The crop models were generally calibrated using empirically esti-
mated genotype-specific parameters for phenology, plant structure, and 
biomass accumulation processes obtained from field experiments (Di He 
et al., 2017b). However, most of the quality simulation modules devel-
oped for crop modeling platforms do not consider the variability of ge-
notypes in quality traits using fixed parameters due to the lack of data 
and knowledge on complex interactions among different drivers of grain 
quality (Bertin et al., 2010). One possibility of estimating a suitable 
parameter range for grain quality traits simulations is linking them to 
QTLs or genes (Barrasso et al., 2019). Such gene base modules coupled 
to crop models can also translate gene-by-gene (epistatic) and 
gene-by-environment interactions on grain quality under different 
climate change and adaptation scenarios. The potential of QTL (in the 

absence of information on specific genes or loci) and gene base infor-
mation was employed to capture traits to improve the yield under 
extreme conditions for cereals (Guitton et al., 2018; Kadam et al., 2019; 
Cooper et al., 2021). Nevertheless, only a few efforts have been con-
ducted to use such potential for improving the grain quality simulation 
modules (Quilot et al., 2005). To date, the greatest challenge facing the 
development of gene-based models for complex traits is the lack of in-
formation on responsible genes and their interactions (Baldazzi et al., 
2016). 

Remotely sensed (RS) information provided by UAV and satellite 
sensors would give a real-time estimation of the spatial pattern of the 
grain protein content of malting barley (Söderström et al., 2010) to 
adjust model outcomes from field to regional scale. The accuracy of the 
crop quality traits estimations of cereals using RS information depends 
on the phenological phase (Wang et al., 2014), which RS can also track. 
Using vehicle-based high-throughput spectral proximal sensing can 
provide an estimation of the protein content of spring barley genotypes 
at mid-season (Barmeier et al., 2017) adjust the model outcomes. The 
grain moisture at harvest as one of the quality measures of malting 
barley can also be detected by remotely sensed canopy chlorophyll 
content (Xu et al., 2019) inform crop models on the timing of the harvest 
for specific purposes, particularly for large scale applications. Coupling 
DSSAT-CERES and hyperspectral data (red-edge bands) resulted in the 
simulation of gluten content as a fundamental quality measure in wheat 
(Li et al., 2015a). RS information also can be used to estimate the other 
nutrient concentration such as potassium and calcium in barley (Holland 
et al., 2019), which crop models do not commonly simulate. The more 
detailed quality measures, including starch content, hardness, and 
barley hot water extract, which can be estimated using near-infrared 
reflectance (Fox et al., 2011), can also be included in crop models to 
simulate targeted quality measures of barley. The remote sensing data 
can be integrated with crop models either by pre-assimilated then cali-
bration of the model or forcing the crop model to adjust the growth 
processes such as N accumulation to grains by RS driven estimations 

Fig. 3. The state of the art of current crop models and possible options using new technologies to improve the simulation of grain quality in barley.  
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(Kasampalis et al., 2018). However, technical issues need to be consid-
ered incorporating sensing information with crop models, such as fre-
quency/resolution of observations and identifying symptoms from 
images under multiple stresses (Ozdogan et al., 2010; Huang et al., 
2018). 

Combining big data platforms and high-performance computing 
technologies with artificial intelligence (machine and deep learning) 
makes it possible to better understand the relationship between geno-
types, environment, and management on barley quality measures (Mohr 
and Kühl, 2021). Machine and deep learning algorithms provide a 
practical tool to analyze the sensing information detecting the hidden 
relationships between canopy reflectance and crop quality measures 
(Jung et al., 2021). Support vector machines and random forest algo-
rithms showed a significant performance in the detection of different 
elements (cadmium and magnesium) of rice cultivars using plasma mass 
spectrometry (Maione et al., 2016). Truncated Gaussian radial basis 
function and multilayer perceptron algorithms also indicate a remark-
able predictive power in estimating the protein content of barley ob-
tained from hyperspectral imagery from different environments 
(Wiegmann et al., 2019). Gaussian mixture algorithm detected the 
malting barley N concentration under various N management schemes 
based on multispectral imagery (Nelsen and Lundy, 2020). 

5. Conclusion 

The current process-based crop models used in climate change 
impact assessments to test the potential of adaptation strategies on 
barley growth and development can also capture the interactions among 
environments, genotype, and management on grain N as a quality trait. 
Nevertheless, nearly all crop model developers have limited the simu-
lation of quality measures into grain number, size, and N content. 
Further, a few models such as SiriusQuality that simulate grain protein 
composition are basically wheat models and would not provide a piece 
of beneficial information on changes in malting or brewing quality of 
barley under climate change. Therefore, the development of barley- 
specific modeling routines to assess the impacts of climate change and 
variability on grain quality (based on stakeholder’s essentials) is 
fundamental to design effective adaptation plans. The efforts to develop 
such routines should focus on two parallel directions. First, designing 
and implementing FACE and temperature free-air controlled enhance-
ment (T-FACE) experiments that explicitly explore the effects of com-
bined change in temperature, CO2, water and nutrient availability on 
detailed grain quality measures of barley to improve the process un-
derstanding. Since most of the previous FACE and T-FACE experiments 
focused on growth processes and grain quantity but not quality. Second, 
coupling the information obtained from sensing technologies and data- 
driven approach into current modeling routines. It can improve the 
accuracy of simulations by considering that the effects of variables and 
processes are not simulated in crop models. In addition, predicting 
quality traits based on complex relationships would be better explained 
by data-driven approaches (e.g., machine learning) in high spatiotem-
poral resolutions. In conclusion, a comprehensive barley quality model 
contributes developing adaptation strategies that compensate for the 
adverse impacts of climate change and provide an influential tool for 
leading and accelerating barley breeding efforts. 
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