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Abstract: To compare how different analytical methods explain crop yields from a long-term field
experiment (LTFE), we analyzed the grain yield of winter wheat (WW) under different fertilizer
applications in Müncheberg, Germany. An analysis of variance (ANOVA), linear mixed-effects model
(LMM), and MP5 regression tree model were used to evaluate the grain yield response. All the methods
identified fertilizer application and environmental factors as the main variables that explained 80%
of the variance in grain yields. Mineral nitrogen fertilizer (NF) application was the major factor
that influenced the grain yield in all methods. Farmyard manure slightly influenced the grain yield
with no NF application in the ANOVA and M5P regression tree. While sources of environmental
factors were unmeasured in the ANOVA test, they were quantified in detail in the LMM and M5P
model. The LMM and M5P model identified the cumulative number of freezing days in December
as the main climate-based determinant of the grain yield variation. Additionally, the temperature
in October, the cumulative number of freezing days in February, the yield of the preceding crop,
and the total nitrogen in the soil were determinants of the grain yield in both models. Apart from the
common determinants that appeared in both models, the LMM additionally showed precipitation
in June and the cumulative number of days in July with temperatures above 30 ◦C, while the M5P
model showed soil organic carbon as an influencing factor of the grain yield. The ANOVA results
provide only the main factors affecting the WW yield. The LMM had a better predictive performance
compared to the M5P, with smaller root mean square and mean absolute errors. However, they were
richer regressors than the ANOVA. The M5P model presented an intuitive visualization of important
variables and their critical thresholds, and revealed other variables that were not captured by the
LMM model. Hence, the use of different methods can strengthen the statement of the analysis,
and thus, the co-use of the LMM and M5P model should be considered, especially in large databases
involving multiple variables.

Keywords: winter wheat yield; long-term field experiment; fertilizer; weather; linear mixed-effects
models; M5P machine learning algorithm

1. Introduction

Winter wheat (WW) (Triticum aestivum L.) is an important cereal in Europe and accounts for over
32% of the total global production next to Asia [1]. In Germany, WW covers 3.2 million hectares,
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accounting for around one-third of the total arable land area. The average total WW production
from 2014 to 2018 was 24.7 million tons, with an average yield of 7.7 t ha−1 [2]. The grain yield of
WW in Germany has increased in recent decades from an average of less than 3 t ha−1 in the 1960s
to around 8 t ha−1 in the 2000s [1]. However, the grain yield of WW has fluctuated in recent years.
Apart from crop breeding improvement, which has contributed dramatically to the wheat yield increase
throughout the 20th century in Germany [3,4], several other factors, such as enhanced agronomic
management, favorable weather conditions, and soil improvement, also played an important role
in yield development and yield stability [5,6]. Thus, similar to other crops, yield variation in WW
is the result of interdependencies and complex interactions among different factors. In this regard,
identifying the major factors and their relationships that account for grain yield variation of WW is
crucial to understanding how to maximize yields and minimize annual yield fluctuations each year.

Long-term field experiments (LTFEs) provide insight to unravel the factors that influence crop
yield dynamics in different cropping systems and thus serve as a means to assess the sustainability of
agricultural practices over time [7]. Northeast Germany is one of the driest regions in central Europe,
with loamy and sandy soils being the two dominant soil types [8,9]. Cereals are one of the main crops
cultivated in this region. Previous cereal crop-related long-term experiments in the region have focused
on crop yields [10,11], tillage [12], and the soil organic carbon (SOC) [13]. Moreover, irrespective of the
underlying drought stress and poor water holding conditions of the prevailing soils in large areas of
the northeast, concerns over climate change have driven research in these environments [14,15].

In analyzing data from designed experiments, classical parametric methods such as the analysis
of variance (ANOVA), parametric correlation, and regression have long been commonly used to assess
crop yield [16]. However, these classical methods have limitations. For example, while ANOVA is
best suited to identifying yield differences between treatments in designed experiments, it does not
exhaustively account for the extraneous factors that influence yields [17,18]. Similarly, parametric
correlations and linear regressions are less suited to handle missing, unbalanced, and higher-order
data and nonlinear interactions [18,19]. Flexible and robust methods are now available for dealing
with multivariate, unbalanced data that account for nonlinear, higher-order interactions. For instance,
statistical models such as the linear mixed-effects model (LMM), generalized linear models [20,21],
and machine learning (ML) models such as random forest, artificial neural networks, and decision tree
algorithms [22–24] can be applied to handle these challenges. Unlike ANOVA models, LMMs cover
nontreatment variables and random factors that tend to mask the treatment effects, thereby improving
the reliability and interpretation of experimental results [18]. While Piepho [25] stated that the most
common variables affecting the yield could be determined in the LMM framework when environmental
effects and treatment effects are considered random and fixed factors, other reports advised that
the LMMs and linear regression models have limitations because the analytical interpretation and
pattern prediction can be confounded due to significant high autocorrelation or missing data [26–28].
ML models such as the classification and regression tree (CART) and M5P algorithm-based decision
tree have been employed in agricultural research [29,30]. These regression tree models are most useful
in handling complex databases with a high number of attributes and high dimensions collected from
observational experiments [31] but can also profitably be applied for small datasets from designed
experiments [32]. They are robust tools for dealing with missing data. Additionally, regression tree
models can capture important nonlinear relationships and interactions between variables [31]. However,
this method, by contrast, has not yet been widely used in analyzing data collected from LTFEs.

Statistical inference and prediction are two major goals in the study of agricultural experiments.
While statistical models are designed to draw inferences of relationships between variables
within assumptions, ML is a modeling tool for finding generalizable predictive patterns without
hypotheses [33]. Limitations in the use of statistical inferences and ML are still subject to debate.
We have not yet found clarity in the literature regarding the comparison of how different statistical
analyses and the ML model explain the results of LTFE data. Moreover, it is important to know the
best suited tools and methods for unraveling the important interconnected multiple variables that
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influence crop yields in the long term. Therefore, in this study, we tested the use of ANOVA in the
general linear model and two nonparametric methods, the LMM and M5P models, to understand
grain yield variations of WW in an LTFE (“V140”) in Müncheberg, Germany. The objectives of the
study were to (1) identify the important variables that explain the grain yield variations of WW in the
LTFE and (2) compare different analytical methods for explaining the WW yield variation.

2. Materials and Methods

2.1. Experimental Site

The LTFE “V140” was established at the experimental station of the Leibniz Centre for
Agricultural Landscape Research (ZALF), Müncheberg, Germany, in 1963 [34]. The site is located
in the Märkisch-Oderland district, around 50 km east of Berlin. The area is characterized by a dry
period, particularly during the early summer [35]. The mean annual precipitation in the area was
551 mm ± 121.6 standard deviation (s.d.), and the mean annual temperature was 8.7 ◦C ± 0.9 s.d.
during the cultivation period of WW (1973–2010). The soil in the area is classified as a Podzoluvisol to
Arenosol. According to the German Guidelines for Soil Assessment (Bodenschätzung), the dominant
soil texture classes are slightly loamy sand and sand (Sl4D and S4D) [34]. The site has recently been
described in more detail in Thai et al. [36].

2.2. Experimental Design and Management

The experiment was set up on a flat plain measuring 5712 m2 involving 168 individual plots.
The individual plots measured 6.0 m × 5.0 m, and a buffer zone of 1 m was allowed between the
blocks. The experiment was arranged in a randomized complete block design (RCBD) comprising
21 treatments with eight blocks. The treatments included five levels of mineral N fertilizer (NF),
each in combination with four organic fertilizers (ORF) (Table S1, supplementary). The five NF levels
comprised 35, 70, 105, 140, and 175 N kg ha−1, which are hereafter referred to as N1, N2, N3, N4,
and N5, respectively. The ORF treatment included 0, 1.2, and 3.2 t dry mass (DM) ha−1 farmyard
manure (FYM) and 2.0 t DM ha−1 straw, which is henceforth referred to as sole mineral fertilizer
(nitrogen, phosphorus, and potassium combination), fym1, fym2, and straw applications, respectively
(Table S1). However, at a 3.2 t DM ha−1 application rate of FYM, the NF levels applied were 0, 35, 70,
105, and 140 N kg ha−1 (fym2 application). The control treatment received no fertilizer inputs. Due
to the different NF levels in the fym2 application compared to other applications, group treatments
were made to balance the NF rates among the different applications to compare the effects of different
ORFs on the yield. The group treatments included control, NPK, NPK + fym1, NPK + fym2, PK +

fym2, and NPK + straw (Table S1, supplementary material). From 1980 onwards, phosphorus and
potassium fertilizers were applied at 30 kg P2O5 ha−1 and 100 kg K2O ha−1, respectively, to all plots
except the control treatment. NF was applied twice each year during the growth of WW, i.e., the basal
amount was applied in the middle of April, and the remainder was applied a month later between
shooting to full blooming (end of May or early June). The FYM was applied every two years from 1973
to 1994 in autumn before planting maize, potato, or sugar beets, depending on the cropping system
in the year. After 1994, the FYM was applied every four years in autumn before planting maize or
potatoes. The FYM used in each year contained, on average, 2.1% N, 0.7% P2O5, 2.1% K2O, 0.4% Mg,
and 55.4% organic matter. Straw from the preceding cereal crop was applied at 2 t ha−1 every two
years throughout the experimental period. The dry mass straw contained, on average, 0.7% N, 0.1%
P2O5, 1.9% K2O, and 0.1% Mg. Lime was uniformly applied to all the plots in all trial years.

Sowing of WW was performed at the end of September or in early to middle October in most years
during the study period. The sowing densities were the same in all experimental years, but the WW
varieties were changed over time. Harvesting was performed at the end of July or the beginning of
August in most experimental years, depending on the weather conditions. The WW was harvested at the
physiological maturity stage using a harvester. Weeds were controlled with a postemergence herbicide.
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The crop sequence was not fixed and consisted of WW, winter rye, spring barley, potatoes, sugar
beets, maize, flax, and peas (Table S2, supplementary). One of these crops was cultivated in the
experimental site during each growing season. The crop preceding WW was potatoes in 1973, 1983,
1987, and 1991 and sugar beets in 1993. In 2001 and 2009, the crop preceding WW was peas. There were
seven WW crop rotations, and the crop rotations were different in this experiment. The management
practices of WW, such as plowing, harrowing, and fertilization, were the same in each experiment year.

2.3. Data Description

Crop yield: Long-term data from 1973 to 2010 were used for the analyses. The DM grain yield
data of WW (Mg DM ha−1) were obtained from the seven years of WW cultivation. The DM yield of
the preceding crop was obtained in each trial year to estimate its effects on the yield of WW.

Meteorological data: The weather data used in the analysis were obtained from an adjacent
climate station of the German Meteorological Service [37]. The daily mean air temperature, maximum
temperature, minimum temperature, and precipitation during the growing period of WW were used
to calculate the input weather variables for this study. The monthly mean temperature, cumulative
precipitation, cumulative number of days recorded with mean temperatures above 30 ◦C in every month
(days Tmax > 30 ◦C in a month), the cumulative number of days recorded with mean temperatures
below 0 ◦C or 32 ◦F (freezing days in a month), and cumulative growing-degree days during the
growing seasons were calculated. The maximum and minimum temperatures were used to calculate
the growing degree days (GDD).

Soil variables: Soil chemical analyses were performed in the 1984, 1988, 1992, and 1994 trial years.
The results of the soil analysis are presented in Table S3 of the supplementary material. Selected soil
variables such as the total N and SOC in each treatment were used as input data to estimate their
effects on the yield of WW. All input variables considered in this study are presented in Table S4 of the
supplementary material.

2.4. Data Analysis

There are two main steps in the analysis: (1) exploring the WW grain yield and yield variability
using descriptive analysis and ANOVA within fixed effects models-general linear model and (2)
applying nonparametric methods involving the LMM (statistical model) and M5P (ML model) models
for the grain yield response.

2.4.1. ANOVA Test

The effects of fertilization treatments on the grain yields were analyzed by one-way ANOVA using
SPSS version 25, and the significance was determined by Tukey’s post hoc test. A fixed-effects model,
the general linear model, was used to evaluate the main and interaction effects among treatments
(fertilizer) and years (annual or environmental effects) on the grain yields over the years. The effect
sizes of the fertilizer, environmental factors, and their interactions were estimated based on the sum
of squares-type III in the general linear model. The environmental factors considered in this study
were weather, soil chemical properties, and preceding crops and their yields. Furthermore, soil data
were analyzed by ANOVA to understand the changes in soil properties under long-term fertilization
practices and then to select the important variables for developing models. To avoid the effects of
collinearity in the statistical model and overfitting in the ML model, Pearson’s correlation analysis was
checked between the target variables (WW grain yield) and predictor variables and between predictor
variables together. Based on Pearson’s correlation coefficient, useful variables were maintained,
while redundant variables were removed before developing the yield models. Statistical significance
for the analyses was set at p < 0.05.

2.4.2. Linear Mixed-Effects Models

LMMs are an extension of the linear regression model and include both fixed and random effects
as predictor variables via a restricted maximum-likelihood estimate (REML). The LMMs were fitted
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using the “lmer” function implemented in the “lme4” package [20] of the R statistical language,
version 3.6.3 [38], to assess the WW yield as a function of the different factors. The LMM for the yield
response is specified by Equation (1).

y = Xβ + Zu + ε (1)

Here, y is the vector of the wheat yield (outcome/target variable: Mg ha−1); X and β are the
design matrix and the vectors of fixed effects, respectively; Z and u are the design matrix and the
vectors of random effects; and ε represents the vector experimental error. In this study, the LTFE with
RCBD was specified with experimental years and experimental blocks and plots as random effects on
the yield. The fixed-effect variables were the levels of NF, type, and levels of ORF, selected weather
parameters, preceding crops and their yields, and selected soil chemical properties. Regarding the
model development process, after checking for normality on model residuals using quantile-quantile
(Q–Q) plots, we first fitted the random effect model. Then, we added more predictors as fixed effects
to the random effect model. From these LMMs, we performed gradual backward elimination of
nonsignificant LMM effects, beginning with the random effects followed by the fixed effects. In this
study, the LMM was fitted as a random intercept model at a 97.5% confidence interval (CI). Models
were selected using the Akaike Information Criterion (AIC).

From the final LMM, we calculated the relative important variables using the Relaimpo package
in R, version 3.6.3 [39]. This is a supplemental test to regression analysis to calculate the proportional
contribution of each predictor variable to explaining variance in the LMM. The statistical tests were
considered significant at the 0.05 probability level.

2.4.3. Machine Learning Model

We used the M5P algorithm, which is a recursive partitioning algorithm based on thresholds for
developing a decision tree structure, to uncover the relationship and interaction between the WW yield
and predictor variables. The M5P is a powerful implementation of Quinlan’s M5 algorithm [40,41] and
an advantaged algorithm among decision tree algorithms for training an ML model. We implemented
M5P in WEKA (Waikato Environment for Knowledge Analysis) software version 3.8.4. The rule of M5P
is to recursively partition the data space and fit a prediction model within each partition. The results
of the implementation are a binary regression tree model and are represented as an inverted tree,
wherein the terminal nodes are the linear regression functions. The tree includes a root node (top node),
internal nodes, and terminal nodes connected by edges. Additionally, branches or subtrees are split
from the root node, and internal nodes correspond to the outcome of the test. The terminal nodes
are the prediction values of the WW yield. When the values of the outcome at the terminal nodes
are numeric, the terminal nodes of the tree can be constant values, and the tree is called a regression
tree. In contrast, the tree is called a model tree once the terminal nodes of the tree are piecewise linear
regression equations [42]. Before training the M5P model, we checked the correlation ranking between
the selected input variables and yield by the attribute selection function in WEKA. Next, we used
the split function in WEKA to randomly partition the preprocessed data into two subsets, including
the training set (80%) and test set (20%). The training set was used to build the decision tree model
(determine its parameters), the ten-fold cross-validation method was used to estimate the accuracy of
the supervised learning algorithm, and the test set was used to evaluate the predictive performance of
the trained model [43]. The coefficients of determination (R2) and root mean square error (RMSE) were
used to assess the performance of the models. After obtaining a final M5P model, we used bootstrap
1000-tree analysis by the Relaimpo package in R version 3.6.3 [39], to identify the relative importance
of predictor variables. In this study, we present the results of the regression tree model as a piecewise
constant function.

2.4.4. Evaluation Metrics

A good fitting model is generally one in which the results of the predicted values are close to the
actual values for the selected model. Thus, the predicted grain yields of WW produced by LMM and
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M5P-based regression trees were compared to the actual yields observed in the LTFE. We employed
standard statistical criteria such as R2, RMSE, and mean absolute error (MAE) values to assess the
predictive performance for WW grain yields by the selected models. The R2 value indicates the fitness
of the model for predicting the WW yield, while the RMSE and MAE are commonly used to measure
the difference between the predicted and actual values. Furthermore, the RMSE can be used to evaluate
the closeness of these predictions to the actual values, while the MAE can better represent the predictor
error. Higher R2 values and lower values of the RMSE and MAE indicate better estimation accuracies
of the models [44]. Equations for the evaluation metrics are given in the supplementary material,
EQ1 (Es1, Es2, Es3).

3. Results

3.1. Grain Yield of Winter Wheat

The ANOVA results show that there was a significant effect of fertilization on the grain yield of WW
(Figure 1, p < 0.001). Irrespective of ORF application, the mean grain yield increased significantly with
increasing NF application rates until N3, except in fym1 and fym2. At zero NF, treatment 3.1 showed
nearly 0.5-times higher increases in grain yield relative to the no input control. At N1, the highest
significant mean grain yield was observed when coapplied with fym2, while no differences were
observed among mineral fertilizer, fym1, and straw applications. There were no significant differences
in mean grain yields among the four application regimes (mineral fertilizer, fym1, fym2, and straw
application) at N2, N3, N4, and N5. Optimal mean grain yields of less than 5.0 Mg DM ha−1 were
obtained at N3 in the mineral fertilizer and straw application and at N2 in fym1 and fym2 applications.
Optimal yields of 4.60 Mg DM ha−1 and 4.16 Mg DM ha−1 were observed at N3 and N2 in mineral
fertilizer and fym1 applications, respectively. In fym2 and straw applications, optimal yields of 4.44 Mg
DM ha−1 and 4.69 Mg DM ha−1 were obtained at N2 and N3, respectively. Therefore, FYM applications
with both levels (fym1 and fym2) showed better effects on the grain yields compared to mineral
fertilizer application or straw application.

Figure 1. Mean grain yields (Mg DM ha−1) of winter wheat (WW) under different fertilizer treatments
and fertilization practices. Error bars indicate the standard errors (SE) of the means. Treatments sharing
the same letter are not significantly different (p < 0.05). Treatment codes are given in Table S1. MF:
mineral fertilizer; fym: farmyard manure. Bars with the same color show the same rate of NF.

The mean WW grain yields of the group treatments are shown in Table 1. The average yields
ranged from 1.48 Mg DM ha−1 year−1 in the control to 4.42 Mg DM ha−1 year−1 in the NPK + fym2
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treatment. The average grain yields were not significantly different among the NPK, NPK + fym1,
NPK + fym2, and NPK + straw treatments. The average grain yield in NPK + fym2 was twice as high
as that in PK + fym2 and three times higher than that in the control. The coefficient of variation (CV) of
grain yields for each group treatment ranged from 0.26 in NPK to 0.39 in the PK + fym2 treatment.
Non-NF input treatments (control and fym2 + PK treatments) showed relatively higher CV values of
0.33 and 0.39, respectively, compared to NF-applied treatments. The NF-applied plots showed similar
CV values of 0.26 and 0.27. In general, the results of ANOVA and descriptive statistics in Table 1
show that NF treatments can maintain a stable and higher WW grain yield compared to treatments
without NF.

Table 1. Yield and yield variation of winter wheat for group-treatments in the long-term field experiment.

Group Treatment Yield
(Mg DM ha−1)

±Se CV Percent Change in Yield
Relative to Control (%)

Percent Change in Yield
Relative to PK + fym2 (%)

Control 1.48 a 0.19 0.33 - −34
NPK 4.10 c 0.41 0.26 179 85

PK + fym2 2.23 b 0.32 0.39 51 -
NPK + fym1 4.11 cd 0.40 0.26 179 85
NPK + fym2 4.42 d 0.45 0.27 200 99
NPK + straw 4.23 cd 0.42 0.26 187 90

Group treatments are given in Table S1; Mg DM: megagram dry mass; Se: standard error; CV: coefficient of variation.
Different letters in the second column indicate a significant difference in the WW grain yield at p < 0.05.

The grain yield dynamics of WW in the tested years are shown in Figure 2. Irrespective of the
group treatment application, there were significant differences in WW grain yields among the trial
years. The WW grain yield variability was high among the years and ranged from 2.35 Mg DM ha−1 in
1991/92 to 5.39 Mg DM ha−1 in 1983/84. Except for the PK + fym2 treatment, there were significant
increases in grain yield for all group treatments compared to the control in almost all years.

Figure 2. Grain yields of WW (Mg DM ha−1) in all trial years under different group treatments. Means
sharing the same letters are not significantly different (p < 0.05). Capital letters at the top of bars indicate
a comparison of average grain yields among the trial years. Small letters denote a comparison of the
yields among group treatments within a given year.

The results of ANOVA or general linear model analysis show that the grain yield of WW was
significantly affected by the environment/year (42%), followed by the fertilization treatment (34%) and
environment × fertilization (6%), with 17% of the variation attributed to error (other factors) (Table 2).
These results explain 80% of the variance with an adjusted R squared value of 0.80 at p < 0.001.
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Table 2. Results of ANOVA and Eta squared between fertilizers and years (environment) for winter
wheat yields.

Source Type III Sum of Squares df Mean Square F Sig. Eta Squared (h2)

Corrected Model 2315.99 146 15.86 32.40 *** -
Intercept 17,142.05 1 17,142.05 35,009.21 *** -
Treatment 920.13 20 46.01 93.96 *** 34
Year 1148.10 6 191.35 390.79 *** 42
Treatment x Year 154.63 120 1.29 2.63 *** 6
Error 462.71 945 0.49 - - 17
Total 21,013.49 1092 - - - -
Corrected Total 2778.71 1091 - - - -

Sig.: significant; *** = p < 0.001; R2 = 0.83 (adjusted R squared = 0.80); dependent variable: yield of WW (Mg ha−1);
Eta squared (h2): proportion of total variance that is attributed to an effect.

3.2. Modeling and Predictors

3.2.1. Linear Mixed-Effects Model

The results of the LMM reveal that NF application, freezing days in December and in February,
precipitation in June, the yield of the preceding crop, the temperature in October, the cumulative
number of days in July with maximum temperatures above 30 ◦C (days Tmax > 30 ◦C in July) and
the total N in the soil were fixed factors that influenced the grain yield of WW (Table 3). The model
indicated blocks and plots as random factors. The fixed effects explained 73% (Rm

2 = 0.73) of the
variance in the grain yield, while the total of both the fixed and random effects explained 80% of the
variance (R2

c = 0.80) at a 97.5% CI. In particular, NF application and freezing days in December showed
the highest significant contribution to the grain yield, i.e., 21.7% and 17.3%, respectively (Table 4).
However, the temperature in October (3.9%) and total N in the soil (3.3%), although significant,
were less important predictors of the grain yield. The plots and blocks explained 15.2% and 10.5% of
the variance in the grain yield, respectively.

Table 3. Estimate of the coefficients (β) and p-values in the linear mixed-effects model.

Model
M0: Intercept Only M: with Predictors

Estimate
(β, Mg ha−1)

s.e. p-Values Estimate
(β, Mg ha−1)

s.e. p-Values

Fixed effects
Intercept 4.081 0.443 *** −2.426 0.231 ***
N fertilizer rate - - - 0.012 0.001 ***
Freezing days in December - - - 0.144 0.011 ***
Precipitation in June - - - 0.005 0.001 ***
Freezing days in February - - - 0.134 0.007 ***
Preceding crop yield - - - 0.157 0.015 ***
Days Tmax > 30 ◦C in July - - - −0.139 0.016 ***
Temperature in October - - - 0.215 0.017 ***
Total N in soil - - - 0.001 0.0001 ***
Rm

2 0 - - 0.73 - -
Random effects Variance SD Variance SD

Plot 0.82 0.90 *** 0.09 0.31 ***
Block 0.09 0.31 *** 0.06 0.26 ***
Year 1.01 1.01 *** - - ns
Residual 0.51 0.71 - 0.46 0.68 -

Deviance 2702.30 - - 2516.9 - -
Rc

2 (Total) 0.79 - - 0.8 - -

*** = p < 0.001; ns = p > 0.05; Rm
2: marginal coefficient of determination for fixed factors alone; Rc

2: conditional
coefficient of determination for both fixed and random factors; SD: standard deviation; freezing days in
December/February: cumulative number of days in December/February with mean temperatures below 0 ◦C (32 ◦F);
days Tmax > 30 ◦C in July: cumulative number of days in July with maximum temperatures above 30 ◦C.
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Table 4. Important variables indicated by the linear mixed-effect and M5P regression tree models as predictors of winter wheat yields in the LTFE.

LMM Relative Contributions with Confidence
Intervals (%) M5P Regression Tree Relative Contributions with Confidence

Intervals (%)

No. Predictors Relative important variables Lower Upper No. Predictors Relative important variables Lower Upper

Fixed effects
1 Nitrogen fertilizer rate 21.7 a 19.2 24.3 1 Freezing days in December 31.7 a 29.2 34.2
2 Freezing days in December 17.3 b 15.7 19.0 2 Nitrogen fertilizer rate 22.5 b 19.7 25.6
3 Precipitation in June 8.2 cd 6.9 9.6 3 Preceding crop yield 7.9 c 6.5 9.2
4 Freezing days in February 7.6 cde 6.3 9.2 4 Temperature in October 5 de 3.9 6.3
5 Preceding crop yield 6.6 def 5.6 7.7 5 Freezing days in February 4.6 de 3.6 5.8
6 Days Tmax > 30 ◦C in July 6.0 ef 5.3 6.8 6 Total nitrogen in the soil 3.0 f 2.4 3.8
7 Temperature in October 3.9 gh 3.0 4.9 7 SOC 2.3 g 2 2.8
8 Total nitrogen in the soil 3.3 gh 2.5 4.1 8 FYM 0.4 h 0.3 0.6

Random effects
1 Plot 15.2 - - - - - -
2 Block 10.5 - - - - - -

Statistical indicators
R2 0.8 - - - - 0.8 - - -

RMSE 0.68 - - - - 0.74 - - -
MAE 0.54 - - - - 0.58 - - -

FYM: farmyard manure, SOC: soil organic carbon, R2: coefficients of determination, RMSE: root mean square error, MAE: mean absolute error. Different letters in the same column indicate
that the difference in predictor ranking is significant at 97.5%.
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3.2.2. Machine Learning Model

The M5P regression tree model generated five splits and 17 terminal nodes and explained 80%
of the variability in the data (Figure 3). The hierarchy of the regression tree model, as well as the
results from bootstrapping 1000 trees, indicated freezing days in December and the NF rate as the
main determinants of the WW grain yield (Figure 3, Table 4). Freezing days in December and the
NF rate accounted for 31.7% and 22.5%, respectively, of the contribution to the grain yield of WW.
Other variables, such as the yield of the preceding crop, the temperature in October, freezing days
in February, the total N in the soil, the SOC, and the FYM, were also determinants of the WW grain
yield. The total N in the soil, SOC, and FYM showed a minimal influence on the grain yield of WW,
with relative contributions of 3.0%, 2.3%, and 0.4%, respectively. The effects of the total N in soil and
SOC on the grain yield were only evident in plots that received NF application. In contrast, the FYM
slightly influenced the grain yield only in plots that received no NF application (Figure 3).

3.2.3. Comparing Models and Model Fit

The results of ANOVA indicate fertilizer application and the environment as the main factors that
explained the grain yield, with an adjusted R squared of 0.80 (Table 2). Among the treatment inputs,
NF application was the main variable that influenced the grain yield, while FYM slightly influenced
the grain yield with no NF application. The effects of fertilizer and the environment on the grain yield
were revealed in detail in the results of the LMM and M5P regression tree models. Both the LMM
and M5P model identified the NF and freezing days in December as the most crucial variable that
influenced the grain yield of WW (Table 4). However, the relative proportions of both variables differed
hierarchically in both models. The NF rate was the most important variable, while freezing days in
December was the second most important variable that explained WW yields in the LMM. Conversely,
the results from the M5P model show the NF rate as the second most important variable and freezing
days in December as the first most important predictor of WW yields. Additionally, freezing days in
February, the yield of the preceding crop, the temperature in October, and the total N in the soil were
determinants of the grain yield in both models. Apart from the common determinants in both models,
the LMM highlighted precipitation in June and days Tmax > 30 ◦C in July, while the M5P model
revealed SOC and FYM in plots that received zero NF input as variables that influenced the WW yield.

The results of the fitting model for the LMM (R2 = 0.8, p < 0.001) and the training model for the
M5P regression tree (R2 = 0.8) (Table 4) show a generally good fit between the predicted yield and
actual yield of WW. The evidence of good fit between the predicted yield (modeled) and actual yield
(observed) for the LMM and M5P model are shown in Figures S1 and S2 in the supplementary material.
The LMM showed a better performance in predicting the grain yield compared to the M5P regression
tree model, as reflected by its relatively smaller RMSE and MAE values. The LMM showed RMSE and
MAE values of 0.68 and 0.54, respectively, while 0.74 and 0.58 were computed for the M5P regression
tree model.
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Figure 3. M5P regression tree model describing the grain yield of winter wheat (Mg DM ha−1) in the LTFE as a function of the fertilizer, weather, soil, and preceding
crop yield. The predicted yield and actual yield values are given in megagram dry mass ha−1. Freezing days_Dec: cumulative freezing days in December; Tem_Oct:
temperature in October; SOC: soil organic carbon; mineral nitrogen fertilizer: NF; farmyard manure; FYM.
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4. Discussion

4.1. Grain Yield of Winter Wheat and Treatment Effects

The optimum WW grain yield of less than 5.0 Mg DM ha−1 observed in the current study was
much lower than the national average yield of 7.7 Mg DM ha−1 from 2014 to 2018 [2]. The yields of
WW in this study markedly increased when NF or its combination with ORF was applied (Figure 1).
Similar to the observations for spring barley in the experiment [36], we found that NF input was a
major determinant of the grain yield of WW. Fixen and West [45] stated that plant-available N is one
of the most important nutrients for increased yields of major food crops. In this study, the average
grain yields of WW increased to optimal yields along with increasing NF application to a certain
threshold. The optimal yields were obtained at N3 in the mineral fertilizer and straw applications and
at N2 in the fym1 and fym2 applications (Figure 1). This reveals that the effects of NF application on
the yield of WW were different under different ORF applications. The effect of the ORF application
compared to mineral fertilizer application alone on the grain yield was evident at N1 only in the fym2
application, reiterating the importance of FYM amendment and its dose in attaining the optimum
yields of crops. FYM amendment can reduce the need for the higher NF application rate demanded by
wheat. This observation is similar to those in studies by Blanchet et al. [46] in Switzerland.

The combined application of FYM with mineral fertilizer has been reported to improve the grain
yield of WW in Germany [11,47]. The yield increase is attributed directly to the effects of additional N
and indirectly to the improved soil conditions related to organic material applications [48]. In this
study, with the same NF input in NPK, NPK + fym1, NPK + fym2, and NPK + straw, the average
yields of these group treatments were similar, irrespective of the ORF application type and amounts
(Table 1), implying the minimal influence of FYM or straw on the grain yield. Additionally, the FYM in
plots that received zero NF input appeared in the M5P regression model, but the corresponding effect
on the WW yield variation was very small. This is ascribed to the fact that organic inputs are usually
low in nutrients and unable to satisfy the nutrient demands of cultivated crops [49].

Although the effects of FYM application on the grain yield variation were very small and the effect
of straw on the yield was not clear in the present study, the combined application of ORF along with
NF increased the grain yield stability of WW (Table 1). These findings are consistent with observations
from WW grain yield stability studies in Giessen, Germany [5,6]. We observed higher grain yield
stabilities of WW in all treatments with NF input, as shown by their lower CV values compared to the
control or PK + fym2 treatment. This observation is ascribed to the plant-available N input from NF,
which aided in the vigorous growth of wheat plants and the development of greater resilience against
environmental stress. NF was the main fertilizer factor that showed enhanced effects on wheat yields
through improvements in plant growth and root development [50], and thus aided in the water and
nutrient uptake capacity. Thus, NF application in the WW cultivation system could not only enhance
grain yields but also reduce the yield variability year to year.

4.2. Environmental Effect on the Winter Wheat Yield

The temperature in October was an influencing variable for the WW grain yield in both models
(Table 4). In this experiment, WW was sown at the end of September to mid-October. In general,
the optimal temperature for wheat germination is 12 to 25 ◦C [51], while the average temperature in
October throughout the trial years was 8.7 ± 1.8 ◦C (Table S5a). Therefore, a warmer temperature in
October is favorable for the germination, emergence, and initial growth of leaves, crowns, and secondary
root systems of WW plants [52].

Many previous studies have reported on the effects of winter freezing temperatures on the grain
yield of WW [53–55]. Our findings reveal that freezing days in December appeared to be the most
crucial and consistent climate-based driver for the grain yield of WW in both the LMM and M5P model
(Table 4). The freezing days in February were also a consistent determinant of grain yields in both
models, although they showed only a 7.6% contribution in the LMM and a 4.6% contribution in the
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M5P model. Seedlings of wheat normally require a minimum of four to five leaves and at least one
to two tillers to have enough energy reserves to survive the winter [56]. Thus, winter hardiness or
cold tolerance is an extremely crucial physiological process that affects wheat survival during winter
and its subsequent growth and development. According to Lollato et al. [56], wheat plants remain
cold-hardy as long as the crown temperatures remain below 0 ◦C. The wheat crown is the most crucial
organ for WW survival during winter [57], since viable crown tissue enables the regeneration of
other plant organs damaged by freezing injuries. Hence, the survival of WW depends on the viability
of the crown. WW will normally have reached its maximum level of cold hardiness by the time
winter begins in December [56]. In this regard, more freezing days in December, which implies more
exposure to freezing conditions, will support the cold hardiness process and WW survival and grain
formation. On the other hand, wheat plants will experience a gradual loss of cold hardiness when the
soil temperature around the crown rises above 10 ◦C. Once WW plants lose their maximum level of
cold hardiness, there is the possibility to reharden during the winter, but they will not regain their
maximum level of cold hardiness. Thus, having more freezing days in February is important for the
subsequent growth and increased grain yield of WW plants. Furthermore, the climate in most parts of
Germany is moderately continental and is characterized by an average daily temperature of 0 ◦C in
winter [58]. During the trial years in this study, the average temperatures in December and February
were 0.6 and 1.4 ◦C, respectively (Table S5a), and more days of freezing temperatures potentially
not only favored the survival of WW plants but also reduced plant disease inoculum and incidence
during winter.

Generally, drought and high-temperature stress often occur simultaneously at anthesis and during
the grain-filling period and/or at physiological maturity in wheat, causing significant yield losses [59,60].
An increased frequency of droughts, especially in early summer in Germany, has been suggested to
affect wheat production, particularly in Northeast Germany, which is characterized by predominant
sandy soils [9,61]. In this study, the LMM showed that more precipitation in June positively influenced
the WW grain yield, whereas more days of Tmax > 30 ◦C in July negatively influenced the grain
yield (Table 3). This observation has previously been reported for both WW and spring wheat [62–64].
In addition, the second application of NF between shooting and full blooming (the end of May or
early June), together with adequate precipitation in June and fewer days of Tmax > 30 ◦C in July,
was critical to grain yield development (Table S5b,c). This finding is consistent with the observations
of Altenbach et al. [59] that fertilizer application at anthesis, drought, and high temperatures affects the
grain development, kernel composition, and grain yield. When plants are grown without additional
fertilizer at anthesis, coupled with exposure to drought and high-temperature stress, the duration of
grain filling shortens, resulting in low kernel weights and low yields. Moreover, senescenced leaves
appear much earlier under high temperatures and coincide with physiological maturity, which shortens
the time to maximum growth, dry weight, and duration of starch accumulation [65].

Previous studies have reported the effects of the preceding crop type and preceding crop yield as
important factors that influence WW yields in LTFEs [66–68]. Our results show that only the yield of
the preceding crop was an important variable that explained the variance in the WW yield (Table 4).
Nonetheless, once the yield of the preceding crop was included in the models explaining WW yield
variation, the preceding crop type could be related. The type of preceding crop did not appear in
the models, which was likely a result of the small replication of each preceding crop or small sample
representation of the preceding crop type in this experiment. In the unfertilized control, the grain
yield of WW was 1.3 and 1.9 t ha−1 after root crops and peas, respectively. Therefore, peas could be
considered a favorable preceding crop for WW in this experiment. More long-term trials with peas are
required to verify this observation.

The total N in soil revealed minor influences on the grain yield of WW and yield variability in
both models (explaining around 3%). This consistency in both models relates to the N input, which is
an important nutrient for increased crop yield. Additionally, the visualized M5P regression tree model
revealed a relationship between the total N and preceding crop yield and the WW yield variation
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(Figure 3). This result corroborates the previous report that the total N content in soil and the allocation
of residual N of the preceding crop within the soil matrix affect the yield of the subsequent crop [69].
The SOC also appeared in the M5P regression model, with a small contribution (Table 4). The increase
in the SOC content positively influenced the grain yields in plots that received NF input from 35 to
175 kg ha−1. Similar positive correlations in the relationship between the grain yield and SOC were
reported in other studies [70].

4.3. Comparing Models and Model Fits

The ANOVA test used in this work is a basic step in statistical inferences to understand yield
differences between treatments using the F-test and p-value in the fixed model-general linear model.
Therefore, the analysis only indicated fixed factors such as NF input and FYM as predictors of the WW
grain yield. Nonetheless, when the trial years were considered as a fixed factor in the general linear
model, the ANOVA result reveals the environment as an additional main determinant of the WW
grain yield.

The LMM and M5P regression tree models were compared for their effectiveness in explaining the
grain yield of WW. The LMM had better predictive performance compared to the M5P regression tree
model, as indicated by its smaller RMSE and MAE (Table 4). This is because the LMM is an advanced
statistical inference model that includes fixed and random factors and thus reduces experimental errors
and increases the predictive performance. Second, the data used in this study were collected from
well-designed experiments and thus suit a traditional model, such as LMM. Similar to the findings
of this study, Krupnik et al. [17] observed that LMMs had better predictive performances compared
to random forests and CART models for wheat grain yields in farm trials in Bangladesh. In contrast,
our results slightly differ from the findings of Sihag et al. [71], whose field unsaturated hydraulic
conductivity study revealed that M5P and random forest regression analyses provide better prediction
efficiencies compared to the multiple nonlinear regression model. Additionally, the decision tree
model generated by the M5P algorithm in a study by Trajanov et al. [30] achieved a better predictive
performance of primary productivity in LTFEs compared to statistical studies previously carried out
on the same data [72,73].

Although the M5P regression tree had a lower predictive performance than that of the LMM in
this study, both models generally indicated a good fit with the actual yields (Table 4, Figures S1 and S2).
The main results and factors identified in the LMM and M5P regression tree basically agree with each
other. However, the M5P regression tree showed an intuitive visualization and interpretation of the
main effects and interactions beyond their representations of single-degree of freedom contrasts [32].
Additionally, the M5P regression tree identified variables that were not captured by the LMM
model. The SOC and FYM variables that showed up in the M5P regression tree analysis were not
captured by the traditional statistical methods. Conversely, two important weather parameters in
summer—precipitation in June and days Tmax > 30 ◦C in July—were important variables that explained
the grain yield variation in the LMM but did not appear in the M5P regression tree. In the soil matrix,
organic matter decomposition is stimulated by increased temperature in summer, resulting in the
release of nutrients locked up in the litter. Additionally, decomposition is also dependent on soil
moisture, and litter breakdown will potentially be enhanced at warm temperatures, especially after a
rainfall event. Thus, the two exclusive variables of each model were related to each other, especially in
terms of decomposition and nutrient release to plants.

Thus, our study revealed that although the M5P regression tree offered less formal statistical
inference compared to the LMM, it complemented the output derived from the LMM in analyzing
the complex factors and mechanisms influencing the grain yield variation (Table S6). According to
Loh [32], the traditional statistical methods cannot account for variables that have more than two levels
because their interactions cannot be fully represented by low-order contrasts.

Overall, our findings suggest that in addition to using the traditional ANOVA and the LMM to
explain WW yields in LTFEs, as in earlier studies, the M5P regression tree could be used to produce
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a good prediction of WW yields as well. Thus, the co-use of these different analytical methods can
strengthen the statement of the analysis by capturing other relevant variables overlooked by either of
the models.

5. Conclusions

The grain yields of WW varied among the trial years, and an optimum grain yield of less than
5.0 Mg DM ha−1 was observed. NF application and freezing days in December were identified as
the main determinants of the WW grain yield. The combined fertilizer application with NF input
enhanced the yield stability of WW. Additionally, the temperature in October, freezing days in February,
precipitation in June, days Tmax > 30 ◦C in July, the yield of the preceding crop, total N in the soil,
SOC and FYM were important variables that explained the grain yield variation of WW.

The results of ANOVA provide the main factors affecting the WW yield. While the M5P showed a
lower predictive performance compared to the LMM, it complemented the output from the LMM by
revealing important yield predictors that were not captured by the LMM.

Thus, the co-use of different analytical methods such as ANOVA, LMM, and M5P model for the
inference and prediction of yield responses in long-term studies should be considered, especially in
those involving a larger database with multiple variables. The present finding adds more insights
to the available literature by exhibiting the advantage of using various methods to analyze factors
that affect the grain yield of WW in the LTFE. In addition, the results of this study indicate the need
for adjustments in the management and exploration of appropriate preceding crops and/or the usage
of appropriate wheat cultivars to adapt to year-to-year weather changes such as drought events and
high temperatures in summer and winter. Further research with other crops and, ideally, with data
obtained across many more years involving multiple variables is required to validate our observation.
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